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SUMMARY

In a recent article, Bai and Perron (2003, Journal of Applied Econometrics) present a
comprehensive discussion of computational aspects of multiple structural change models along
with several empirical examples. Here, we report on the results of a replication study using
the R statistical software package. We are able to verify most of their findings; however, some
confidence intervals associated with breakpoints cannot be reproduced. These confidence
intervals require computation of the quantiles of a nonstandard distribution, the distribution
of the argmax functional of a certain stochastic process. Interestingly, the difficulties appear
to be due to numerical problems in GAUSS, the software package used by Bai and Perron.
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1. INTRODUCTION

Time series with multiple structural changes have recently attracted considerable attention in
theoretical and applied econometric literature. Bai (1997) and Bai and Perron (1998) present
asymptotic theory for inference on multiple breakpoints, in a companion paper (Bai and Perron,
2003) they provide a comprehensive and detailed discussion of computational aspects as well as
several empirical examples.

The present paper aims at replicating the results from Bai and Perron (2003) using the R statistical
software package (R Development Core Team, 2004, see http://www.R-project.org/), the GNU
implementation of the S language (Chambers and Hastie, 1992), which recently finds increasing
attention among econometricians (Cribari-Neto and Zarkos, 1999, Racine and Hyndman, 2002).
Specifically, we employ the R package strucchange (Zeileis, Leisch, Hornik and Kleiber, 2002),
which implements a large collection of methods for the analysis of structural change, including
fluctuation tests (Kuan and Hornik, 1995), F tests (Andrews, 1993, Andrews and Ploberger, 1994)
as well as methods for the dating and monitoring of structural breaks. Both the R system and the
strucchange package are freely available at no cost under the terms of the GNU General Public
Licence (GPL) from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/. Hence, no access to proprietary software is required to reproduce our results which were
obtained using R 1.8.1 and strucchange 1.2-2. The results utilizing a kernel HAC estimator also
depend on the R packages sandwich 0.1-2 and zoo 0.1-3.

We are able to reproduce most of the results of Bai and Perron, notably estimates of breakpoints
and model parameters corresponding to the resulting segmentation. However, for one of the
examples, the US ex-post real interest rate, there are marked differences in the confidence intervals
associated with the breakpoints. Interestingly, these appear to be due to numerical problems in
GAUSS, the software package used by Bai and Perron.
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2. REPLICATION

Bai and Perron conducted their analyses using the GAUSS package. Their code, which implements
a wide array of methods for analyzing multiple structural change models, is available from the
JAE data archive in the file breode.src. Vinod (2000) expresses some doubts on the future of
GAUSS in “a world increasingly sympathetic to object oriented languages.” R, on the other hand,
offers several notions of object orientation which are specifically designed for programming with
data. In particular, the S language has always been advocating a programming style employing
integrated and possibly rather complex objects that are able to reflect the conceptual properties
of the underlying methods instead of merely returning vectors, matrices and printed output. We
therefore present some details regarding the strucchange package in order to highlight similari-
ties and differences. In particular, the sequence of commands shown with an R prompt (R>) in
Section 2.1 are sufficient to reproduce the results for the real interest data.

The model considered is the multiple linear regression model with m breaks (or, equivalently, m+1
regimes)

ye =z B; + ur, t=Tj 1+ 1,....,Tj;, j=1,....,m+1, (1)

where Ty = 0 and T;,4+1 = T by convention (T is the sample size). Bai and Perron consider
a slightly more general setup allowing for partial structural changes, in which only some of the
regression coefficients are subject to shifts. The current version of strucchange does not support
partial structural change models. However, this additional feature is not required for two of the
three Bai and Perron examples; for the third, estimates of the breakpoints — the parameters of
main interest — remain unaffected.

The goal of the analysis is to determine the number and location of the breakpoints T}, j =
1,...,m. As shown by Bai and Perron, under squared-error loss these may be efficiently computed
in O(T?) operations using a dynamic programming algorithm for any fixed number of breaks m.
In practice, a search over m is conducted, for m < m*, where m* is fixed by the researcher.
More importantly, a further parameter is at the researcher’s disposal, the minimum fraction of
observations allocated to any one segment, €, or equivalently, the minimum number of observations
per segment, h. This may be considered a bandwidth or trimming parameter; as shown below,
results are sometimes quite sensitive to the choice of h.

