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Abstract

In this paper the problem of designing experiments for a model which is called Monod model and is frequently

used in microbiology is studied. The model is defined implicitly by a differential equation and has numerous

applications in microbial growth kinetics, environmental research, pharmacokinetics, and plant physiology. The

designs presented so far in the literature are locally optimal designs, which depend sensitively on a preliminary

guess of the unknown parameters, and are for this reason in many cases not robust with respect to their

misspecification. Uniform designs and maximin optimal designs are considered as a strategy to obtain robust

and efficient designs for parameter estimation. In particular standardized maximin D- and E- optimal designs

are determined and compared with uniform designs, which are usually applied in these microbiological models.

It is shown that standardized maximin optimal designs are always supported on a finite number of points and it

is demonstrated that maximin optimal designs are substantially more efficient than uniform designs. Parameter

variances can be decreased by a factor two by simply sampling at optimal times during the experiment. Moreover,

the maximin optimal designs usually provide the possibility for the experimenter to check the model assumptions,

because they have more support points than parameters in the Monod model.

Keywords and phrases: robust designs, maximin optimal designs, microbial growth, biodegradation kinetics, Monod
model.

1 Introduction

The Monod model can describe several important characteristics of microbial growth in a simple
periodic culture of microorganisms. This model was proposed by Nobel Laureate J. Monod more
than 60 years ago and it is one of the basic models for quantitative microbiology [see Monod
(1949), Koch (1997), Ferenci (1999) among many others]. Although some limitations of this model
as well as restrictions of its applications are known [see Pirt (1975), Baranyi and Roberts (1995),
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Koch (1997) or Ferenci (1999)] and modifications have been proposed in some specific cases [Ellis,
Barbeau, Smets, and Grady (1996), Fu and Mathews (1999), Schirmer, Butler, Roy, Frind and
Barker (1999), Vanrolleghem, Spanjers, Petersen, Ginestet, and Takacs (1999)], the Monod model
is still used very often in its original form, especially in such fields as environmental and industrial
microbiology. For example, it is the most common model for describing the dynamics of organic
pollutant biodegradation [see Blok and Struys (1996), Knightes and Peters (2000), Goudar and
Ellis (2001)]. Much of the versatility of the Monod model is due to the fact that it can describe
biodegradation rates following zero-one first order kinetics with respect to the target substrate
concentration [see Holmberg (1982)]. At the same time the similarity of the Monod model and
the Michaelis-Menten equation provides a very wide application of this model type throughout
biological and biomedical sciences. This type of equation is very often used in biochemistry, plant
physiology, biophysics and pharmacology. The model is determined by a first-order differential
equation which determines the regression function implicitly and the parameters enter in the
model nonlinearly.
In a recent paper Dette, Melas, Pepelysheff and Strigul (2003) discussed the problem of designing
experiments for the Monod model. These authors considered locally optimal designs in the sense
of Chernoff (1953), which depend on an initial guess of the “true” but unknown parameters in the
regression model, and demonstrated that these designs are rather efficient with respect to minor
misspecifications of the “true” parameters. On the other hand, it is also shown in this paper
that the loss of efficiency by using a locally optimal design can be substantial, if the initial guess
of the “true” parameters is completely wrong. The purpose of the present paper is to construct
non-sequential robust designs for the Monod model, which are on the one hand less sensitive with
respect to a misspecification of the unknown parameters and on the other hand still efficient for
parameter estimation.
There are essentially two strategies to construct non-sequential robust designs for nonlinear re-
gression models, the Bayesian- [see Pronzato and Walter (1985), Chaloner and Larntz (1989) or
Haines (1995)] and the (standardized) maximin concept [see Müller (1995), Dette (1997), or Dette
and Biedermann (2003)]. An application of a Bayesian design assumes that the experimenter is
able to specify a prior for the unknown parameters in the regression model, while standardized
maximin optimal designs require only the specification of a certain range for the unknown param-
eters. In this paper we will apply the latter method for the construction of robust and efficient
designs for the Monod model, because we observed in many studies of microbial growth that
the experimenter was able to specify certain intervals for the unknown parameters, but had not
enough information, which could be used for the specification of a prior [see Grady, Smets and
Barbeau (1996), Sommer, Spliid, Holst and Arvin (1998), Liu and Zachara (2001)]. The maximin
approach determines the design such that the minimum efficiency taken over a certain region of the
unknown parameters becomes maximal. In other words this approach minimizes the maximal loss
of accuracy with respect to the best design, which requires knowledge of the “true” parameters.
Throughout this paper these designs will be called standardized maximin optimal designs.
In Section 2 we give some background on the Monod model and briefly review some basic facts
from the theory of optimal design of experiments for this model in order to make this paper
self-contained. In Section 3 we study some analytical properties of locally optimal uniform and
standardized maximin optimal designs, while we explain an algorithm for the numerical construc-
tion of maximin optimal designs in Section 4. Section 5 contains some numerical results and a
comparison of standardized maximin optimal designs with uniform designs, which are commonly
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applied in microbial growth models. Dette et al. (2003) showed that these designs usually require
2-3 times more observations than locally optimal designs in order to achieve the same accuracy.
However the locally optimal designs depend sensitively on the unknown parameters of the model.
In the present paper we demonstrate that the maximin efficient designs determined in Section
4 and 5 are on the one hand substantially more robust with respect to misspecification of the
“true” parameters and on the other hand considerably more efficient than the commonly used
equidistant designs. Moreover, it is also demonstrated that standardized maximin optimal de-
signs usually have at least 4 support points, while locally optimal designs are supported at only 3
points. There appear 3 unknown parameters in the Monod equation, and consequently the new
designs can also be used for checking the model assumptions of the Monod model by means of a
goodness-of-fit test. Finally some technical details regarding the proofs of the results in Section 3
are given in the Appendix.

2 Design of experiment for the Monod model

The Monod model for periodic culture (batch) experiments may be presented as a first order
differential equation

η′(t) = µ(t)η(t),(2.1)

where

µ(t) = θ1
s(t)

s(t) + θ2
, s(t) − s0 = (η0 − η(t))/θ3(2.2)

