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Abstract

In dose response studies, the dose range is often restricted due to concerns over drug
toxicity and/or efficacy. We present restricted and unrestricted interval locally optimal
designs with respect to a very general class of optimality criteria for estimating the un-
derlying dose response curve. The underlying curve belongs to a diversified set of link
functions suitable for the dose response studies and having a common canonical form.
These include the fundamental binary response models – the logit and the probit as well
as the skewed versions of these models. The results are illustrated through the re-design
of a dose ranging trial conducted at the Merck Research Laboratories (Zeng and Zhu,
1997). This work is a generalization of the results of Dai and Zhu (2002) in terms of the
design interval, the underlying dose response curve and the optimality criterion.

AMS Classification: 62K05, 62J12

Keywords and Phrases: Binary response model; Dose ranging; Dose response; Link function;

General Equivalence Theorem; Locally compound optimal design; Information function; Matrix

mean.

1



1 Introduction

The motivation for preparing this article arose from a commonly observed design problem in

dose-response experiments. Dose-response experiment is routinely conducted in preclinical and

Phase I and II clinical trials to study the relationship between the dose level of a drug and

the probability of a response, be it “cured” or “poisoned”. For decades, statisticians have been

searching and advocating the adoption of optimal designs in clinical trials. However, computer

algorithms for generating theoretical optimal designs usually assume we have an unrestricted

dosage range; see for example, Chaloner and Larntz (1989), Zhu and Wong (1998, 2000, 2001).

The issue of restricted dose-range is especially pertinent to studies done with human subjects.

In clinical trials it was often noted (Gart et al., 1986) that “for many agents, the response

rate at the high dose in the optimal design may exceed that found at the maximum tolerated

dose”. We recently encountered such an example. Prior to a dose-ranging trial on a new

rheumatoid arthritis drug at the Merck Research Laboratories, a pilot study was done where

120 patients were equally randomized into a placebo (dose 0) and a high dose (dose 50) group

for a 6-week trial. The response rates were 35% at the placebo and 65% at the high dose,

and furthermore the dose-response curve was logit with the response rate at dose level x being

π(x) = 1/[1 + exp(−β(x − α))] (Zeng and Zhu, 1997). Based on these estimates, the locally

optimal design for estimating the shape (slope) of the underlying dose-response curve (logit)

would allocate half of the subjects to dose −71 and the other half to dose 121. It is impossible

to implement such a design because the higher dose (121) exceeds the safety limit, and the

lower dose (−71) has less drug content than the placebo. It is also hard to justify the role of

this optimal design as a ‘gold standard’ in gauging other competing designs.

Traditionally, most optimal designs for dose response studies are derived assuming that the

dose interval is as large as necessary, that is, (−∞,∞). Let ED(100π) denote the dose level

with response probability π, the unrestricted slope optimal design for the logit model is equally

supported at ED8.3 and ED91.7, symmetrical around ED50 which is simply the location pa-

rameter α. From the afore mentioned Merck pilot study, we have the estimates of ED35 = 0

and ED65 = 50, and therefore it is not surprising to see that the slope optimal design is equally

supported at a negative dose of ED8.3 = -71 and a high toxic dose of ED91.7 = 121.

Little work has been done on the construction of optimal designs for dose response studies

with a restricted dose interval. Extensive literature search yielded two related papers one

by Mats, Rosenberger and Flournoy (1998) where they derived the locally c- and D-optimal

design for estimating the maximum tolerated dose in a Phase I clinical trial on a restricted

design space and one by Haines, Perevozskaya and Rosenberger (2003) where they extend the

latter approach to Bayesian c- and D-optimal designs. For the Merck dose-ranging trial, the

goal was indeed to estimate the shape of the logit curve (β) as precisely as possible subject

to the constraint that the median effective dose (α), which is often regarded as the key index

of a dose-response study, will be estimated with a certain precision. Such an optimal design

is called a constrained optimal design (Lee, 1987). In other words, we are seeking a design

that would minimize Var(β̂) subject to the constraint that Var(â) ≤ c, where α̂ and β̂ are

the maximum likelihood estimators of the corresponding model parameters and c is a user
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defined constant. The constrained optimal designs are often hard to derive and little progress

was made until Cook and Wong (1994) showed that there is a 1-1 correspondence between the

constrained and the compound optimal designs. The compound optimal design would minimize

a convex combination of the individual design criteria (in our example the two variances) and

is in general easier to solve for than its constrained counterpart. The implication is that we can

now construct the entire class of compound optimal designs first and then search among which

for the desired constrained optimal design using such straightforward tool as the efficiency plot

proposed in Cook and Wong (1994).