2.1 US ex-post real interest rate

We begin with an analysis of the US ex-post real interest rate. Bai and Perron discuss this
example in considerable detail, and a file break.prg containing the relevant calls to the functions
implemented in brcode.src is available from the JAE data archive. This greatly facilitates our
task. The data are defined as the three-month treasury bill rate deflated by the CPI inflation rate.
The resulting time series of quarterly data pertaining to the period 1961(3)-1986(3) is depicted in
Figure 1.

Here, the series is modelled by only a constant as regressor, the breakpoints are estimated with the
strucchange function breakpoints using the desired minimal segment size h, which may either be
specified as a fraction of the sample or as an integer. For these data, a bandwidth parameter of
€ = 0.15 corresponds to the minimal segment size of h = 15 observations; this amounts to allowing
for up to m* = 5 breaks. The time series is also available in strucchange, and package and data
can be made available by

R> library(strucchange)
R> data(Reallnt)

In the S language regression relationships are typically specified by a formula notation similar to
that of Wilkinson and Rogers (1973): the model RealInt ~ 1 specifies a linear model in which
the dependent variable RealInt is modelled by (~) just an intercept (1):



R> bp.ri <- breakpoints(Reallnt ~ 1, h = 15)

The results of the function call to breakpoints are assigned to an object bp.ri that comprises a
triangular matrix containing the residual sums of squares (RSS) as described by Bai and Perron
as well as functions for computing up to m* optimal breakpoints from this. The computation
of this triangular matrix is the most time-consuming step, all further steps—the extraction of
breakpoints, corresponding information criteria, coefficient estimates and confidence intervals—
are left to methods that operate on this object bp.ri. A summary for all models with m =1,...,5
breaks along with the corresponding values of the BIC can easily be obtained and visualized by

R> summary(bp.ri)
R> plot(bp.ri)

yielding a plot of the RSS and BIC similar to the left panel of Figure 1. Confirming Bai and Perron,
information criteria such as the BIC select two breaks. However, on the grounds of sequential tests
and also because of the well-known fact that information criteria are often downward-biased, Bai
and Perron argue in favor of the presence of an additional break and proceed with a three-break
model. Since we are mainly interested in replicating their results, we also consider this three-break
model below. Alternatives are briefly discussed at the end of this section.

The regression coefficients and corresponding variances in the three-break model can be extracted
via

R> coef(bp.ri, breaks = 3)
R> vcov(bp.ri, breaks = 3, vcov = kernHAC)

These coefficient estimates (with standard errors in parentheses) are given in Table I. The standard
errors are estimated utilizing a kernel HAC estimator with a quadratic spectral kernel, prewhiten-
ing using a VAR(1) model and an AR(1) approximation for the automatic bandwidth selection,
as implemented in the kernHAC function of the R package sandwich. The HAC estimator may be
passed to the vcov method as shown above.

Confidence intervals for the breakpoints can be computed from the fitted bp.ri object for any
number of breaks (smaller than the maximal number of breaks admissible) using the confint
method from strucchange. A function for estimating the covariance matrix, here kernHAC, may
again be supplied.
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Figure 1: US ez post real interest rate; RSS and BIC for models with up to five breaks (left) and
fitted model with three breaks (right).



Table I: US ex post real interest rate (1961(1)-1986(3))
Coeflicient estimates with three breaks

o 0 b3 b4
1.82 0.87 -1.80 5.64
(0.19) (0.15) (0.50) (0.59)

Corresponding breakpoint estimates
Ty T, T3
1966(4) 1972(3) 1980(3)

1965(2)-1969(3)  1969(1)-1972(4)  1980(1)-1981(1)

R> confint(bp.ri, breaks = 3, vcov = kernHAC)

This returns the breakpoints and corresponding confidence intervals (at the default 95% level)
coded by the observation numbers and by the dates on the underlying time scale. The latter are
given in Table I. The fitted model along with the confidence intervals is depicted in Figure 1.

The estimated breakpoints, 1966(4), 1972(3) and 1980(3), as well as the regression coefficients agree
with those obtained by Bai and Perron, there are very minor differences regarding the estimated
standard errors. Overall, this part of the replication must be considered a success. However,
there are considerable differences in the confidence intervals corresponding to the break dates,
which cannot be explained by rounding errors in different computing environments. Specifically,
the second confidence interval obtained by strucchange (1969(1)-1972(4)) extends much further
to the left than the one reported by Bai and Perron (1970(3)-1972(4)). With some effort, we
were able to track down the source of the problem, a so-called underflow for which there does not
appear to be an easy workaround in GAUSS.