[see Pirt (1975) or Koch (1997)]. Here s0 = s(0) and η0 = η(0) are given initial conditions, i.e.,
initial concentrations of the consuming substrate and microbial biomass, respectively. Three pa-
rameters θ1, θ2, θ3 characterize microbial growth. Each parameter has its own traditional notation
and name: θ1 is called the maximal specific growth rate usually denoted by µmax, θ2 the saturation
(affinity) constant denoted by Ks, θ3 the yield coefficient usually denoted by Y . The variable t
represents time, which varies in the closed interval [0, T ]. Typical minimum values of T are several
hours for optimal microbiological media, whereas the maximum is one year or more for special-
ized groups of microorganisms. All three parameters, initial conditions and variables are positive
because of natural biological conditions. Parameter estimation and experimental design for this
model have recently been discussed by extensive empirical studies [see Vanrolleghem, Van Daele
and Dochaine (1995), Merkel, Schwarz, Fritz, Reuss and Krauth (1996) or Ossenbruggen, Spanjers
and Klapwik (1996) among many others]. Note that the functions η, µ and s in the differential
equation (2.1) depend on the parameter θ = (θ1, θ2, θ3) and we will make this dependence ex-
plicit in our notation, whenever it is necessary. We assume that in principle at each experimental
condition t ∈ [0, T ] an observation could be obtained, which is described by the stochastic model

y(t) = η(t, θ) + ε ,(2.3)

where η(t, θ) is the solution of the differential equation (2.1) and ε is a normally distributed random
variable with mean 0 and variance σ2 > 0. Moreover, throughout this article we assume that
different observations are independent and following Kiefer (1974) we call a discrete probability
measure with masses w1, . . . , wn at points t1, . . . , tn ∈ [0, T ] an approximate experimental design.
These points define the distinct experimental conditions at which observations have to be taken and
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w1, . . . , wn > 0,
∑n

j=1wj = 1 are positive weights representing the proportions of total observations
taken at the corresponding points [see Silvey (1980) or Pukelsheim (1993) for more details]. If N
observations can be taken by the experimenter a rounding procedure is applied to obtain integers
rj from the not necessarily integer valued quantities wjN . The values rj represent the number
of observations taken at experimental condition tj , j = 1, . . . n, and satisfy

∑n
j=1 rj = N [see

Pukelsheim and Rieder (1992)]. The analogue of the (appropriately normalized) Fisher information
matrix for an approximate design is the matrix

M(ξ, θ) =

(
n∑

k=1

wk
∂

∂θi
η(tk, θ)

∂

∂θj
η(tk, θ)

)3

i,j=1

,(2.4)

which is called the information matrix of the design ξ in the literature. If N observations are
taken according to an approximate design (possibly by applying a rounding procedure) it was
shown in Dette et al. (2003) that the least squares estimate in the model (2.3) is consistent and
asymptotically normal distributed with mean θ∗ and variance-covariance matrix σ2

N
M−1(ξ, θ∗),

where θ∗ denotes the “true” but unknown parameter in the regression model (2.3). An optimal
design maximizes an appropriate real valued function, say Φ, of the information matrix and there
are numerous criteria proposed in the microbiological literature to compare competing designs
for statistical inference in the Monod model [see Vanrolleghem et al. (1995), Versyck, Bernaerts
Geeraerd and Van Impe (1999)]. Note that the “true” parameter is not known and also estimates
are not available before any experiments have been carried out.
Following Chernoff (1953) we assume that some prior knowledge about the unknown parameter is
available, say θ, and call a design ξ∗θ locally Φ-optimal (for the parameter θ) if ξ∗θ maximizes the
function Φ((M(ξ, θ)). Throughout this paper Φ denotes an information function in the sense of
Pukelsheim (1993), where we are particularly interested in the D-criterion

ΦD(M(ξ, θ)) = (detM(ξ, θ))1/3 ,

the E-criterion
ΦE(M(ξ, θ)) = λmin(M(ξ, θ))

and in the criterion for estimating the individual coefficients θ1, θ2, θ3, i.e.

Φi(M(ξ, θ)) = (eT
i M

−(ξ, θ)ei)
−1 (i = 1, 2, 3).

Here A− denotes a generalized inverse of the matrix A, ei ∈ R
3 is the ith unit vector and we

assume that the parameter θi is estimable by the design ξ, that is range(ei) ⊂ range(M(ξ, θ))
(i = 1, 2, 3). For the definition of a more robust optimality criterion let Ω ⊂ R

3
+ denote a given

subset of the parameter space, then we call a design ξ∗ standardized maximin Φ-optimal if ξ∗

maximizes

ΨΩ(ξ) = min
θ∈Ω

Φ(M(ξ, θ))

Φ(M(ξ∗θ , θ))
.(2.5)

Throughout this paper the standardized maximin D- and E-optimal designs will be denoted ξ∗D
and ξ∗E, respectively. The most important case for the choice of the set Ω in the maximin criterion
arises, if the experimenter is able to specify intervals for the location of each parameter θi, that is

(θ1, θ2, θ3) ∈ Ω = [z1,L, z1,U ] × [z2,L, z2,U ] × [z3,L, z3,U ],(2.6)
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where 0 < zi,L ≤ zi,U < ∞ (i = 1, 2, 3). In this paper we will compare standardized maximin
Φ-optimal designs with uniform designs of the form

ξU(N),T̄ =

(
1
N
T̄ . . . N−1

N
T̄ T̄

1
N

. . . 1
N

1
N

)
,(2.7)

which are commonly applied in microbiological models [see Dette, Melas and Strigul(2004)]. In
(2.7) the parameter T̄ ≤ T is a given bound for the largest support point of the design while N
characterizes the number of different experimental conditions. It was demonstrated by Dette et al.
(2003) that for moderate sample size N ∈ N the impact of the number of support points N on the
performance of the uniform design is negligible, and the important characteristic of this type of
design is its largest support point T̄ . For this reason we will restrict our theoretical investigations
to the continuous uniform design denoted by ξT̄ , that is

dξT̄ = I[0,T̄ ]

dt

T̄
(2.8)

and determine the largest support point T̄ in an optimal way. A continous uniform design ξT ∗,θ

maximizing the function Φ(M(ξT̄ , θ)) in the class of all continuous uniform designs is called locally
Φ-optimal uniform design.

Note that the definition of the standardized maximin optimality criteria requires the knowledge
of the locally optimal design for any θ ∈ Ω and that the regression function η in the model (2.3)
is only implicitly given by the differential equation (2.1). Nevertheless, it is possible to obtain
an explicit representation of the information matrix (2.4) of an approximate design. In order to
make this paper self-contained we briefly recall some results established in Dette et al. (2003),
where a general machinery is developed to determine locally optimal designs for the Monod model.
These authors show that for fixed θ the function η(t, θ) is strictly increasing with existing limit
c = limt→∞ η(t, θ) <∞ (note that this limit depends on the parameter θ). Define c̄ = η(T, θ) < c
and consider the induced design space

X = {η(t, θ) | t ∈ [0, T ] } = [η0, c̄] .(2.9)

Any design of the form

ζ =

(
x1 . . . xn

w1 . . . wn

)
, η0 ≤ x1 < x2 < . . . < xn ≤ c̄(2.10)

on the induced design space X corresponds in a one-to-one manner to a design ξζ on the interval
[0, T ] with weights wi at points ti = t(xi, θ) (i = 1, . . . , n) by the transformation

t(x) = t(x, θ) =
1

ϑ1

(
(1 + b) ln

x

η0
− b ln

c− x

c− η0

)
,(2.11)

where b = b(θ) = θ2θ3/c and c = c(θ) = s0θ3 + η0 [see Dette et al. (2003)]. The information
matrix in the nonlinear regression model (2.3) can now be represented as

