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Summary 

The article shows by various examples how consumers 

of statistical information may be confused when this 

information is presented in terms of conditional 

probabilities. It also shows how this confusion helps 

others to lie with statistics, and it suggests how either 

confusion or lies can be avoided by using alternative 

modes of conveying statistical information. 
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1. Introduction 

"The notion of conditional probability is a basic tool of probability theory, and 

it is unfortunate that its great simplicity is some how obscured by a singularly 

clumsy terminology" (Feller 1970, p. 114). Below we argue that what Feller 

has rightly called a "singularly clumsy terminology", in addition to obscuring 

the basic simplicity of concepts and ideas, easily lends itself to intentional and 

unintentional misinterpretation of statistical information of many sorts. 

Examples in Darrel Huff's book are mainly in the chapter on semiattached 

figures., for instance, when discussing fatalities on highways on p. 78: "Four 

times more fatalities occur on the highways at 7 p.m. than at 7 a.m." Huff 

points out that this of course does not imply, as some newspaper had 

suggested, that it is more dangerous to drive in the evening than in the 

morning. Recast in the language of conditional probabilities, what Huff 

observes in that P(accident | 7 p.m.) should not be confused with P(7 p.m. | 

accident). Unfortunately, it was. 

Although the term conditional probability does not appear once in Huff's 

remarkable book, it is clear that many other examples of statistical abuse that 

he has discovered can be rephrased in terms of conditional probabilities. Below 

we survey various ways in which such reasoning can be misleading, and we 

provide some fresh examples. We also show that the potential for confusion is 

easily reduced by abandoning the conventional, "singularly clumsy 

terminology" of conditional probabilities in favor of presentation of 

information in terms of natural frequencies. 
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2. Fallacies in enumeration 

One class of errors involving conditional probabilities comprises outright 

mistakes in computing them in the first place. One instance of consciously 

exploiting such computational errors in order to cheat the public is a game of 

cards called "Three Cards in a Hat" which used to be offered to innocent 

passers-by at country fairs in Germany and elsewhere. One card is red on both 

sides, one is white on both sides, and the other is red on one side and white on 

the other. The cheat draws one card blindly, and shows, for example, a red face 

up. The cheat then offers a wager of 10 Deutschmarks that the hidden side is 

also red. 

The passer-by is assumed to argue like this: "The card is not the white-white 

one. Therefore, its hidden side is either red or white. As both cases are equally 

likely, the probability that the hidden side of the card on the table is red is 1/2, 

so the wager is fair and can be accepted." 

In fact, of course, the red-red card has probability 2/3, since it can be drawn in 

two equally probable ways (one face up or the other face up, each of which will 

display red). The example therefore boils down to an incorrect enumeration of 

simple events in a Laplace-experiment in the subpopulation composed of the 

remaining possibilities. As such, it has famous antecedents: The erroneous 

assignment by d'Alembert (1779, entry "Croix ou pile") of a probability of 1/3 

for heads-heads when twice throwing a coin, or the equally erroneous 

assertation by Leibniz (in a letter to L. Bourgnet from March 2, 1714, reprinted 

in Leibniz 1887, pp. 569 – 470) that, when throwing two dice, a sum of 11 is as 

likely as a sum of 12. A sum of 11, so he argued, can be obtained by adding 5 

and 6, and sum of 12 by adding 6 and 6. It did not occur to him that there are 

two equally probable ways of adding 5 and 6, but only one way to obtain 6 and 

6. 
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Given illustrious precedents such as these, it comes as no surprise that wrongly 

inferred conditional and unconditional probabilities are lurking everywhere. 

Prominent textbook examples are the paradox of the second ace or the problem 

of the second boy (see for instance Bar-Hillel and Falk 1990), not to mention 

the famous car-and-goat puzzle, also called the Monty-Hall-problem, which 

has engendered an enormous literature of its own. These puzzles are mainly of 

interest as mathematical curiosities, and they are rarely used for statistical 

manipulation. We shall not dwell on them in detail here, but they serve to point 

out what many consumers of statistical information are ill prepared to master. 