The confidence intervals are derived from the distribution of the argmax functional of a process
composed of two independent Brownian motions with different linear drifts and scales; see Bai
(1997) for further details on this nonstandard distribution. This cumulative distribution func-
tion (CDF) depends on three parameters which, in our application, are associated with ratios of
quadratic forms in the magnitude of the shifts and weighting matrices defined as segment-wise
covariance matrices.

In the case at hand, the CDF contains terms of the type exp(ax) - ®(—by/x), where ® denotes
the CDF of the standard normal distribution, a and b are functions of the residual standard
errors pertaining to adjacent segments. For the confidence interval corresponding to the second
breakpoint, a is approximately equal to 8.314 while b is approximately equal to 4.08, and the term
must be evaluated for x € [—10, 300] (approximately). Numerically, for = in the vicinity of 300, the
term exp(az) - ®(—by/x) is the product of a rather large, exp(az), and a rather small, ®(—b\/x),
number and it depends on the implementation as well as the routines used by the software package
what the latter returns. We looked into this problem utilizing GAUSS v3.2.38, a good proxy for
GAUSS v3.2.32, the version used by Bai and Perron.! Using their program brcode.src, GAUSS
v3.2.38 returns values of the CDF up to approximately 0.95 (in fact, only values up to 0.9 are
reliable—for larger values the computations cannot yield correct results on a PC as we shall see
below), proceeds with some values in excess of 1 (!), and returns infinitely large function values
thereafter. This results in a spurious kink in the CDF and in a bisection search (employed for
computing the required quantile) stopping near this kink, yielding a 97.5% quantile in the vicinity
of 86 and implying that the confidence interval reported by Bai and Perron is not valid. Our R
package strucchange does not produce this spurious kink and returns a 97.5% quantile of 186.45.
What is going on here? At first, this looks like a small programming error that is easy to correct:
coding exp(ax) - (—by/x) term by term is not a numerically efficient way to handle this quantity.
For large x, ®(—4.08,/x) is tiny; in fact, for > 85 it is smaller than the smallest positive number

1'We thank Pierre Perron for providing this information.



representable on a PC with 32-bit arithmetic. Columns 2 and 3 of Table II show how GAUSS and
R deal with this underflow: R rounds the probability to the nearest number it can represent—
as computers have to do for any real number—which in this case is 0. GAUSS, on the other
hand, argues (as documented on the manual page for cdfn) that the CDF of the standard normal
distribution function is always greater than 0 and returns 2.225 - 107398 the smallest positive
number it can work with. Evidently, neither approximation of the true probability is satisfactory
in this situation and the term exp(az) - ®(—by/z) must not be computed via ®(z) for large .

A natural solution would be to code the offending term in the form exp(az—+log(®(—b/x))) because
1. the computation of sums is numerically more stable than of products and 2. many software
packages for statistics and econometrics (including GAUSS and R) provide a separate function for
computing normal log-probabilities log(®(+)) directly. This is used in the implementation of the
CDF in strucchange which allows us to compute the required 97.5% quantile. (Of course, we do
not know what the true quantile is, since there is no benchmark for this nonstandard distribution.
All we can say is that we have no reason to doubt that R returns a reasonable approximation to
the truth.) However, in GAUSS the problem turns out to be more serious. While the spurious kink
in the CDF disappears, GAUSS for Windows v3.2.38 is unable to go beyond the 90.7% quantile
(it returns missing values therafter). Clearly, for two-sided confidence intervals corresponding
to conventional confidence levels, at least the 95% and preferably also the 97.5% and 99.5%
quantiles are required. Columns 4 and 5 of Table IT and Figure 2 (right panel) exhibit what GAUSS
and R return for log(®(—4.08y/z)), = € [80,90], utilizing the GAUSS function 1lncdfn and its R
counterpart pnorm with option log.p = TRUE. Evidently, 1ncdfn does not improve much upon
cdfn: despite the log-probabilities having numerically non-critical values around -750, 1lncdfn
returns —oo for x > 89. In contrast, R returns finite values for much larger arguments. Lacking
access to the internals of GAUSS, we can only speculate that either an inaccurate expansion for
log(®) or a coding error is responsible for these results. A look at the documentation and the code
of R reveals that pnorm utilizes an approximation to ® outlined by Cody (1969), while log(®) is
handled via an asymptotic expansion (Abramowitz and Stegun, 1964, formula 26.2.13).