M(ξζ , θ) = KM̄(ζ, θ)KT ,(2.12)

where the matrix M̄(ζ, θ) is given by

M̄(ζ, θ) =
n∑

j=1

wjϕ(xj , θ)ϕ(xj, θ)
T ,
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and the matrix K is defined by

K =




1+b
θ1

− b
θ1

0

− b
θ2

+ b
θ2

0

− bη0

cθ3
+ bη0

cθ3
+ b

θ3


 .(2.13)

Here

ϕ(x, θ) = (ϕ1(x, θ), ϕ2(x, θ), ϕ3(x, θ))
T(2.14)

denotes a vector of regression functions with components

ϕ1(x, θ) = v(x) ln
x

η0
, ϕ2(x, θ) = v(x) ln

c− x

c− η0
, ϕ3(x, θ) = v(x)

x− η0

c− x
,(2.15)

and

v(x) = v(x, θ) =
x(c− x)

(1 + b)c− x
.(2.16)

[see Dette et al. (2003) for more details]. Consequently, it is sufficient to construct locally D-
optimal designs for the regression model

βTϕ(x, θ) ,(2.17)

and E- and ek-optimal designs for the regression model βTKϕ(x, θ). For a fixed θ the locally
optimal designs for the Monod model (2.1) are simply obtained by transforming the design ζ in
(2.10) to the design ξζ using the mapping t(x, θ).

3 Some theoretical results

In the present section we derive some important characteristics of standardized maximin optimal
designs and also discuss properties of locally Φ-optimal uniform designs defined in (2.8). Dette
et al. (2003) proved that the for a sufficiently small initial condition η0 the locally D-, E- and
ei- optimal designs have three support points including the right boundary of the design space.
They also observed this property numerically for arbitrary η0. As a consequence the locally D-
optimal design has equal masses at three points [see Silvey (1980)] and formulas representing the
weights of the E- and ei- optimal designs are also available [see Pukelsheim and Torsney (1991)
or Dette et al. (2003)]. In all cases the locally optimal designs have to be found numerically, but
with the transformation onto the induced design space introduced in the second part of Section 2
the calculation is straightforward and easy implementable in standard software as Mathematica
or Matlab. Our first results of the present paper provide some properties of the locally optimal
continuous uniform design defined by (2.8), which simplify their calculation substantially.

Lemma 3.1. Let f(t, θ) = ∂η
∂θ

(t, θ) denote the gradient of the regression function in the Monod
model (2.3)

(i) If ξT ∗,θ is a locally D-optimal uniform design, then

fT (T ∗, θ)M−1(ξT ∗,θ, θ)f(T ∗, θ) = 3(3.1)
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(ii) If ξT ∗,θ is a locally E-optimal uniform design and the minimum eigenvalue of the correspond-
ing information matrix M(ξT ∗,θ, θ) has multiplicity 1 , then

(pTf(T ∗, θ))2 = λmin(M(ξT ∗,θ, θ))(3.2)

where p is a normalized eigenvector corresponding to the minimum eigenvalue of M(ξT ∗,θ, θ).

(iii) If i ∈ {1, 2, 3}, ξT ∗,θ is a locally ei-optimal uniform design and the corresponding information
matrix M(ξT ∗,θ, θ) is non-singular, then

(fT (T ∗, θ)M−1(ξT ∗,θ, θ)ei)
2 = eT

i M
−1(ξT ∗,θ, θ)ei(3.3)

For the application of this result we note that the matrix M(ξT,θ, θ) can be calculated by formula
(2.12) and the gradient of the response function can be represented as ∂η

∂θ
(t, θ) = Kϕ(x), where

the matrix K and the vector ϕ are given by (2.13) and (2.14), respectively. Note that the function
T̄ → Φ(M(ξT̄ , θ)) is not necessarily concave and as a consequence only a necessary condition for
the local optimality of a continuous uniform design can be established. Nevertheless, we could
show numerically that the equations (3.1) - (3.3) have always a unique solution. We have checked
this property for all optimality criteria under consideration and always found a unique solution. A
typical example is shown in Figure 1, where we considered the case of the D-optimality criterion
and depicted the function

ψ(T̄ ) = (detM(ξT̄ , θ))
1/3(3.4)

for the parameters η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5 and θ3 = 0.25 which corresponds to a
typical situation observed in studies of microbial growth [see Pirt (1975) or Blok (1994)].
Because the existence of an optimal uniform design is obvious (due to the continuity of the
problem) the locally optimal uniform design could be obtained directly for any θ by solving
the equation (3.1) (or (3.2), (3.3)) with respect to T ∗. As a consequence the determination of
locally optimal uniform designs reduces to a very simple numerical solution of a (one-dimensional)
nonlinear equation. If the optimal largest support point T ∗ has been determined an implementable
(locally optimal) uniform design for a given sample size N is obtained by (2.7).
The calculation of standardized maximin optimal designs is substantially more difficult. However,
the following result restricts the dimension of the optimization problem and is the basis for the
numerical determination of standardized maximin optimal designs, which will be described in the
next section.

Theorem 3.2. In the Monod model (2.3) defined by the differential equation (2.1) there always
exists a standardized maximin D-, E- or ei-optimal design with a finite number of support points,
if the minimum in the standardized maximin optimality criterion is taken over a set Ω of the form
(2.6). Moreover, the right boundary point of the design space [0, T ] is always a support point of
the standardized maximin optimal design.

It should pointed out here that Theorem 3.2 cannot be obtained by Caratheodory’s Theorem [see
e.g. Silvey (1980)], because the set {ϕ(x, θ)|x ∈ X , θ ∈ Ω} is in general not of finite dimension. By
the same reason no upper bound for the number of support points of the standardized maximin
optimal designs in the Monod model is available. Nevertheless, based on an intensive numeri-
cal study described below, we obtain the following conjecture regarding the maximal number of
support points in the Monod model.
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Figure 1: The function ψ(T̄ ) defined in (3.4) for the parameters η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5 and
θ3 = 0.25.

Conjecture 3.3. If the assumptions of Theorem 3.2 are satisfied, any standardized maximin D-,
E- or ei-optimal design in the Monod model (2.3) defined by the differential equation (2.1) has at
most 6 support points. Moreover, the right boundary point of the design space [0, T ] is always a
support point of the standardized maximin optimal design.

4 A numerical procedure for the calculation of standardized maximin

optimal designs

In the following section we will calculate some standardized maximin efficient designs numerically
and demonstrate that these designs have excellent efficiencies compared to locally optimal uniform
designs. We will now briefly explain the algorithm used for these calculations. The algorithm is
based on the following conjecture, which was satisfied in all examples in our numerical study. In
this section the function Φ- denotes the D-,E-, or ei-optimality criterion (i = 1, 2, 3) defined in
Section 2.

Conjecture 4.1. For any design ξ the set

Ω0 = Ω0(ξ) =
{
θ
∣∣∣ θ = argmin

θ∈Ω

Φ(M(ξ, θ))

Φ(M(ξ∗θ , θ))

}
.(4.1)

is finite, say Ω0 = {θ(1), . . . , θ(n2)} (n2 ∈ N).