For the Merck dose ranging trial, the locally compound optimal designs with unrestricted design

interval carry the same undesirable feature as the slope optimal design. Therefore in this paper,

we will focus on the derivation of restricted interval locally compound optimal designs for

estimating the location and slope parameters of a binary response model, where the probability

of a response at dose level x is given in the canonical form π (x) = H (β (x − α)) with a

distribution function H : R → [0, 1]; see Wu (1988) and Mats, Rosenberger and Flournoy (1998)

among many others. It includes for example two most common dose response models — the logit

model with H (z) = 1/[1 + exp(−z)] and the probit model with H (z) =
∫ z

−∞ ϕ (u) du, where

ϕ (u) is the unit normal density. Previously Dai and Zhu (2002) had derived the unrestricted

locally compound optimal designs for these two models. Each unrestricted compound optimal

design was found to be equally supported at two points symmetrical to the location parameter

α.

We put this design problem into a much more general framework. In section 2 of this article,

we generalize the result from Dai and Zhu (2002) to any information function in the sense of

Pukelsheim (1993) used as the criterion under consideration. We also extend these findings

to a broader class of possible link functions, which are commonly applied in practice. Section

3 contains the main results of this paper and deals with the problem of restricted design

spaces, which includes restrictions with respect to one as well as the two boundaries of the

design interval. Again, we derive locally optimal designs with respect to arbitrary optimality

criteria from the family of information functions. We also utilize some results of Pukelsheim and

Torsney (1991) to derive formulas for the weights of the optimal designs with respect to a broad

class of criteria, the so-called matrix means, among which we find the most commonly applied

optimality criteria such as the D-, A-, E- and the T -criterion. To show the practical relevance

of this approach, we apply our results in Section 4 towards the re-designing of the dose ranging

trial conducted at the Merck Research Laboratories (Zeng and Zhu, 1997). We determine the

above-mentioned locally compound optimal designs with respect to different restrictions on the

design interval as special cases of the results of sections 2-3. The proofs of our results, finally,

are deferred to an appendix. In this article, we are taking the Frequentists’ approach (Chernoff,

1953) and thus our designs are termed “locally optimal”. In the ensuing sections, we will omit

the word “locally” for simplicity. Furthermore, we will derive the designs analytically which

would yield the universally optimal designs (optimal among designs of any support points).
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2 Optimal designs on an unrestricted design space

In a dose-response experiment, suppose we have n subjects and a proportion of ωi subjects are

allocated to dose xi, i = 1, 2, . . . , k. The corresponding design is usually denoted by

ξ =

 x1 x2 · · · xk

ω1 ω2 · · · ωk

 .

Let π(x) represent the probability of success at a given dose level x, the Fisher information

matrix under the model π (x) = H (β (x − α)) is

M (ξ) =
k∑

i=1

nωih
2 (β (xi − α))

 β2 −β (xi − α)

−β (xi − α) (xi − α)2


where H is a given distribution function (assumed to be differentiable) and

h2(z) =
(H ′)2

H (1 − H)
(z). (1)

Note that the matrix M(ξ) depends on the parameters in the model but this is not reflected in

our notation for the sake of simplicity. For moderate sample sizes, the covariance of the max-

imum likelihood estimator for the parameter KT θ = KT (α, β)T is approximately proportional

to the matrix KT M− (ξ)K. We therefore consider design criteria of the form Φ (C (ξ)) with

the information matrix C(ξ) being given by

C (ξ) = (KT M−(ξ)K)−1 , (2)

where K ∈ R
2×s is a given matrix of rank s ≤ 2, M− denotes a generalized inverse of the

matrix M and it is assumed that the linear combinations KT θ are estimable by the design,

i.e. range(K) ⊂ range(M(ξ)). In this article, we will concentrate on a special 2 × 2 matrix K

defined by

K =

 √
λ 0

0
√

1 − λ

 (3)

for some value λ ∈ [0, 1], reflecting different emphasis on the precision of the estimation of the

respective parameters α and β. An optimal design maximizes an appropriate function of the

information matrix C(ξ), say Φ, which is called optimality criterion and there are numerous

optimality criteria to compare competing designs; see, e.g., Silvey (1980). In the present article,

unless not specified otherwise, the optimality criterion Φ is an information function in the sense

of Pukelsheim (1993), which maps the non-negative definite 2 × 2 information matrices onto

the non-negative real axis to make their different contents of information comparable. More

precisely, an information function features the properties of being positively homogeneous,

concave, non-negative, non-constant and upper semicontinuous. The most widely used criteria

are the well known A-, D- and E-optimality criteria defined by

Φ−1(ξ) =
(1

s
tr C−1

)−1
, Φ0(ξ) = (det C)1/s , Φ−∞(ξ) = λmin(C).
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A design ξ∗ is called Φ-optimal for estimating the vector of weighted parameters KT θ =

(
√

λα,
√

1 − λβ) if ξ∗ maximizes the function Φ(C(ξ)) for the matrix K defined in (3). If

the parameter λ takes the value 1/2 the weight matrix K is proportional to the identity matrix

and we use the notation Φ-optimal design for simplicity. This notation is in line with the usual

one since for λ = 1/2 we obtain the familiar Φ-optimal design problem for estimating the pa-

rameter vector (α, β)T with respect to the Fisher information M(ξ). The implementation of the

information matrix C(ξ) instead of M(ξ) is therefore a generalization of the usual approach.