We are therefore led to conclude that GAUSS for Windows v3.2.38 is not a suitable computing
environment for the task at hand as it does not provide a reliable implementation of the necessary
tools. In order to verify our findings we also asked a few colleagues to run our GAUSS programs in
more recent versions of GAUSS, it emerges that the problems persist in GAUSS v5.0.22, v5.0.25,
and v6.0.8.

Lacking an accurate function for evaluation of log(®), GAUSS users may nonetheless obtain an
approximate solution. We suggest using the elementary approximation (Feller, 1968, p. 175)

22
O(—z)=1-0(z) = L exp{—Q} (x> 0). (2)

(In fact, (2) represents an upper bound that is fairly tight in the tails.) Utilizing

2
log(®(—x)) = —% — log(v2r) — log(z) (x >0)

in brecode.src, we find gg.975 = 183.95 for the distribution required in connection with the second

breakpoint. This agrees with the value obtained in R based on more refined methods. (The

difference to the quantile 186.45 reported above is due to slightly different estimates of residual

variances in GAUSS and R and not to the bound (2). The resulting confidence intervals are identical

if the same variance estimates are used.)

In practical terms, using this quantile for computation of the confidence intervals, it emerges that
the intervals for the first and second break overlap (by three periods, see Figure 1 and Table I),
hence there appears to be considerable uncertainty as to the location of the first break.

Although visual inspection also hints at the presence of a third break in the first half of the
series, this break must clearly be of somewhat smaller magnitude than the other two. Given that
information criteria such as the BIC select a model with two breaks and that the decrease of the



Table II: Computation of ®(y) and log(®(y)) with y = —4.08y/2 in GAUSS and R
GAUSS R GAUSS R
X cdfn(y) pnorm(y) lncdfn(y) | pnorm(y, log.p = TRUE)
80.0 || 7.258e-292 | 7.258e-292 || -670.373 -670.373
80.5 || 1.127e-293 | 1.127e-293 || -674.538 -674.538
81.0 || 1.751e-295 | 1.751e-295 || -678.702 -678.702
81.5 || 2.721e-297 | 2.721e-297 || -682.867 -682.867
82.0 || 4.227e-299 | 4.227e-299 || -687.032 -687.032
82.5 || 6.566e-301 | 6.566e-301 || -691.196 -691.196
83.0 || 1.020e-302 | 1.020e-302 || -695.361 -695.361
83.5 || 1.585e-304 | 1.585e-304 || -699.525 -699.525
84.0 || 2.462e-306 | 2.462e-306 || -703.690 -703.690
84.5 || 3.825e-308 | 3.825e-308 || -707.855 -707.855
85.0 || 2.225e-308 | 0 -712.019 -712.019
85.5 || 2.225e-308 | 0 -716.184 -716.184
86.0 || 2.225e-308 | O -720.348 -720.348
86.5 || 2.225e-308 | O -724.513 -724.513
87.0 || 2.225e-308 | O -728.677 -728.677
87.5 || 2.225e-308 | 0 -732.842 -732.842
88.0 || 2.225e-308 | O -737.006 -737.006
88.5 || 2.225e-308 | 0 -741.182 -741.170
89.0 || 2.225e-308 | O —00 -745.335
89.5 || 2.225e-308 | O —00 -749.499
90.0 || 2.225e-308 | O —00 -753.664
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Figure 2: Computation of ®(—4.08/x) (left panel,

panel) in GAUSS

and R.
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RSS when passing from a two break to a three break model is small (see Figure 1), these results
may be summarized as pointing to two competing models.

Apart from the numerical problem mentioned above, there are further small differences between
our results and those of Bai and Perron. Specifically, the lower limits of the remaining two
confidence intervals differ by one observation from the results obtained utilizing brcode.src. As
noted by Bai and Perron, the confidence intervals should be integer-valued like the breakpoints
themselves. Therefore, instead of the interval [a, b] computed from the asymptotic distribution the
interval [floor(a), ceiling(b)] should be returned. However, brcode.src computes the lower limit as
floor(a) — 1 which is responsible for the difference of results. After shifting the lower limit to the
right by one observation, R and GAUSS agree.