In all our considered examples we observed that n2 ≤ 4, but a general bound could not be
established formally. Now consider the set

Un1 =
{

(u1, . . . , u2n1) = (t1, . . . , tn1, w1, . . . , wn1)
∣∣∣(4.2)

0 ≤ t1, . . . < tn1 ≤ T ;wi > 0,

n1∑
i=1

wi = 1
}
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and note that each element u ∈ Un1 defines a design with n1 support points, that is

ξu =

(
t1 . . . tn1−1 tn1

w1 . . . wn1−1 wn1

)
.(4.3)

By Theorem 3.2 there exists an n1 ∈ N and a u ∈ Un1 such that the standardized maximin Φ-
optimal design is given by ξ∗ = ξu. We will now describe an iterative procedure for the calculation
of standardized maximin Φ-optimal design observing that at least 3 support points are required.
Thus we set n1 = 3 and chose an arbitrary (possibly locally Φ-optimal) starting design, say ξu(0)

with u(0) ∈ Un1 . We put s = 0, define u(α) = (1 − α)u(s) + ū and determine

ū(s) = arg max
||ū||=1

∂

∂α
min
θ∈Ω

Φ(M(ξu(α), θ))

Φ(M(ξ∗θ , θ))

∣∣∣∣
α=0+

(4.4)

= arg max
||ū||=1

∂

∂α
min

j=1,...,n2

Φ(M(ξu(α), θ(j)))

Φ(M(ξ∗θ(j)
, θ(j)))

∣∣∣∣
α=0+

= arg max
||ū||=1

min
{ n2∑

j=1

hj
∂

∂α

Φ(M(ξu(α), θ(j)))

Φ(M(ξ∗θ(j)
, θ(j)))

∣∣∣∣
u=u(s)

∣∣∣ hj ≥ 0;

n2∑
j=1

hj = 1
}
,

where || · || denotes the Euclidean norm, we have used Conjecture 4.1 with Ω0 = Ω0(ξu(0)
) =

{θ(1), . . . , θ(n2)} and the formula for the directional derivative of the minimum. In the next step
we calculate

u(s+1) = u(s+1)(hs) = (1 − hs)u(s) + hsū(s),(4.5)

where the weight hs maximizes the minimum Φ-efficiency

effΦ(ξ, θ) =
Φ(M(ξ, θ))

Φ(M(ξ∗θ , θ))
.(4.6)

among all designs of the form ξu with u = u(s+1) defined by (4.5), that is

hs = arg max{ min
θ∈Ω

effΦ(ξu(s+1)(h), θ) | 0 ≤ h ≤ 1 } .

Obviously we obtain
min
θ∈Ω

effΦ(ξu(s+1)
, θ) ≥ min

θ∈Ω
effΦ(ξu(s)

, θ)

and in the case of equality the design ξu(s+1)
is standardized maximin Φ-optimal in the class of all

designs with n1 support points, i.e.

Ξn1 = {ξu | u ∈ Un1} .(4.7)

Otherwise it follows by standard arguments that the sequence of designs (ξu(j)
)j∈N0 contains a

weakly convergent subsequence with limit, say ξ∗n1
, which is a standardized maximin Φ-optimal

in the class Ξn1. Note that in all cases considered in our study the sequence (ξu(j)
)j∈N0 was

weakly convergent and it is usually not necessary to consider subsequences. We can now use the
general equivalence theorem for standardized maximin Φ-optimality [see Dette, Haines and Imhof
(2003), Theorem 3.3] to check if the design ξ∗n1

is standardized maximin Φ-optimal in the class of
all approximate designs (for the standardized maximin D-optimality criterion the corresponding
equivalence theorem is stated in the appendix in Lemma 6.1). Note that the application of the
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equivalence theorem requires the specification of a least favourable distribution on the set Ω(ξ∗n1
),

which was finite in all examples considered in our study [see also Conjecture 4.1].
Otherwise the procedure is continued with n1 replaced by n1 + 1 and an initial design in the class
Ξn1+1 constructed as follows: we define

t∗ = arg max
t∈[0,T ]

min
{ n2∑

j=1

hj
∂

∂α

Φ(M((1 − α)ξ∗n1
+ αδt, θ(j)))

Φ(M(ξ∗θ(j)
, θ(j)))

∣∣∣∣
α=0+

∣∣∣ hj ≥ 0;

n2∑
j=1

hj = 1
}

where δt denotes the Dirac-measure at the point t and

α∗ = arg max
α∈[0,1]

min
{ n2∑

j=1

hj

Φ(M((1 − α)ξ∗n1
+ αδt∗ , θ(j)))

Φ(M(ξ∗θ(j)
, θ(j)))

∣∣∣ hj ≥ 0;
n2∑

j=1

hj = 1
}
.

The initial design ξu(0)
for the calculation of the standardized maximin Φ-optimal in the class

Ξn1+1 is finally defined by the vector u(0) ∈ Un1+1, which is given by

u(0) = (u∗1, . . . , u
∗
n1
, t∗, (1 − α∗)w∗

1, . . . (1 − α∗)w∗
n1
, α∗),

where u∗1, . . . , u
∗
n1

denote the support points of the design ξ∗n1
with corresponding weights w∗

1, . . . w
∗
n1

.
The first step of the procedure is now continued to obtain the standardized maximin Φ-optimal
design in the class Ξn1+1. If this design is not standardized maximin Φ-optimal in the class of
all approximated designs the procedure is repeated increasing the number of support points by 1.
The algorithm stops if the standardized maximin Φ-optimality of the calculated design has been
confirmed by the corresponding equivalence theorem.
Note that the algorithm definitively terminates, because by Theorem 3.2 any standardized max-
imin D, E- or ei-optimal design is supported at a finite number of points. Moreover, in our
numerical study all iterations usually stopped after a few steps and the standardized maximin
Φ-optimal could quickly be identified using the described procedure.

5 A comparison of standardized maximin and uniform designs

Note that the discussion in Section 2 shows that the design problem in the Monod model on the
interval [0, T ] corresponds to a design problem in the linear model (2.17) on the induced design
space X = [η0, c̄] defined in (2.9), where η0 = η(0, θ) and c̄ = η(T, θ). Moreover, for T → ∞ we
obtain c̄ → c and the design problem for the regression model (2.17) can also be considered on
the interval [η0, c]. By the transformation (2.11) this design corresponds to a design in the Monod
model on the design space [0,∞]. In other words because of the compactness of the induced design
space there also exist locally and standardized maximin optimal designs for the Monod model on
the infinite design space [0,∞].
For the sake of brevity we will restrict the calculation of standardized maximin optimal designs to
a procedure, which uses the optimal designs from the infinite design space [0,∞]. As a consequence
we only have to tabulate designs for one design space, namely [0,∞]. Moreover, the consideration
of an infinite design space is justified by the following observations. First, it was demonstrated
by Dette et al. (2003) that efficient locally optimal designs on a finite design space can easily be
obtained from the designs on an infinite design space using the following method. If