 

3. Confusing conditional and conditioning events 

German medical doctors with an average of 14 years of professional 

experience were asked to imagine using a certain test to screen for colorectal 

cancer. The prevalence of this type of cancer was 0.3%, the sensitivity of test 

(the conditional probability of detecting cancer when there is one) was 50%, 

and the false positive rate was 3% (Gigerenzer 2002, Gigerenzer and Edwards 

2003). The doctors were asked: "What is the probability that someone who 

tests positive actually has colorectal cancer?" The correct answer is about 5%. 

However, the doctors' answers ranged from 1% to 99% with about half of them 

estimating this probability as 50% (the sensitivity) or 47% (the sensitivity 

minus the false positive rate). 

The most common fault was to confuse the conditional probability of cancer, 

given the test is positive, with the conditional probability that the test is 

positive, given that the individual has cancer. An analogous error also occurs 

when people are asked to interpret the result of a statistical test of significance, 

and sometimes there are disastrous consequences. 
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In the fall of 1973 in the German city of Wuppertal, a local workman was 

accused of having murdered another local workman's wife. A forensic expert 

(correctly) computed a probability of only 0.027 that blood found on the 

defendant's clothes and on the scene of the crime by chance matched the 

victim's and defendant's blood-groups, respectively. From this figure the expert 

then derived a probability of 97.3% for the defendant's guilt, and later, this 

probability came close to 100% by adding evidence from textile fibres. Only a 

perfect alibi saved the workman from an otherwise certain conviction. [See the 

account in Ziegler (1974)]. 

Episodes such as this have undoubtedly happened in many courtrooms all over 

the world (Gigerenzer 2002). On a formal level, a probability of 2.7% for the 

observed data, given innocence, was confused with a probability of 2.7% for 

innocence, given the observed data. Even in a Bayesian setting with certain a-

priori-probabilities for guilt and innocence, one finds that a probability of 2.7% 

for the observed data given innocence does not necessarily translate into a 

probability of 97.3% that the defendant is guilty. And from the frequentist 

perspective, which is more common in forensic science, it is nonsense to assign 

a probability to either the null or to the alternative hypothesis. 

Still, Students and, remarkably, teachers of statistics often misread the meaning 

of a statistical test of significance. Haller and Krauss (2002) asked 30 statistics 

instructors, 44 statistics students and 39 practicing researchers from six 

psychology departments in Germany about the meaning of a significant two-

sample t-test (significance level = 1%). The test was supposed to detect a 

possible treatment effect based on a control group and a treatment group. The 

subjects were asked to comment upon the following six statements (all of 

which are false). They were told in advance that several or perhaps none of the 

statements were correct. 

1) You have absolutely disproved the null hypothesis that there is no 
difference between the population means.             
m true / false m 
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2) You have found the probability of the null hypothesis being true. 
m true / false m 

3) You have absolutely proved your experimental hypothesis that 
there is a difference between the population means.     
m true / false m 

4) You can deduce the probability of the experimental hypothesis 
being true.                
m true / false m 

5) You know, if you decide to reject the null hypothesis, the 
probability that you are making the wrong decision.     
m true / false m 

6) You have a reliable experimental finding in the sense that if, 
hypothetically, the experiment were repeated a great number of times, 
you would obtain a significant result on 99% of occasions. 
m true / false m 

All of the statistics students marked at least one of the above faulty statements 

as correct. And, quite disconcertingly, 90% of the practicing psychologists and 

80% of the methodology instructors did as well! In particular, one third of both 

the instructors and the practicing psychologists and 59% of the statistics 

students marked item 4 as correct; that is, they believe that, given a rejection of 

the null at level 1%, they can deduce a probability of 99% that the alternative is 

correct. 

Ironically, one finds that this misconception is perpetuated in many textbooks. 