2.2 UK inflation rate

As a first step towards the estimation of an expectations-augmented Phillips curve (see Section 2.3),
Bai and Perron model the post-war UK inflation rate, using annual data for the consumer price
index (CPI) for the period 1947-1987. (We note that this amounts to using inflation rates for the
period 1948-1987, although starting values for the year 1946 are available in the data set provided
by Bai and Perron in the JAE data archive.) For this and the following example, Bai and Perron
give the parameter settings for their results in their Tables IT and IIT but do not provide a program
containing the function calls to brcode.src, rendering our task more difficult compared to the real
interest data considered in the preceding section.

The model is a first-order autoregression, and the search for breakpoints utilizes a bandwidth of
e = 0.2, corresponding to a minimum segment size of h = 8. This amounts to allowing for up to
m* = 3 breaks. Figure 3 presents the data and Figure 4 (left panel) presents the residual sum of
squares and the BIC for all models with up to three breaks. Confirming Bai and Perron, the BIC
selects m = 0 breaks. However, the behavior of the BIC is somewhat erratic, it increases when
moving from a zero-break to a one-break model and decreases when moving further to a two-break
model. At the same time, the RSS rapidly decreases for models with up to m = 2 breaks, there is
only a small decrease thereafter. This underlines the familiar problems with information criteria
in dynamic models, as noted by Bai and Perron.

Following Bai and Perron, we now consider models with one and two breaks. For the former,
we obtain a structural change in 1967, with an autoregressive parameter increasing from 0.274 to
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Figure 3: UK inflation rate, 1948-1987.



Table III: UK CPI inflation rate (1948-1987)
Parameter estimates with two breaks (h = 8)
51 1 o1 2 51 3 T Ty
0.025 -0.001 0.018 1967 1975
(0.008) (0.020) (0.016) 1965-1972 1973-1981
02,1 02,2 02,3
0.274 1.343 0.683
(0.200)  (0.250)  (0.136)
Parameter estimates with two breaks (h = 7)
51 1 51 )2 51 )3 T T
0. 021 0.130 0.011 1973 1980
(0.008) (0.044) (0.006) 1969-1974 19791985
02,1 02,2 02,3
0.488 0.115 0.633
(0.179)  (0.312) (0.073)

0.739. These estimates are numerically identical to those reported by Bai and Perron and point
to differences in the persistence of inflation. The intercept term is virtually unaffected, it being
estimated at 0.025 before the break and at 0.024 thereafter (Bai and Perron do not report these
estimates). However, the plot of the BIC and the RSS suggests that a two-break model is worth
considering (Bai and Perron arrive at this conclusion on the grounds of various tests). Results
for this model are presented in the upper part of Table III. It also has the breakpoint 1967, the
additional break is at 1975.

It emerges that there are very minor differences in estimates of regression coefficients and their
standard errors, the estimated break dates agree as well. However, there are again difficulties
with the confidence intervals for the break dates. We have been unable to determine the exact
source of the problem: after adjusting the lower endpoints as described in the preceding section
our evaluations in R and GAUSS (using brcode.src) both yield the confidence intervals reported in
Table III.
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Figure 4: RSS and BIC for UK inflation data with up to m = 3 breaks for h = 8 (left) and h =7
(right).



An issue worth exploring, although not directly relevant to a replication study, is the effect of the
bandwidth parameter, h. Reducing h from 8 to 7 (or in fact any h € {4,...,7}), we arrive at
a different model (with lower RSS) whose estimates are reported in the lower part of Table III
RSS and BIC are depicted in the right panel of Figure 4, showing that a two-break model is the
minimum BIC model. This time, the break dates are 1973 and 1980; they agree well with the
Arab oil embargo following the Yom Kippur war and the Iran-Iraq war, respectively; events that
are clearly most relevant to an inflation series.

For comparison, we also estimated this model in GAUSS using brcode.src, once more there were
problems with one of the confidence intervals. While the first interval is identical in GAUSS and
R, for the second interval only the lower limits agree. The upper limit is estimated at 1982 by
GAUSS. Again, this is due to an underflow: a closer look reveals that GAUSS v3.2.38 is not able
to deliver quantiles below the 20% quantile.

2.3 Phillips curve

Finally, we consider the expectations-augmented Phillips curve, whose reduced form is
Awy =71+ 72Api—1 + y3Au + yaur—1 + &, (3)

where w; is the logarithm of nominal wages, p; is the logarithm of the CPI, and u; is the unem-
ployment rate.