ξ∗θ =

(
t∗1 t∗2 ∞
w∗

1 w∗
2 w∗

3

)
(5.1)
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denotes a locally D-, E− or ei-optimal design for the Monod model on the design space [0,∞]
and the right boundary of the design space [0, T ] satisfies T ≥ 1.5t∗2, then the design

ξ̃∗θ =

(
t∗1 t∗2 T
w∗

1 w∗
2 w∗

3

)
(5.2)

on the finite design space has at least Φ-efficiency 0.98, where the Φ-efficiency is defined by (4.6).
Similarly, it was observed in our numerical study that if

ξ∗ =

(
t∗1 . . . t∗n−1 ∞
w∗

1 . . . w∗
n−1 w∗

n

)
(5.3)

denotes a standardized maximin D-, E− or ei-optimal design for the Monod model on the design
space [0,∞] and T ≥ 2t∗n−1 , then the design

ξ̃∗ =

(
t∗1 . . . t∗n−1 T
w∗

1 . . . w∗
n−1 w∗

n

)
(5.4)

has at least maximin-efficiency 0.98, where the maximin-efficiency is defined by

effΨΩ
(ξ) =

ΨΩ(ξ)

supη ΨΩ(η)
(5.5)

and the robust optimality criterion ΨΩ(ξ) is given by (2.5). Secondly we note that in microbio-
logical studies the length of the design interval [0, T ] can often be chosen by the experimenter.

Table 5.1: Standardized maximin D-optimal designs in Monod model for various regions Ω = [z1,L, z1,U ] ×
[z2,L, z2,U ] × [z3,L, z3,U ].

Ω t1 t2 t3 t4 t5 t6 w1 w2 w3 w4 w5 w6

[.24, .26] × [.47, .53] × [.24, .26] 10.93 15.83 17.32 ∞ .325 .223 .124 .328

[.23, .27] × [.45, .55] × [.24, .26] 10.51 14.68 18.60 ∞ .270 .244 .194 .292

[.23, .27] × [.45, .55] × [.23, .27] 10.40 14.50 18.53 ∞ .264 .241 .203 .292

[.23, .27] × [.43, .57] × [.24, .26] 10.46 14.48 18.47 ∞ .262 .243 .202 .293

[.23, .27] × [.43, .57] × [.23, .27] 10.23 14.06 16.84 19.41 ∞ .246 .219 .105 .149 .281

[.22, .28] × [.45, .55] × [.24, .26] 10.22 14.08 17.12 19.69 ∞ .244 .222 .106 .148 .280

[.22, .28] × [.45, .55] × [.22, .28] 9.78 13.50 16.69 20.18 ∞ .204 .229 .136 .162 .269

[.22, .28] × [.43, .57] × [.24, .26] 10.01 13.65 16.79 20.13 ∞ .216 .226 .135 .154 .268

[.22, .28] × [.43, .57] × [.22, .28] 9.81 13.42 16.77 20.35 ∞ .207 .233 .134 .166 .261

[.22, .28] × [.41, .59] × [.24, .26] 9.96 13.58 16.91 20.42 ∞ .214 .230 .141 .153 .263

[.22, .28] × [.41, .59] × [.22, .28] 9.76 13.34 16.86 20.56 ∞ .205 .237 .136 .164 .258

[.20, .30] × [.41, .59] × [.24, .26] 9.19 12.72 15.69 18.58 22.00 ∞ .159 .235 .101 .098 .161 .246

[.20, .30] × [.41, .59] × [.20, .30] 8.56 12.10 15.32 19.16 23.33 ∞ .147 .218 .103 .128 .163 .241

[.20, .30] × [.40, .60] × [.24, .26] 9.16 12.64 15.59 18.60 22.08 ∞ .159 .232 .099 .102 .163 .245

[.20, .30] × [.40, .60] × [.20, .30] 8.51 11.98 15.16 19.10 23.67 ∞ .147 .212 .102 .138 .167 .235

In Table 5.1 and 5.2 we present some standardized maximin optimal designs for various regions of
the parameter space Ω, where the design interval is given by [0,∞]. A typical vector of parameters
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observed in studies of microbial growth is given by η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5 and
θ3 = 0.25 [see Pirt (1975) or Blok (1994)] and for an illustration of the robustness and efficiency
properties of the standardized maximin optimal designs we took this point as the center of the
set Ω required for the definition of the standardized optimality criteria. In Table 5.1 we display
standardized maximin D-optimal designs for the Monod model on the set [0,∞], while Table 5.2
contains the corresponding standardized maximin E-optimal designs. It is interesting to note
that in all cases the standardized maximin optimal designs require at least four support points.
Moreover, the number of support points is increasing with the size of the set Ω specified by the
experimenter. This observation was also made by Dette and Biedermann (2003) for the Michaelis-
Menten model. Note that according to Theorem 3.2 the standardized maximin optimal designs
is always supported at a finite number of points and that in all cases considered in our study the
optimal designs have at most 6 support points, including the right boundary point of the design
space [see also our Conjecture 3.4]. As pointed out in the previous paragraph implementable and
very efficient designs of the form (5.4) can be derived from the standardized maximin optimal
designs on the infinite designs space, in the case t∗n−1 < T . In particular compared to the designs
(5.1) on the infinite design space [0,∞] these designs have at least efficiency 0.98 provided that
the point t∗n−1 satisfies 2t∗n−1 < T .

Table 5.2: Standardized maximin E-optimal designs in Monod model for various regions Ω = [z1,L, z1,U ] ×
[z2,L, z2,U ] × [z3,L, z3,U ].

Ω t1 t2 t3 t4 t5 t6 w1 w2 w3 w4 w5 w6

[.24, .26] × [.47, .53] × [.24, .26] 9.47 15.58 17.52 ∞ .302 .257 .189 .252

[.23, .27] × [.45, .55] × [.24, .26] 9.19 14.77 18.34 ∞ .273 .258 .245 .223

[.23, .27] × [.45, .55] × [.23, .27] 9.15 14.63 18.28 ∞ .271 .256 .252 .222

[.23, .27] × [.43, .57] × [.24, .26] 9.25 14.60 18.23 ∞ .270 .257 .254 .220

[.23, .27] × [.43, .57] × [.23, .27] 8.99 14.03 16.72 19.31 ∞ .261 .204 .166 .161 .207

[.22, .28] × [.45, .55] × [.24, .26] 9.03 14.02 16.75 19.31 ∞ .255 .206 .156 .173 .209

[.22, .28] × [.45, .55] × [.22, .28] 8.78 13.48 16.55 19.91 ∞ .235 .197 .200 .171 .197

[.22, .28] × [.43, .57] × [.24, .26] 9.22 13.88 16.91 2.11 ∞ .234 .220 .197 .153 .195

[.22, .28] × [.43, .57] × [.22, .28] 8.86 13.45 16.60 2.09 ∞ .230 .208 .206 .169 .188

[.22, .28] × [.41, .59] × [.24, .26] 9.02 13.71 16.89 2.31 ∞ .246 .213 .201 .154 .186