We further note that the matrix C (ξ) is also proportional to the Fisher information matrix for

the parameter KT (τ1, τ2)
T in the linear regression model

y = φ1 (z) τ1 + φ2 (z) τ2 + η, (4)

where z = β (x − α), φ1 (z) = −βh (z), φ2 (z) = z/β · h (z), τ1 and τ2 are model parameters

and η is a normal distributed error with mean 0 and variance σ2. Thus, the Φ-optimal design

problem for estimating the weighted parameter vector (
√

λ α,
√

1 − λ β) in the binary response

model coincides with a Φ-optimal design problem for the linear model (4).

To fix ideas, we will give an example, which is of particular significance due to a further

important property. Let Φ be the average-variance or A-criterion, i.e. Φ(C) = (1
2
tr C−1)−1,

then it is easy to see that a design ξ∗ maximizing Φ(C(ξ)) minimizes the weighted average

λVar(α̂) + (1 − λ)Var(β̂) (5)

of the variances of the maximum likelihood estimators α̂, β̂ for the corresponding model pa-

rameters. Thus, the design ξ∗ maximizing Φ(C(ξ)) is a compound optimal design with respect

to the two objectives of precise estimation of both model parameters. From the preceding

discussion, we obtain that ξ∗ is at the same time a constrained optimal design in the sense that

it minimizes Var(β̂) subject to the constraint that Var(α̂) ≤ c, where c is some user-selected

constant.

Since the variances of α̂ and β̂ can be of very different scale the impact of one of these estimators

on the optimality criterion might outbalance the influence of the second estimator so that the

resulting optimal design is in fact almost the optimal design with respect to the estimation

of the more influential parameter. Several authors (e.g. Dette (1997)) therefore recommend

the use of standardized optimality criteria. For a criterion of the form (5) the corresponding

standardized version is given by

λ̃
Var(α̂)

vα(ξ∗α)
+ (1 − λ̃)

Var(β̂ )

vβ(ξ∗β)
(6)

where vα(ξ∗α) denotes the asymptotic variance (1, 0)M−(ξ∗α)(1, 0)T of α̂ evaluated at the optimal

design ξ∗α for the estimation of α, vβ(ξ∗β) denotes the analogous expression with respect to β,

and λ̃ ∈ [0, 1] is a preliminary weight chosen by the experimenter. Obviously, minimizing (6)

with respect to the design ξ is equivalent to minimizing (5) where a particular choice of the

weight λ in (5) is used, that is

λ =

λ̃
vα(ξ∗α)

λ̃
vα(ξ∗α)

+ 1−λ̃
vβ(ξ∗β)

=
λ̃vβ(ξ∗β)

λ̃vβ(ξ∗β) + (1 − λ̃)vα(ξ∗α)
, 1 − λ =

(1 − λ̃)vα(ξ∗α)

λ̃vβ(ξ∗β) + (1 − λ̃)vα(ξ∗α)
. (7)
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For optimality criteria with respect to an information matrix from the class defined by (2) and

(3), a standardized version can also be obtained by using this choice (7) of the weight λ.

The optimal designs ξ∗α and ξ∗β are already established in design literature for many different

choices of link functions and can for example be found in Ford, Torsney and Wu (1991) so

that the values of vα(ξ∗α) and vβ(ξ∗β) can easily be calculated by standard software such as

Mathematica or Matlab. It turns out that vα(ξ∗α) = ch/β
2 and vβ(ξ∗β) = dh β2 where the

constants ch and dh depend on the function h and thus on the underlying link function H . For

either very large or very small values of β we can therefore expect a large difference in scale of

the variances of α̂ and β̂ so that the use of the standardized criteria, i.e. the implementation

of a weight λ of the form (7), is strongly recommended.

For a general criterion, we can utilize the well-known general equivalence theorem for informa-

tion functions Φ to find conditions, which characterize Φ-optimal designs. For this purpose,

define

φ(z) = (φ1(z), φ2(z))T = (−β h(z), z/ β · h(z) )T

as the vector of regression functions in the linear model (4) where z ∈ Z and Z ⊂ R is the

appropriately chosen design interval. We also need the definition of the polar function of an

information function which in the present context is defined for a non-negative definite 2 × 2

matrix as

Φ∞(D) = inf
A
{tr (AD)}

where the infimum is taken over all 2 × 2 positive definite matrices; see Pukelsheim (1993).