Using the data for the UK for the period 1948-1987 presented in the preceding section, Bai and
Perron consider a partial structural change model arguing that changes in the inflation process
should only affect coefficients «; and o with no effect on coefficients v3 and ~4. The current
version of strucchange does not allow for partial structural change models, we therefore segment
the full model using h = 5 (larger than the Bai and Perron setting of h = 3 because we lose extra
degrees of freedom).

The BIC, depicted in Figure 5, yields a two-break model with changes in 1966 and 1974. These
agree with the estimates of Bai and Perron, even the corresponding confidence intervals are almost
identical, despite the fact that slightly different models are estimated. This indicates that there
are no numerical problems with the computation of quantiles for this data set.

Since we are mainly interested in replication, we now proceed with estimating the partial structural
change model given the estimated breakpoints. The results are presented in Table IV, they agree
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Figure 5: RSS and BIC for the Phillips curve equation.



Table IV: Phillips curve equation
Parameter estimates with two breaks

M1 1,2 .3 Ty Ty
0.066 0.062 0.181 1967 1975
(0.012) (0.019) (0.054) 1966-1968 1974-1976
Y2,1 A2,2 Y2,3

0.094 1.231 0.016

(0.241)  (0.205)  (0.257)
Y3 o7

-0.144 -0.875

(0.582)  (0.373)

rather well with those provided by Bai and Perron.

3. CONCLUSION

When we started with this project, we hoped that the results of Bai and Perron (2003) were
easily replicated using our R package. In fact, early versions of strucchange were being developed
when their paper was announced as forthcoming in the Journal of Applied Econometrics. When
the JAE started its Replication Section in early 2003 (in the same issue in which the Bai and
Perron paper was published), we felt that this paper provided an ideal opportunity to try out
strucchange on other authors’ data. Since the JAE’s replication policy encourages the use of
software packages different from those used for the original publication, our main goal was to
describe our own package which offers a different approach to multiple structural change models
in an object-oriented and open-source computing environment. However, things turned out to be
more difficult when we tried to validate the confidence intervals. With some effort, we were able
to trace these problems to an underflow problem that is not easy to overcome in GAUSS. Lessons
are threefold:

Evidently, numerical accuracy is important. Vinod (2000) has reported on numerical problems in
GAUSS related to more standard tasks. Here we encountered difficulties in connection with the
quantiles of a nonstandard distribution. Naturally, problems of this type are bound to occur in
all software environments, and only further replication studies will bring them to the attention
of researchers and software developers. We note that terms of the type exp(z) - ®(—+/x), with x
“large”, regularly occur in distribution theory pertaining to the estimation of breakpoints. In view
of the recent interest in time series with multiple structural changes in econometric literature,
the problem encountered here might therefore perhaps be more widespread and just has gone
undetected so far.

We second McCullough and Vinod (2003) in suggesting journal archives with mandatory data and
code. At present, the JAE only requires data, more often than not the corresponding code is not
available. We are therefore grateful to Professors Bai and Perron for making their code publicly
available without being obliged to. Without their code, this replication project would have had
to stop halfway: GAUSS returns this, R returns that, and it would have been much harder to
determine the source of the observed differences. With their code, we can confidently say that
numerical problems in GAUSS are responsible for most of the differences.

Finally, as pointed out by McCullough and Vinod (2003), even data and code together will not
be sufficient. In addition, anybody trying to replicate the results of some paper will require
information on the software package including the version, the operating system and preferably
the exact function calls to the package used in the analysis. Fortunately, there is a convenient
way to achieve this (and more), at least for the combination of computing environment and text
processor used by the authors of this paper, R and BTEX. R provides the function Sweave (in the
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tools package) which is able to perform computations on integrated text documents that mix code
(in R) and corresponding documentation (in BTEX). The code can be extracted and executed
to produce figures, tables and other output along with a standard IXTEX file in which these are
inserted. This IATEX file may subsequently be compiled in the usual way. Using this approach
of dynamic documents with tightly coupled code and documentation, it is much easier to ensure
that the data sets used, the programs employed, the results of computations and the description
of these in the paper are always in sync—indeed, after changes to some part of the analysis the
document just has to be recompiled. (In principle, it would also be possible to mix documentation
and code from other languages but currently elaborate drivers appear to be only available for R
and KTEX.) See Leisch (2003) for a detailed description of Sweave and Leisch and Rossini (2003)
for its use in connection with reviewing and replicating statistical research.