[.22, .28] × [.41, .59] × [.22, .28] 8.62 12.86 15.38 17.71 2.73 ∞ .218 .174 .148 .147 .137 .177

[.20, .30] × [.41, .59] × [.24, .26] 8.52 12.60 15.51 18.59 22.22 ∞ .202 .180 .171 .158 .129 .161

[.20, .30] × [.41, .59] × [.20, .30] 8.24 12.16 15.08 18.24 22.19 ∞ .182 .202 .164 .149 .152 .151

[.20, .30] × [.40, .60] × [.24, .26] 8.49 12.57 15.46 18.56 22.29 ∞ .203 .182 .168 .159 .131 .158

[.20, .30] × [.40, .60] × [.20, .30] 8.20 12.10 15.02 18.26 22.20 ∞ .176 .204 .168 .152 .156 .144

For this reason we will now assume that the microbiological experiments can be carried out over
a sufficiently long time T such that these strategies of design construction are applicable and
compare the standardized maximin optimal designs with some uniform designs, which provide
an alternative design of experiment if there is only very vague prior information regarding the
unknown parameter. All our efficiency considerations are restricted to designs obtained from the
optimal designs on an infinite design space [0,∞] by the procedure explained by (5.1) - (5.4).
The efficiencies of the “true” standardized maximin optimal designs on the interval [0, T ] are
slightly larger, but the additional effort of calculating these designs for any interval [0, T ] under
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consideration is only justified if T < 2t∗n−1.
For an illustration we consider the problem of designing an experiment for the Monod model with
design space [0, T ] = [0, 40]. For the uniform design, we chose the uniform distribution on 20
points in the interval [0, 40], that is the design ξU(20),40 defined in (2.7) for N = 20 and T̄ = 40.
Note that it follows from Figure 1 that for η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5 and θ3 = 0.25
the locally D-optimal uniform design is the uniform distribution on the interval [0, 32] and that
ξU(20),40 could be considered as an approximation to the locally D-optimal uniform design, which
takes into account that the parameters required for the construction of the locally D-optimal
uniform design have been misspecified. Moreover, we also observe from Figure 1 that for the point
η0 = 0.03, s0 = 1, θ1 = 0.25, θ2 = 0.5 and θ3 = 0.25 the uniform design ξU(20),40 is only slightly
less efficient compared to the locally D-optimal uniform design ξU(20),32. Note that Figure 1 refers
to the D-criterion, but the situation for the other criteria is similar. In Table 5.3 we compare this
uniform design with the standardized maximin D-optimal designs derived from Table 5.1 and the
procedure described by (5.3) and (5.4). The comparison is performed by considering the ratios

CD(ξ, θ) =

(
detM(ξ, θ)

detM(ξU(20),40, θ)

) 1
3

(5.6)

Ci(ξ, θ) =
(eT

i M
−1(ξ, θ)ei)

−1

(eT
i M

−1(ξU(20),40, θ)ei)−1
i = 1, 2, 3(5.7)

CE(ξ, θ) =
λminM(ξ, θ)

λmin(M(ξU(20),40, θ))
(5.8)

of the corresponding optimality criteria. Note that these ratios depend on the parameter θ and
that for a given θ ∈ Ω a larger value than 100% indicates that the design ξ is more efficient than
the uniform design ξU(20),40 with respect to the corresponding optimality criterion. For the sake of
brevity Table 5.1 contains the maximum, minimum and averaged values of these ratios, which are
indicated by the symbols “max”, “min” and “average” respectively. For example, in the column
with the label CD and “min” the reader finds the minimum ratio

min
θ∈Ω

CD(ξ̃∗D, θ) = min
θ∈Ω

(
detM(ξ̃∗D, θ)

detM(ξU(20),40, θ)

)1
3

taken over the set Ω, while in the column with the label CD and “average” the corresponding
integrated values with respect to the uniform distribution can be found, that is∫

Ω

CD(ξ̃∗D, θ)dθ

[recall that the design ξ̃∗D on the interval [0, T ] is obtained from the standardized maximin D-
optimal design ξ∗D on the infinite design space in Table 5.1 by changing the design in (5.3) to the
design in (5.4)].

We observe that the standardized maximin D-optimal design is always better than the uniform
design ξU(20),40, if the D-, E−, e1 and e2-criterion are used for comparing competing designs,
because the corresponding minimum values are larger than 100%. The improvement by using a
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Table 5.3: Comparison of standardized maximin D-optimal design with uniform designs of the form (2.7) (N = 20,
T̄ = 40) on the design space [0, T ] = [0, 40]. The table shows the minimum, maximum and average values of the
ratios defined by (5.6), (5.7) and (5.8) in %.

min max average

Ω CD C1 C2 C3 CE CD C1 C2 C3 CE CD C1 C2 C3 CE

[.24, .26] × [.47, .53] × [.24, .26] 140 168 175 64 175 154 220 226 75 226 151 207 213 68 213

[.23, .27] × [.45, .55] × [.24, .26] 133 157 155 65 155 148 190 183 74 183 140 172 166 67 167

[.23, .27] × [.45, .55] × [.23, .27] 132 154 153 66 153 148 191 181 75 181 139 169 163 67 163

[.23, .27] × [.43, .57] × [.24, .26] 131 152 149 64 149 149 195 184 76 184 140 171 163 67 163

[.23, .27] × [.43, .57] × [.23, .27] 130 147 149 65 149 148 195 180 75 180 138 164 157 67 157

[.22, .28] × [.45, .55] × [.24, .26] 129 146 148 66 148 147 193 177 76 180 137 161 155 69 155

[.22, .28] × [.45, .55] × [.22, .28] 127 140 138 66 138 144 205 177 79 180 134 156 146 69 146

[.22, .28] × [.43, .57] × [.24, .26] 127 141 142 65 142 147 206 181 78 180 136 158 149 69 149

[.22, .28] × [.43, .57] × [.22, .28] 126 136 134 64 134 146 212 181 80 181 134 152 143 69 143

[.22, .28] × [.41, .59] × [.24, .26] 126 138 139 65 139 149 213 186 80 186 135 156 147 69 147

[.22, .28] × [.41, .59] × [.22, .28] 124 132 131 65 131 148 221 188 81 188 133 149 141 70 141

[.20, .30] × [.41, .59] × [.24, .26] 121 116 111 67 117 146 238 198 89 199 129 143 132 75 132

[.20, .30] × [.41, .59] × [.20, .30] 118 106 109 73 109 142 230 193 98 193 125 128 123 81 123

[.20, .30] × [.40, .60] × [.24, .26] 120 115 116 68 116 147 239 200 91 200 129 141 131 76 131

[.20, .30] × [.40, .60] × [.20, .30] 117 105 108 74 108 143 229 191 98 192 125 126 123 82 123

Table 5.4: Comparison of standardized maximin E-optimal design with uniform designs of the form (2.7) (N = 20,
T̄ = 40) on the design space [0, T ] = [0, 40]. The table shows the minimum, maximum and average values of the
ratios defined by (5.6), (5.7) and (5.8) in %.