The proof of the following theorem, which does not necessarily require the special form of the

matrix K in (3) can also be found in Pukelsheim (1993).

Theorem 1 Let ξ∗ denote a design with Fisher information matrix M = M(ξ∗), for which

KT θ is estimable with information matrix C = C(ξ∗) = (KT M−(ξ∗) K)−1. Then ξ∗ is Φ-

optimal for KT θ if and only if there exists a non-negative definite matrix D ∈ R
2×2 that solves

the polarity equation

Φ(C)Φ∞(D) = trace CD = 1 (8)

and there exists a generalized inverse G of M such that the normality inequality

φT (z)GKCDCKT GT φ(z) ≤ 1 (9)

is satisfied for all z ∈ Z. Moreover, there is equality in (9) for any support point of the design

ξ∗.

For the problem under consideration the above result simplifies substantially. The matrix K is

given by (3) and thus non-singular if λ ∈ (0, 1), which will be assumed throughout the following

discussion. Therefore KT θ is estimable by the design ξ∗ if and only if the matrix M(ξ∗) is non-

singular. This corresponds to intuition, because we are interested in the estimation of both

parameters of the binary response model. We therefore admit only designs with at least two
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different support points, thus dealing with only positive definite (invertible) matrices M(ξ∗)
and C(ξ∗). By these considerations, the normality inequality (9) from Theorem 1 reduces to

φT (z)K−1DK−1φ(z) ≤ 1 ∀ z ∈ Z. (10)

For a given information function Φ the solution D of the polar equation (8) is usually unique and

can be determined explicitly; see Pukelsheim (1993). Moreover, the structure of the equivalence

theorem is the same for all optimality criteria under consideration and this observation will be

used for analyzing the properties of Φ-optimal designs for estimating the vector of weighted

parameters KT θ = (
√

λα,
√

1 − λβ) in the binary response model. For this purpose, note that

the matrix K−1DK−1 does not depend on z and therefore (10) yields the inequality

az2 + bz + c ≤ h−2(z) ∀ z ∈ Z (11)

for some coefficients a, b, c depending on λ, β and the entries of the matrix K−1DK−1. Moreover,

there is equality in (11) for any support point of a Φ-optimal design ξ∗. In other words,

inequality (11) gives a necessary and sufficient condition for the Φ-optimality of the design ξ∗

for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ).

In order to derive bounds on the number of support points of the optimal designs in the binary

response model the following condition on the function h(z) and thus the link function is

assumed to be satisfied throughout this article:

Condition (I): Let g(z) = h−2(z). Suppose that the function g(z) is twice differentiable on

the entire real axis R and that the equation g′′(z) = c has at most two solutions for any real

constant c.

We are now ready to state the main result of this section, i.e. the features of the Φ-optimal

design ξ∗ for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ) on the

unrestricted design interval Z = R. The proof is given in the appendix.

Theorem 2 Assume that condition (I) is satisfied for the binary response model under consid-

eration.

(a) Any Φ-optimal design for estimating the vector of weighted model parameters KT θ =

(
√

λα,
√

1 − λβ) is supported at two points, which are uniquely determined.

(b) If, additionally, the function h(z) is symmetric and the information function Φ defined

on the set of non-negative definite 2 × 2 matrices satisfies

Φ

((
a

b

b

c

))
= Φ

((
a

−b

−b

c

))
(12)

for all non-negative definite matrices(
a

b

b

c

)
∈ R

2×2,

then there exists a symmetric Φ-optimal design on two points for estimating the vector

of weighted parameters KT θ = (
√

λα,
√

1 − λβ). If the information function Φ is even

strictly concave, the Φ-optimal design is unique.
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If the assumptions of part (b) in Theorem 2 are complied with, the maximization problem for

the determination of the Φ-optimal designs contains only one variable, say z∗0 , and the solution

can be easily obtained. The condition on the information function Φ is satisfied for most of the

common optimality criteria such as the well-known matrix means or Φp-criteria,

Φp(C) = (
1

2
trCp)1/p with p ∈ (−∞, 1], Φ−∞(ξ) = λmin(C) with p = −∞ (13)

defined as the p-mean of the eigenvalues of the positive definite matrix C; see Pukelsheim

(1993). The class of Φp-criteria includes for example the well-known D-, A-, E- and T -criterion

functions, which correspond to the values p = 0, p = −1, p = −∞ and p = 1, respectively.

The additional condition in (b) on the link function is met by the logit and the probit link. The

uniqueness of the Φ-optimal design applies whenever the information function Φ is a strictly

concave function on the set of non-negative definite matrices.