Examples from the American market include Guilford (1942, and later 

editions), which was probably the most widely read textbook in the 1940s and 

50s, Miller & Buckhout (1973, statistical appendix by Brown, p. 523) or 

Nunally (1975, pp. 194-196). Additional examples are collected in Gigerenzer 

(2000, chap. 13) and Nickerson (2000). On the German market, there is Wyss 

(1991, p. 547) or Schuchard-Fischer et al. (1982), who on p. 83 of their best-

selling textbook explicitly advise their readers that a rejection of the null at 5% 

implies a probability of 95% that the alternative is correct. 
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In one sense, this error can be seen as a probabilistic variant of a classic rule of 

logic (modus tollens): (1) "All human beings will eventually die" and (2) 

"Socrates is a human being" implies (3) "Socrates will die". Now, what if (1) is 

not necessarily true, only highly probable (in the sense that the statement "If A 

(= human being) then B (= eventual death)" holds not always, only most of the 

times)? Does this imply that its logical equivalent "If not A then not B" has the 

same probability attached to it? This question has led to a lively exchange of 

letters in Nature (see Beck-Bornholdt and Dubben 1996, 1997 or Edwards 

1996) which culminated in the scientific proof that the Pope is an alien: (1) A 

randomly selected human being is most probably not the Pope (the probability 

is 1 : 6 Billion = 0,000 000 000 17). (2) John Paul II is the Pope. (3) Therefore, 

John Paul II is most probably not a human being. 

Setting aside the fact that John Paul II has not been randomly selected from 

among all human beings, one finds that this argument again reflects the 

confusions that result from "conditioning with conditional events". When, in a 

universe comprised of humans and aliens, we have 

P(Pope | human) = 0.000 000 000 17 

this still does not imply that 

P(human | Pope) = 0.000 000 000 17. 

Or in terms of rules of logic: If the statement "If human then not Pope" holds 

most of the times, one cannot infer, but sometimes does, that its logical 

equivalent "If Pope then not human" likewise holds most of the times. 

Strange as it may seem, this form of reasoning has even made its way into the 

pages of respectable journals. For instance, it was used by Leslie (1992) to 

prove that doom is near (the "doomesday argument", see also Schrage 1993). 

In this case the argument went: (1) If mankind is going to survive for a long 

time, then all human beings born so far, including myself, are only a small 



 8 

proportion of all human beings that will ever be born (i.e. the probability that I 

observe myself is negligible). (2) I observe myself. (3) Therefore, the end is 

near. 

 

4. Conditional probabilities and favorable events 

The tendency to confuse conditioning and conditional events is often 

reinforced by an inclination to conclude that a conditional probability that is 

seen as "large" implies that the reverse conditional probability is also "large". 

The confusion occurs in various contexts and is possibly the most frequent 

logical error that is found in the interpretation of statistical information. Here 

are some examples from the German press (with the headlines translated into 

English): 

− "Beware of German tourists" (According to Der Spiegel magazine, most 

foreign skiers involved in accidents in a Swiss skiing resort came from 

Germany). 

− "Boys more at risk on bicycles" (the newspaper Hannoversche Allgemeine 

Zeitung reported that amo ng children involved in bicycle accidents the 

majority were boys). 

− "Soccer most dangerous sport" (the weekly magazine Stern commenting on 

a survey of accidents in sports). 

− "Private homes as danger spots" (the newspaper Die Welt musing about the 

fact that a third of all fatal accidents in Germany occur in private homes). 

− "German shepherd most dangerous dog around" (The newspaper Ruhr-

Nachrichten on a statistic according to which German shepherds account 

for a record 31% of all reported attacks by dogs). 
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− "Women more disoriented drivers" (The newspaper Bild commenting on the 

fact that among cars that were found entering a one-way-street in the wrong 

direction, most were driven by women). 