Computational details

R is an interpreted language and mostly platform independent, hence the versions of R and the
packages used are more important than the architecture of the PC and the operating system used.
The results were obtained using R 1.8.1—with the packages strucchange 1.2-2, sandwich 0.1-2 and
200 0.1-3—and were identical on various platforms including PCs running Debian GNU/Linux
(with a 2.4-22 kernel) and Windows XP Professional, version 2002.

GAUSS v3.2.38 was run under Windows XP Professional, version 2002, on a 1.67 GHz AMD Athlon
XP 20004 processor.

Acknowledgements

The research of Achim Zeileis was supported by the Austrian Science Foundation (FWF) under
grant SFB#010 (‘Adaptive Information Systems and Modeling in Economics and Management
Science’).

The work of Christian Kleiber was supported by the Deutsche Forschungsgemeinschaft (DFG),
Sonderforschungsbereich 475.

We are grateful to Pierre Perron for detailed comments on a previous version which led us to
provide a more complete explanation of the source of the problem in GAUSS. We would also like
to thank Matei Demetrescu, Uwe Hassler, Roman Liesenfeld, and Mark Trede for running our
GAUSS programs in GAUSS for Windows v5.0.22, v5.0.25, and v6.0.8, showing that the numerical
problems encountered in GAUSS v3.2.38 persist in more recent versions of that software package.

REFERENCES

Abramowitz M, Stegun TA. 1964. Handbook of Mathematical Functions. Washington, D.C.: U.S.
Government Printing Office.

Andrews DWK. 1993. Tests for parameter instability and structural change with unknown change
point. Econometrica 61: 821-856.

Andrews DWK, Ploberger W. 1994. Optimal tests when a nuisance parameter is present only
under the alternative. Econometrica 62: 1383-1414.

Bai J. 1997. Estimation of a change point in multiple regression models. Review of Economics
and Statistics 79: 551-563.

Bai J, Perron P. 1998. Estimating and testing linear models with multiple structural changes.
FEconometrica 66: 47-78.

Bai J, Perron P. 2003. Computation and analysis of multiple structural change models. Journal
of Applied Econometrics 18: 1-22.

11



Chambers JM, Hastie TJ. 1992. Statistical Models in S. London: Chapman & Hall.

Cody WJ. 1969. Rational Chebyshev approximations for the error function. Mathematics of
Computation 22: 631-637.

Cribari-Neto F, Zarkos SG. 1999. R: Yet another econometric programming environment. Journal
of Applied Econometrics 14: 319-329.

Feller W. 1968. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New
York: John Wiley.

Kuan CM, Hornik K. 1995. The generalized fluctuation test: A unifying view. Fconometric
Reviews 14: 135-161.

Leisch F. 2003. Sweave and beyond: Computations on text documents. In Hornik K, Leisch
F, Zeileis A (eds.) Proceedings of the 3rd International Workshop on Distributed Statistical
Computing, Vienna, Austria. ISSN 1609-395X.

URL http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/

Leisch F, Rossini AJ. 2003. Reproducible statistical research. Chance 16: 46-50.

McCullough BD, Vinod HD. 2003. Verifying the solution from a nonlinear solver: A case study.
American Economic Review 93: 873-892.

Racine J, Hyndman R. 2002. Using R to teach econometrics. Journal of Applied Econometrics
17: 175-189.

R Development Core Team. 2004. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3.
URL http://www.R-project.org/

Vinod HD. 2000. Review of GAUSS for Windows, including its numerical accuracy. Journal of
Applied Econometrics 15: 211-220.

Wilkinson GN, Rogers CE. 1973. Symbolic description of factorial models for analysis of variance.
Applied Statistics 22: 392-399.

Zeileis A, Leisch F, Hornik K, Kleiber C. 2002. strucchange: An R package for testing for
structural change in linear regression models. Journal of Statistical Software 7: 1-38.
URL http://www.jstatsoft.org/v07/102/

12


http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/
http://www.R-project.org/
http://www.jstatsoft.org/v07/i02/

	Introduction
	Replication
	US ex-post real interest rate
	UK inflation rate
	Phillips curve

	Conclusion