Condition (I) is satisfied by most of the commonly applied link functions, such as the logit

and the probit link. A more detailed overview on the behavior of link functions with respect

to condition (I) is displayed in Table 1. Note that condition (I) is not complied with by the

double exponential and the double reciprocal link functions, since the function g(z) = h−2(z)

is not differentiable in the origin z = 0. This coincides with the result of Ford, Torsney and

Wu (1992), who showed that the D-optimal designs for these two links are supported on three

points, whereas Φ- (and in particular D-) optimal designs for link functions satisfying condition

(I) have exactly two support points as shown in Theorem 2.

Table 1: Behavior of the function h(z) for several common link functions H(z) with respect to

condition (I) (s(z) = sign(z)).

link function H(z) h2(z) condition (I)

Double Exponential 1+s(z)
2

− s(z)
2

e−|z| 1
2e|z|−1

not met

Double Reciprocal 1+s(z)
2

− s(z)
2

(
1

1+|z|
)

1
(1+|z|)2(2|z|+1)

not met

Complementary Log-Log 1 − e−ez e2z

−1+eez met

Logit 1
(1+e−z)

ez

(1+ez)2
met

Probit Φ(z) φ2(z)
Φ(z)(1−Φ(z))

met

Skewed Logit (m > 0) 1
(1+e−z)m

m2

(1+ez)2(−1+(1+e−z)m)
met

The results of this paper apply to all four models satisfying Condition (I). The probit and

logit models are the most fundamental models in dose response studies. The logit model

closely resembles the probit model and both are symmetrical around the ED50. One can easily

envisage situations where the researcher would not want to impose the symmetry feature of the
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logit/probit link functions on their data (Stukel, 1988). The skewed logit model, also called

power logit model, was first proposed by Prentice in 1976. It generalizes the logit model by

adding an additional skew parameter in the form of the power of the logit function and has

found applications in the biomedical field as well as other scientific research areas (e.g. Gaudard

et al., 1993; Nagler, 1994; Hedayat et al., 1997; Wang and Hung,1997; Leuraud and Benichou

2001). The complementary log-log model is another asymmetrical extension of the logit/probit

model especially pertinent to the toxicity studies (Kuk, 2004) and design in the time domain

(Throne et al., 1995).

3 Optimal designs on restricted design spaces

To guarantee a certain level of drug efficacy due to the increasing ethics concerns, one must

impose a lower bound on the design interval. By the same coin, to avoid a severe side-effect or

drug toxicity, one would have to impose an upper bound on the design interval. We will first

present the left-restricted Φ-optimal designs for estimating the vector of weighted parameters

KT θ = (
√

λα,
√

1 − λβ) in the binary response model with the normalized design interval in

terms of z = β (x − α) being [A,∞), where 0 > A > z∗L, and z∗L denotes the lower design

point of the Φ-optimal design with the same λ on the unrestricted design interval Z = R. The

derivation of optimal designs in the right-restricted case where the design interval is (−∞, B]

with B < z∗U , z∗U denoting the upper design point, would follow the same lines and is thus

omitted (see also the discussion in Lemma 2). The results on one-side restricted Φ-optimal

designs will lead us to the more realistic scenario where both sides of the design interval are

bounded as is true with the Merck dose-ranging trial.

3.1 One-side restricted intervals

We show that the left-restricted Φ-optimal design on [A,∞) is a two-point design, and further-

more the lower design support point is always the left boundary point of the design interval.

Let g (z) = h−2 (z) as defined in (1), the following results hold as long as two conditions are

satisfied: Condition (I) which was already defined in the last section as well as

Condition (II): z · h (z) → 0 as z → ±∞.

It is easy to show that all link functions from Table 1 satisfy condition (II). Again, we can

use inequality (11) from the equivalence theorem to prove the following result on the number

of support points of a Φ-optimal design ξ∗A for estimating the vector of weighted parameters

KT θ = (
√

λα,
√

1 − λβ) on the design space [A,∞). Throughout this section, we assume

that condition (I) is satisfied and denote by z∗L and z∗U the lower and upper support point of

the unrestricted Φ-optimal design for estimating the vector of weighted parameters KT θ =

(
√

λα,
√

1 − λβ). Note that in the case z∗L ≥ A the Φ-optimal design on the unrestricted design

space is obviously also Φ-optimal on the restricted design space [A,∞). The following two

results consider the remaining case z∗L < A.
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Lemma 1 Let Φ be an arbitrary information function and assume that condition (I) is fulfilled.

If z∗L < A for a given boundary value A, then a Φ-optimal design ξ∗ for estimating the vector

of weighted parameters KT θ = (
√

λα,
√

1 − λβ) on the interval [A,∞) is supported on exactly

two different points.