These examples can easily be extended. Most of them result from 

unintentionally misreading the statistical evidence. When there are cherished 

stereotypes to conserve, such as the German tourist bullying his fellow-

vacationers, or women somehow lost in space, perhaps some intentional 

neglect of logic may have played a role as well. Also, not all of the above 

statements are necessarily false. It might, for instance, well be true that when 

1000 men and 1000 women drivers are given a chance to enter a one-way-

street the wrong way, more women than men will actually do so, but the survey 

by Bild simply counted wrongly entering cars and this is certainly no proof of 

their claim. For example, what if there were no men on the street at that time of 

the day? And in the case of the Swiss skiing resort, where almost all foreign 

tourists came from Germany, the attribution of abnormal dangerous behavior to 

this class of visitors is clearly wrong. 

On a more formal level, it seems that the authors inferred from an (in their 

view unexpectedly large) conditional probability P(A | B) that B is “favorable” 

to A and therefore – since favorableness is symmetric – that A is "favorable" to 

B. This term was suggested by Kai Lai Chung (1942) and means that 

P(B | A) > P(B). 

For example, Der Spiegel, on observing that, among foreigners, 

P(German tourist | skiing accident) 

was "large", concluded that being a German tourist increases the chances of 

being involved in a skiing accident: 

P(skiing accident | German tourist) > P(skiing accident). 
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Similarly, Hannoversche Allgemeine Zeitung concluded from 

P(boy | bicycle accident) = large 

that 

P(bicycle accident| boy) > P(bicycle accident) 

and so on. 

It is easily seen that, when A is favorable to B, A  is unfavorable to B: 

P(B | A) > P(B)  ⇒  P(B | A ) < P(B). 

In words: When A is favorable to B, knowing that A obtains increases the 

probability of B, and knowing that A does not obtain decreases the probability 

of B. In the examples above, the point of departure always was a large value of 

P(A | B), which then led to the – possibly unwarranted – conclusion that 

P(B | A) > P(B). Without any information on P(A), however, it is clear from 

the symmetry (see Chung 1942) 

P(B | A) > P(B) ⇔ P(A | B) > P(A). 

that one cannot infer anything on A's favorableness for B from P(A | B) alone. 

The British Home Office nevertheless once did so in its call for more attention 

to domestic violence (Cowdry 1990). Among 1221 women murder victims 

between 1984 and 1988, 44% were killed by their husbands or lovers, 18% by 

other relatives, another 18% by friends or acquaintances. Only 14% were killed 

by strangers. Does this prove that 

P(murder | encounter with husband)  >  P(murder | encounter with a stranger), 

that is, that marriage is favorable to murder? Evidently not. While it is 

perfectly fine to investigate the causes and mechanics of domestic violence, 
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there is no evidence that the private home is a particularly dangerous 

environment (even though, as The Times mourns, "assaults ... often happen 

when families are together"). 

 

5. Favorableness and Simpson's Paradox 

Another avenue through which the attribute of favorableness can be incorrectly 

attached to conditioning events is Simpson's paradox (Blyth 1973), which in 

our context asserts that it is possible that B is favorable to A when C holds, B is 

favorable to A when C does not hold, yet overall, B is unfavorable to A. 

Formally, one has 

P(A | B ∩ C)  >  P(A)  and 

)()|( APCBAP >∩ ,  yet 

P(A | B)  <  P(A). 

This paradox also extends to situations where C1 ∪ ... ∪ Cn = Ω, 

Ci ∩ C = φ  (i≠j). For real-life examples see, for example, Wagner (1982) or 

Krämer (2002, 2004), and many others. 

One instance where Simpson's paradox (to be precise: the refusal to take 

account of Simpson's paradox) has been deliberately used to mislead the public 

is the debate on the causes of cancer in Germany. The official and fiercely 

defended credo of the Green movement has it that the increase in cancer deaths 

from well below 20% of all deaths after the war to almost 25% nowadays, is 

mostly due to industrial pollution and chemical waste of all sorts. However, as 

Table 1 shows, among women, the probability of dying from cancer has 

actually decreased for young and old alike! Similar results hold for men. 
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Table 1 about here 

These data refer only to mortality from cancer, not to the incidence of cancer, 

and have therefore to be interpreted with care. Still, the willful disregard of the 

most important explanatory variable "age" has turned the overall increase in 

cancer deaths into a potent propaganda tool. 