min max average

Ω CD C1 C2 C3 CE CD C1 C2 C3 CE CD C1 C2 C3 CE

[.24, .26] × [.47, .53] × [.24, .26] 130 157 187 52 187 143 231 246 58 246 140 212 234 54 234

[.23, .27] × [.45, .55] × [.24, .26] 124 159 160 51 160 143 186 211 62 211 133 180 187 53 187

[.23, .27] × [.45, .55] × [.23, .27] 123 155 155 50 155 143 187 210 63 210 133 178 183 53 183

[.23, .27] × [.43, .57] × [.24, .26] 121 159 152 49 152 145 187 213 63 212 134 179 184 53 184

[.23, .27] × [.43, .57] × [.23, .27] 119 154 148 49 148 143 188 203 66 203 132 171 175 53 175

[.22, .28] × [.45, .55] × [.24, .26] 119 153 147 50 147 143 180 200 67 200 132 169 173 54 173

[.22, .28] × [.45, .55] × [.22, .28] 116 142 141 49 141 142 181 192 71 192 130 164 165 54 164

[.22, .28] × [.43, .57] × [.24, .26] 118 143 141 49 141 146 190 202 70 202 132 169 168 54 167

[.22, .28] × [.43, .57] × [.22, .28] 115 135 136 47 136 145 188 198 72 198 130 163 163 54 163

[.22, .28] × [.41, .59] × [.24, .26] 115 137 138 48 137 148 189 207 72 207 131 163 166 54 165

[.22, .28] × [.41, .59] × [.22, .28] 112 129 132 46 132 144 188 194 75 194 129 159 159 53 159

[.20, .30] × [.41, .59] × [.24, .26] 107 119 126 47 126 146 189 197 81 197 128 152 152 58 152

[.20, .30] × [.41, .59] × [.20, .30] 101 113 120 44 120 147 211 203 81 203 127 147 145 57 145

[.20, .30] × [.40, .60] × [.24, .26] 106 118 125 47 125 147 191 201 81 201 128 151 152 57 152

[.20, .30] × [.40, .60] × [.20, .30] 100 112 119 43 119 147 216 206 82 206 127 147 144 56 144

standardized maximin optimal design instead of the uniform design with respect to these criteria
can be substantial. For example, consider the set Ω = [.20, .30]×[.40, .60]×[.20, .30] corresponding
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to a situation, where only vague prior information regarding the unknown parameters in the Monod
model is available. In this case the minimum gain in D-efficiency by the standardized maximin
D-optimal design is approximately 17%, the maximum is 43% and in the average we have 25%
improvement compared to the uniform design ξU(20),40. The performance of the standardized
maximin D-optimal design would be even better, if the parameter space Ω could be specified
more precisely. The advantages with respect to the E-, e1- and e2-criterion are even larger. On
the other hand the uniform design ξU(20),40 is more efficient for the estimation of the parameter θ3.
However, as pointed out by Dette et al. (2003) the efficient estimation of θ1 and θ2 is usually more
important for the Monod model, because in realistic situations [see Pirt (1975) or Blok (1994)]
the parameter θ3 can be estimated with much higher precision than the parameters θ1 and θ2 [see
Dette et al. (2003), Table 3]. The situation for the E-optimality criterion is very similar. The
standardized maximin E-optimal design should be preferred in all cases, except if the primary
goal of the experiment is the parameter θ3 and all other parameters are not of interest for the
experimenter.
It might also be of interest to compare the standardized maximin optimal designs with some robust
designs proposed by Dette et al. (2003). For a rectangular parameter space Ω of the form (2.6)
these authors suggest to use the locally optimal design for the parameter θ0 = (z1,U , z2,U , z3,L) as
a robust design for the Monod model. In Table 5.5 we compare for the E-optimality criterion this
design with the uniform design obtained by the procedure described in the previous paragraph.
These results correspond to the situation considered in Table 5.4. The results for the D-optimality
criterion are very similar and not displayed for the sake of brevity. We observe that the locally
E-optimal design ξ∗θ0 yields substantially higher values for the maximum of CD(ξ, θ), Ci(ξ, θ) and
CE(ξ, θ) than the standardized maximin E-optimal design. This corresponds to intuition, because
the point θ0 is an element of the set Ω, and for this point the design proposed by Dette et al.
(2003) is in fact locally E-optimal. On the other hand the minimal values of CE(ξ, θ) can be
very small. In many cases, there exist parameters θ ∈ Ω, where the uniform design is at least
10 times more efficient than the locally E-optimal design ξ∗θ0. For the averaged efficiencies the
differences between the standardized maximin E-optimal and the locally E-optimal design ξ∗θ0 are
less substantial. For narrow parameter spaces Ω we observe some advantages of the designs ξ∗θ0

which confirms the results in Dette et al. (2003). On the other hand, if the experimenter has less
precise information regarding the location of the parameters the standardized maximin E-optimal
designs yield better results. Summarizing this comparison we conclude that the locally E-optimal
design ξ∗θ0 proposed by Dette et al. (2003) should only be used for “small” parameter spaces Ω.
Otherwise, there may exist parameter combinations in Ω such that this design is substantially
less inefficient than a uniform design. The robust designs derived in this paper do not have the
drawback of being completely inefficient for certain parameters and are usually preferable to the
locally E-optimal design ξ∗θ0.
We finally point out that a frequently used argument in favour of uniform designs is that these
designs allow for the possibility of checking the model assumptions by means of a goodness-of-fit
test, because they advise the experimenter to take observations at a large number of different
experimental conditions. The design ξ∗θ0 proposed by Dette et al. (2003) as a robust design for the
Monod model has only three support points (because it is locally optimal for the parameter θ0) and
therefore does not allow model checking. However, the standardized maximin D- and E-optimal
designs determined in this paper have at least four support points (in many cases they advise the
experimenter to take observations at even more different points). As a consequence these designs
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Table 5.5: Comparison of the locally E-optimal design ξθ0 with uniform designs of the form (2.7) (N = 20, T̄ = 40)
on the design space [0, T ] = [0, 40], where θ0 = (z1,U , z2,U , z3,L). The table shows the minimum, maximum and
average values of the ratios defined by (5.6), (5.7) and (5.8) in %.

min max average

Ω CD C1 C2 C3 CE CD C1 C2 C3 CE CD C1 C2 C3 CE

[.24, .26] × [.47, .53] × [.24, .26] 121 171 149 52 149 141 269 278 63 278 137 246 246 57 246

[.23, .27] × [.45, .55] × [.23, .27] 89 63 50 49 51 142 282 289 71 289 129 228 202 58 203

[.22, .28] × [.45, .55] × [.22, .28] 60 15 16 47 16 144 299 301 78 301 116 182 152 58 152

[.23, .27] × [.43, .57] × [.23, .27] 89 64 51 49 51 140 284 287 74 288 130 224 211 58 212