The following theorem shows that in the case z∗L < A the point A is always a support point of

the Φ-optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ).

Theorem 3 For a given λ ∈ (0, 1), if the smaller support point of the Φ-optimal design for

estimating the vector KT θ = (
√

λα,
√

1 − λβ) on Z = R is not included in the interval [A,∞),

assume that condition (II) is satisfied. A Φ-optimal design for estimating the vector of weighted

parameters KT θ = (
√

λα,
√

1 − λβ) on the interval [A,∞) has two unique support points, one

of which is the boundary point A.

Theorem 3 shows that a Φ-optimal design for estimating the vector of weighted parameters

KT θ = (
√

λα,
√

1 − λβ) on the design space [A,∞) is always of the form

ξ∗A =

 A z

ω1 1 − ω1

 ,

where z denotes the upper support point of the design and ω1 is the weight corresponding to

the point A. A formula for the weight ω1 with respect to a broad class of design criteria Φ

is derived in paragraph 3.3, leaving only a univariate optimization problem in the variable z,

which can be solved by standard numerical methods. The proofs for Lemma 1 and Theorem 3

are given in the Appendix.

3.2 Two-side restricted intervals

The more realistic situation in dose response experiments is when there exist restrictions on

both the upper and the lower bound of the design interval. Furthermore, the restricted interval

is not necessarily symmetrical around the location parameter α, or 0 in terms of the normalized

dose level z = β (x − α). In the following, we assume the normalized design interval to be [A, B].

For a given λ ∈ (0, 1), we assume that for the upper support point for the corresponding left-

restricted Φ-optimal design on the design space [A,∞), say z∗U,A, and the smaller support point

for the right-restricted Φ-optimal design on the design (−∞, B], say z∗L,B, are not contained in

the design interval [A, B]. If one of these points is in the interval [A, B] the two-side restricted

Φ-optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ)

coincides with the corresponding Φ-optimal design for the one-side restricted design space. By

the equivalence theorem we have the following result. The proof is given in the Appendix.

Theorem 4 Assume that conditions (I) and (II) are satisfied and z∗L,B < A < B < z∗U,A.

The two-side restricted Φ-optimal design ξ∗A,B for estimating the vector of weighted parameters

10



KT θ = (
√

λα,
√

1 − λβ) on the design interval [A, B] has two support points, which are given

by the boundary points A and B. In particular, when the design interval is symmetrical, i.e.

A = −B, and the assumptions in part (b) of Theorem 2 are met, the design which allocates equal

weight to both boundary points is Φ-optimal for estimating the vector of weighted parameters

KT θ = (
√

λα,
√

1 − λβ).

3.3 A formula for the weights of optimal designs

In the cases considered in the two previous paragraphs, the optimal design problem reduces

to the determination of one support point with corresponding weight in the case of a one-side

restricted design space and to the determination of the weight at one point in the case of a

two-side restricted design space. In this section, we will consider the problem of determining the

optimal weight. For simplicity, we restrict ourselves to the important family of the Φp-criteria

defined by (13) with p ∈ [−∞, 1]. As we have pointed out previously, this class includes the

well-known D-, A-, E- and T -criterion corresponding to the values p = 0, p = −1, p = −∞
and p = 1, respectively, which are most important from a practical point of view. In the

preceding discussion, we have provided some tools for the determination of the support points

of a Φ-optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ)

on restricted and unrestricted design spaces. We will now derive formulas for the weights of

the optimal designs using the results of Pukelsheim and Torsney (1991). These authors gave

an explicit method for constructing the weights maximizing Φ(C(ξ)) if the support points of

the design ξ are given. For simplicity, we restrict ourselves to the case of a two-side restricted

interval [A, B]. The analogous results apply in the cases of unrestricted or one-side restricted

design spaces if A and B are replaced by the Φp-optimal support points in the formulas below.

In the case p ∈ (−∞, 1], it follows from the results of Pukelsheim and Torsney (1991) that the

weight vector ω = (ω1, ω2) of a Φp-optimal design is given by

ω1 =

√
L11∑2

i=1

√
Lii

and ω2 = 1 − ω1 (14)

where Lii, i = 1, 2 are the diagonal elements of the non-negative definite 2 × 2 matrix

L = V Cp+1V T .