If B is favorable to A, then by a simple calculation B is unfavorable to A . 

However, B an still be favorable to subsets of A . This is also known as 

Kaigh's (1989) paradox. In words: If knowing that B has occured makes some 

other event A more probable, it makes the complementary event A  less 

probable. However, we cannot infer that subsets of A  have likewise become 

less probable. 

Schucany (1989, Table 1) gives a hypothetical example where Kaigh's paradox 

is used to misrepresent the facts. Suppose a firm hires 158 out of 1000 

applicants (among which 200 are Black, 200 are Hispanic and 600 White). Of 

these 36 Hispanics and 120 Whites are hired, amounting to 18% and 20% of 

the respective applicants. The selection rate for Hispanics is thus less than that 

for Whites. Nevertheless, being Hispanic is still favorable for being hired, since 

one has 

P(being hired | Hispanic) = %8.22
158
36

=  > P(Hispanic) = %20
1000
200

= . 

Schucany (1989, p. 94) notes: "Regardless of whether we call it a paradox, that 

such situations will be misconstrued by the statistically naive is a fairly safe 

bet". 

A final example – and one which ............. – proofs on the formally trivial 

faulty inferences that are assorted with the conditional inequality 

)DC|A(P)DB|A(P ∩>∩ . 
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Plainly, this does not imply 

)C|A(P)B|A(P > , 

but this conclusion is still sometimes drawn by some authors. 

A German newspaper (quoted in Swoboda 1971, p. 215) once claimed that 

people get happier as they grow older. The paper's "proof" runs as follows: 

Among people who die at age 20–25, about 25% commit suicide. This 

percentage then decreases with advancing age; thus, for instance, among 

people who die aged over 70, only 2% commit suicide. Formally, one can put 

these observations as 

P(suicide | age 20-25 and death)  >  P(suicide | age > 70 and death), 

and while this is true, it certainly does not imply 

P(suicide | age 20-25)  >  P(suicide | age > 75). 

In fact, a glance at any statistical almanac shows that quite the opposite is true. 

Here is a more recent example from the US, where likewise P(A | B) is 

confused with P(A | B ∩ D). This time the confusion is spread by Alan 

Dershowitz, a renowned Harvard Law professor who advised the O. J. Simpson 

defense team. The prosecution had argued that Simpson’s history of spousal 

abuse reflects a motive to kill, advancing the premise that "a slap is a prelude 

to homicide" (see Gigerenzer, 2002, pp. 142-145). Dershowitz, however, called 

this argument "a show of weakness" and he said: "We knew that we could 

prove, if we had to, that an infinitesimal percentage – certainly fewer than 1 of 

2,500 – of men who slap or beat their domestic partners go on to murder them." 

Thus, he argued that the probability of the event, K that a husband killed his 

wife if he battered her was small: 

P(K | battered) = 1/2,500 
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The relevant probability, however, is not this one, as Dershowitz would have 

us believe. Instead, the relevant probability is that of a man murdering his 

partner given that he battered her and that she was murdered: 

P(K | battered and murdered). 

This probability is about 8/9 (Good 1996). It must of course not be confused 

with the probability that O. J. Simpson is guilty; a jury must take into account 

much more evidence than battering. But it shows that battering is a fairly good 

predictor of guilt for murder, contrary to Dershowitz’s assertions. 

 

5. How to make the sources of confusion disapear 

Almost all fallacies discussed above can be attributed to the unwarranted 

application of what we have elsewhere called "fast and frugal heuristics" 

(Gigerenzer 2004). Heuristics are simple rules that exploit evolved mental 

capacities, as well as structures of environments. When applied in an 

environment for which they were designed, heuristics often work well, 

commonly outperforming more complicated optimizing models. Nevertheless, 

when applied in an unsuitable environment, they can easily mislead. 