[.22, .28] × [.43, .57] × [.22, .28] 61 16 16 47 16 142 299 298 82 299 119 190 164 59 164

[.22, .28] × [.41, .59] × [.22, .28] 61 16 16 46 16 141 299 297 86 297 120 193 173 59 173

[.20, .30] × [.41, .59] × [.20, .30] 26 1 2 44 2 145 328 323 114 324 96 126 107 61 107

[.20, .30] × [.40, .60] × [.20, .30] 26 1 2 43 2 144 338 323 118 323 98 129 111 61 111

[.23, .27] × [.45, .55] × [.24, .26] 98 94 70 50 70 142 275 284 70 284 131 231 216 58 217

[.22, .28] × [.45, .55] × [.24, .26] 76 34 31 48 31 143 281 293 75 293 124 201 180 58 180

[.23, .27] × [.43, .57] × [.24, .26] 98 92 70 49 70 140 277 283 72 283 132 224 222 58 222

[.22, .28] × [.43, .57] × [.24, .26] 77 35 31 48 31 142 287 292 78 292 125 203 188 58 189

[.22, .28] × [.41, .59] × [.24, .26] 77 36 32 47 32 140 288 289 82 289 126 201 193 59 193

[.20, .30] × [.41, .59] × [.24, .26] 43 6 7 45 7 144 295 305 101 305 111 154 144 60 144

[.20, .30] × [.40, .60] × [.24, .26] 44 6 7 45 7 143 299 306 104 306 111 155 146 61 146

can on the one hand be used for checking the assumption of the Monod model by a goodness
of fit test and are on the other hand substantially more efficient for estimating the parameters
in the Monod model than uniform designs. For these reasons we recommend the application of
standardized maximin optimal designs for the analysis of microbial growth data with the Monod
model.
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6 Appendix: Proof of technical results

6.1 Proof of Lemma 3.1.

Because all cases are proved similary, we restrict ourselves to the proof of part (i) of Lemma 3.1.
For a fixed θ we define

M(ξT ) = M(ξT , θ), f(t) = f(t, θ) =
∂

∂θ
η(t, θ).
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Using the well known formula

∂

∂α
ln detB(α) = tr

{
B−1(α)

∂B

∂α

}
we obtain

∂

∂T
ln detM(ξT ) = tr

{
M−1(ξT )

[
− 1

T
M(ξT ) +

1

T
f(T )fT (T )

]}
= − 3

T
+

1

T
d(T ),

where the function d is defined by d(T ) = fT (T )M−1(ξT )f(T ). Therefore the condition d(T ) = 3
is a necessary condition for the local D-optimality of the uniform designs ξT .

6.2 Proof of Theorem 3.2.

We will only prove the statement for the D-optimality criterion. The results for E- and ei -
optimality criteria follow by similar arguments. The basic tool for proving Theorem 3.2 is an
equivalence theorem for standardized maximin D-optimal designs. The proof and corresponding
results for other optimality criteria can be found in Dette, Haines and Imhof (2003).

Lemma 6.1. Assume that the set Ω in the standardized maximin optimality criterion is given by
(2.6) with zi,L > 0 (i = 1, 2, 3).

(i) There exists a standardized maximin D-optimal design for the Monod model (2.3).

(ii) A design ξ∗ is standardized maximin D-optimal for the Monod model (2.3) if and only if there
exists a prior h on the set

Ω0 = Ω0(ξ
∗) =

{
θ
∣∣∣ θ = arg min

θ∈Ω

detM(ξ∗, θ)
detM(ξθ, θ)

}
.

such that the inequality∫
Ω0

{fT (t, θ)M−1(ξ∗, θ)f(t, θ) − 3}dh(θ) ≤ 0(6.1)

holds for all t ∈ [0, T ], where f(t, θ) denotes the gradient of the response function η(t, θ) with
respect to the parameter θ. Moreover, there is equality in (6.1) for all support points of the
standardized maximin D-optimal design ξ∗.

We now continue with the proof of Theorem 3.2 by first showing that any standardized maximin
D-optimal design has a finite support and secondly proving that the largest point of the design
space is always a support point of a standardized maximin D-optimal design.
Recall that it was proved in Dette et al. (2003) that the function η(t, θ) is strictly increasing
for any fixed θ with positive coordinates and that the inverse function is given by (2.11), which
is obviously a real analytic function whenever η0 ≤ x ≤ c = limt→∞ η(t, θ), θ1, θ2, θ3, η0 > 0.
Therefore we obtain that for fixed θ the functions η(t, θ) and fi(t, θ) = ∂

∂θi
η(t, θ), i = 1, 2, 3 are

also real analytic on the interval [0, T ]. Consequently the function

Q(t) =

∫
Ω0

{fT (t, θ)M−1(ξ∗, θ)f(t, θ) − 3}dh(θ)

17



defined by the left hand side of the inequality (6.1) is also real analytic on the interval [0, T ].
Because Q(0) = −3 it follows that for sufficiently small ε > 0 there exists no local maximum of
the function Q(t) in the interval [0, ε]. Moreover, the function Q

′
(t) is also real analytic on the

interval [0, T̃ ] for some T̃ > T and therefore either

Q
′
(t) ≡ 0, t ∈ [0, T ] ,(6.2)

or the function Q(t) has a finite number of local maxima. The identity (6.2) implies Q(0) =
Q(t) = −3 for all t ∈ [0, T ], which yields a contradiction. Due to Lemma 6.1 all support points of
the standardized maximin D-optimal design ξ∗ are points where the function Q(t) attains a local
maximum. Consequently the standardized maximin D-optimal design ξ∗ has finite support.

We finally prove that the right boundary point of the design interval T is a support point of the
standardized maximin D-optimal design. For this we assume the contrary, that is T �∈supp(ξ∗),
and denote by

ξ∗ =

(
t1 . . . tn1

w1 . . . wn1

)
, tn1 < T.

the standardized maximin D-optimal design, which has finite support by the first part of this
proof. From the Cauchy-Binet formula we have

detM(ξ∗, θ) =
∑

1≤α1<α2<α3≤n1

(
det
(
fi(tαj

, θ)
)j=1,2,3

i=1,2,3

)2

· wα1wα2wα3 .

Observing Lemma 2 in Dette et al. (2003) it follows that

∂

∂tn1

(
det
(
fi(tαj

, θ)
)
)j=1,2,3
i=1,2,3

)2

> 0

for any 1 ≤ α1 < α2 < α3 = n1 and θ ∈ Ω. Consequently there exists ε > 0 such that the design

ξ̄ =

(
t1 . . . tn1−1 tn1 + ε

ω1 . . . ωn1−1 ωn1

)

satisfies detM(ξ̄, θ) > detM(ξ∗, θ) for any θ ∈ Ω. But this implies

min
θ∈Ω

detM(ξ̄, θ)

detM(ξ∗θ , θ)
> min

θ∈Ω

detM(ξ∗, θ)
detM(ξ∗θ , θ)

,

which contradicts the standardized maximin D-optimality of the design ξ∗.
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