The matrix V is defined by V = (XXT )−1XK with XT = (φ(A), φ(B)) ∈ R
2×2. For the given

matrix K defined by (3) the matrix V for a two-side restricted Φp-optimal design on the design

interval [A, B] supported at A and B has the form

V =

 B
√

λ
(B−A)βh(A)

A
√

λ
(A−B)βh(B)

β
√

1−λ
(B−A)h(A)

β
√

1−λ
(A−B)h(B)

 ,

which implies for the information matrix C = C(ξ) = (KT M−1(ξ)K)−1 of the design ξ with

masses ω1 and 1 − ω1 at the points A and B

C =

 B2λ
ω1(B−A)2β2h2(A)

+ A2λ
(1−ω1)(A−B)2β2h2(B)

B
√

1−λ
√

λ
ω1(B−A)2h2(A)

+ A
√

1−λ
√

λ
(1−ω1)(A−B)2h2(B)

B
√

1−λ
√

λ
ω1(B−A)2h2(A)

+ A
√

1−λ
√

λ
(1−ω1)(A−B)2h2(B)

β2(1−λ)
ω1(B−A)2h2(A)

+ β2(1−λ)
(1−ω1)(A−B)2h2(B)

−1

.
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The matrix Cp+1 for any criterion p ∈ (−∞, 1] results from the eigenvalues λi, i = 1, 2, and the

eigenvectors xi, i = 1, 2, with ‖ xi ‖= 1 of the matrix V T ∆−1
ω V as follows:

Cp+1 =

2∑
i=1

λ−p−1
i xix

T
i .

The weight ω1 can now be determined explicitly solving the nonlinear equation (14). The

direct weight formula for arbitrary values of p ∈ (−∞, 1] that can be derived from equation

(14) is somewhat lengthy and therefore not displayed in this article. However, it can be easily

implemented in standard software such as Mathematica or Matlab. For p = −∞, i.e. the E-

criterion, the Φ−∞-optimal weight ω1 corresponding to the support point A can be determined

by the formula

ω1 =
√

J11, (15)

where J11 denotes the first diagonal element of the matrix J . Similarly to the definition of the

matrix L from the case p ∈ (−∞, 1], J is given by

J = V CDCV T ,

where D is a solution of the polarity equation (8). From Pukelsheim (1993), we obtain that for

p = −∞ the polar matrix D is given by

D =


xxT

λmin(C)
λmin(C) is of multiplicity 1

γx1x
T
1 + (1 − γ)x2x

T
2

λmin(C)
λmin(C) is of multiplicity 2.

The expressions x, x1, x2 denote the norm 1 eigenvectors of the information matrix C corre-

sponding to its smallest eigenvalue λmin(C), and γ is a constant from the open unit interval

(0, 1). Due to the implicit case differentiation with respect to the polar matrix D, the imple-

mentation of formula (15) in standard software is somewhat more complex than for the case

p ∈ (−∞, 1] but still feasible.

Moreover, the formulas above can be used to derive the following symmetry property of a design

with Φp-optimal weights at two given points, say z1 and z2.

Lemma 2 If the function h is symmetric and the design ξ has Φp-optimal weights ω1, 1 − ω1

at the points z1, z2, then the Φp-optimal weights of a design supported on −z2,−z1 are given by

1 − ω1 and ω1, respectively.

This result reduces the design problem for the binary response model substantially because

optimal designs on a given design space can be obtained from the optimal designs on the

reflection of the design space at the origin. This observation is summarized in the following

corollary corresponding to the situations considered in Theorems 3 and 4.

12



Corollary 1 Let p ∈ [−∞, 1] and assume that the function h is symmetric.

(a) If the assumptions of Theorem 3 are satisfied and let ξ∗A = {A, z; ω1, 1 − ω1} denote a Φp-

optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ)

on the one-side restricted interval [A,∞), then the design ξ∗−A = {−z,−A; 1 − ω1, ω1} is

Φp-optimal for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ) on

the one-side restricted interval (−∞,−A].

(b) If the assumptions of Theorem 4 are satisfied and let ξ∗A,B = {A, B; ω1, 1 − ω1} denote a

Φp-optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ)

on the two-side restricted interval [A, B], then the design ξ∗−B,−A = {−B,−A; 1 − ω1, ω1}
is Φp-optimal for estimating the vector of weighted parameters KT θ = (

√
λα,

√
1 − λβ)

on the two-side restricted interval [−B,−A].

Corollary 1 is illustrated in Figure 1 where we display the behavior of the weight ω1 correspond-

ing to the smaller support point A as a function of the value of p ∈ (−∞, 1] in the optimality

criterion for the logit link function and various two-side restricted design spaces [A, B] and pa-

rameter values β and λ. Due to the factorization of the weights for the determinant criterion,

we always obtain the value ω1 = 0.5 for p = 0.