When a heuristic misleads, it is not always the heuristic that is to blame. More 

often than not, it is the structure of the environment that does not fit (Hoffrage 

et al. 2000). We have seen examples of this here with what has been called the 

base-rate fallacy (Borgida and Brekke 1981). In fact, this environmental 

change underlies most of the misleading arguments with conditional 

probabilities.  

Consider for instance the question "What is the probability that a woman with a 

positive mammography result actually has breast cancer?" There are two ways 
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to represent the relevant statistical information: in terms of conditional 

probabilities, or in terms of natural frequencies. 

Conditional probabilities: The probability that a woman has breast cancer is 

0.8%. If she has breast cancer, the probability that a mammogram will show a 

positive result is 90%. If a woman does not have breast cancer the probability 

of a positive result is 7%. Take, for example, a woman who has a positive 

result. What is the probability that she actually has breast cancer? 

Natural frequencies: Our data tells us that 8 out of every 1000 women have 

breast cancer. Of these 8 women with breast cancer 7 will have a positive result 

on mammography. Of the 992 women who do not have breast cancer some 70 

will still have a positive mammogram. Take, for example, a sample of women 

who have positive mammograms. How many of these women actually have 

breast cancer? 

Apart from rounding, the information is the same in both of these summaries, 

but with natural frequencies the message comes through much more clearly. 

We see quickly that only 7 of the 77 women who test positive actually have 

breast cancer, which is 1 in 11 (9%). 

Natural frequencies correspond to the way humans have encountered statistical 

information during most of their history. They are called "natural" because, 

unlike conditional probabilities or relative frequencies, on each occurence the 

numerical qualities in our summary refer to the same class of observations. For 

instance, the natural frequencies "7 women" (with a positive mammogram and 

cancer) and "70 women" (with a positive mammogram and no breast cancer) 

both refer to the same class of 1000 women. In contrast, the conditional 

probability 90% (the sensitivity) refers to the class of 8 women with breast 

cancer, but the conditional probability 7% (the specificity) refers to a different 

class of 992 women without breast cancer. This switch of reference class easily 

confuses the minds of both doctors and patients. 
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To judge the extent of the confusion consider Figure 1, which shows the 

responses of 48 experienced doctors who were given the information given 

above, except in this case that the statistics were a base rate of cancer of 1%, a 

sensitivity of 80%, and a false positive rate of 10%. Half the doctors received 

the information in conditional probabilities and half received the data as 

expressed by natural frequencies. When asked to estimate the probability that a 

woman with a positive screening mammogram actually has breast cancer, 

doctors who received conditional probabilities gave answers that ranged from 

1% to 90%; very few of them gave the correct answer of about 8%. In contrast, 

most of the doctors who were given natural frequencies gave the correct 

answer or were close to it. Simply converting the information into natural 

frequencies was enough to turn much of the doctor's innumeracy into insight. 

Presenting information in natural frequencies is therefore a simple and 

effective mind tool to reduce the confusion resulting from conditional 

probabilities. 

Figure 1 
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Figure 1: Doctors' estimates of the probability of breast cancer 
in women with a positive result on mammography 
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Table 1: Probability of dying from cancer 

Number of women (among 100,000 in the respective age groups) 
who died from cancer in Germany 

 
Age 1970 2001 
0-4 7 3 
5-9 6 2 

10-14 4 2 
15-19 6 2 
20-24 8 4 
25-29 12 6 
30-34 21 13 
35-39 45 25 
40-44 84 51 
45-49 144 98 
50-54 214 161 
55-59 305 240 
60-64 415 321 
65-69 601 468 
70-74 850 656 
75-79 1183 924 
80-84 1644 1587 

 
Source: Statistisches Jahrbuch für die Bundesrepublik Deutschland. 

 