Figure 1: The Φp-optimal weight ω1 corresponding to the smaller support point A as a function

of the parameter p in the Φp-optimality criterion. Left panel: A = −0.4, B = 0.9, β = 2,

λ = 0.25 (solid line); A = −0.9, B = 0.4, β = 2, λ = 0.25 (dotted line). Right panel:

A = −0.8, B = 0.5, β = 2, λ = 0.75 (solid line); A = −0.5, B = 0.8, β = 2, λ = 0.75 (dotted

line).
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In the remaining part of this section, we discuss the important example of (weighted) A-

optimality (5), which was considered by Dai and Zhu (2002) in the case of an unrestricted

design space and corresponds to the particular choice p = −1 in the Φp-optimality criterion.

For the Φ−1-criterion, i.e. the average-variance or A-criterion, we obtain the following results.

The one-side restricted Φ−1-optimal design ξ∗A on [A,∞) is given by

ξ∗A =

 A z

ω1 1 − ω1

 .

13



The A-optimal design problem is now to find the pair of normalized design support point z and

the allocation proportion ω1 ∈ [0, 1] such that tr[C−1 (ξ)] is minimized. Solving equation (14)

with respect to ω1 yields for the weight corresponding to the support point A

ω1 =

[
1 +

h (A)

h (z)

√
(1 − λ)β2 + λA2/β2

(1 − λ) β2 + λz2/β2

]−1

. (16)

Plugging (16) in the criterion function tr[C−1 (ξ)], this equation becomes univariate and stan-

dard numerical methods can be applied to solve for the support point z.

In the two-side restricted case, we obtain for ω1 the corresponding expression with the unknown

support point z replaced by the upper boundary B.

ω1 =

[
1 +

h (A)

h (B)

√
(1 − λ)β2 + λA2/β2

(1 − λ)β2 + λB2/β2

]−1

In particular, when the design interval is symmetrical, that is A = −B, and the function h(z)

is also symmetrical, we have ω1 = 0.5, confirming the results with the symmetrically restricted

optimal designs.

If the standardized A-criterion defined in (6) is used for the determination of optimal designs

the formula for the weight ω1 can be expressed independently of the value of β, i.e.

ω1 =

[
1 +

h (A)

h (B)

√
(1 − λ̃)/dh + A2λ̃/ch

(1 − λ̃)/dh + B2λ̃/ch

]−1

where we used (7), the preliminary weights λ̃ and 1− λ̃ as well as the formulas vα(ξ∗α) = ch/β
2

and vβ(ξ∗β) = dh β2.

4 Merck Dose Ranging Trial Revisited

In this section, we reanalyze a data example and demonstrate the practical relevance of the

designs derived in this work. As a reasonable optimality criterion, we choose the average-

variance or A-criterion, which belongs to the class of Φp-criteria with p = −1, i.e. we maximize

the function Φ−1(C) = (1
2
tr C−1)−1 over the positive definite information matrices C = C(ξ) =

(KT M−1(ξ) K)−1, where the matrix K is defined by (3). As pointed out previously, by this

choice of optimality criterion, we obtain designs that would minimize the weighted average

variances λVar(α̂) + (1 − λ)Var(β̂) of the maximum likelihood estimators for the unknown

model parameters α and β. For simplicity, the optimal designs with respect to this criterion

will be denoted by compound optimal designs in the following. As described in the introduction,

the compound optimal designs are at the same time constrained optimal with respect to some

constraint on one of the particular variances above. (See Cook and Wong (1994) for a more

detailed discussion on the equivalence of compound and constrained optimal designs).

From the 6-week pilot study done before the Merck dose-ranging trial, the response rate at

the placebo was 35% and the response rate at the high dose (dosage 50) was 65%. The logit
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model was found to be a suitable model and the maximum likelihood estimates of the model

parameters are α̂ ≈ 25 and β̂ ≈ 0.025. Since the value of β̂, which will be assumed the

true value of β in the derivation of the optimal designs, is very small, i.e. β2 differs from

1/β2 considerably, we felt the necessity to use the standardized criterion. Based on the above

estimates, we found the locally slope optimal design to be a two point symmetrical design with

the two dose levels being −71 and 121. We derived unrestricted compound optimal designs

for estimating the two model parameters α and β under the logit model. For each choice of

preliminary weight λ̃, the compound optimal design is equally supported at two dose levels

symmetrical to α. Selected unrestricted compound optimal designs are presented in Table 2.

Using the dose-percentile relationship x = α + β−1 ln [π/ (1 − π)] and plugging in the above

maximum likelihood estimates, we found that the same negative lower dose and large higher

dose pattern persists in the compound optimal designs for the Merck dose-ranging (Table 3).

To avoid the negative dose levels, we restricted the design interval to [0,∞) in terms of the orig-

inal dosages. This translates to a normalized dose range of [−0.625,∞). The smaller support

points of the corresponding unrestricted compound optimal designs (Table 3) are not included

in this interval. Selected left-restricted compound optimal designs, in terms of the normalized

as well as the original design support points and the corresponding allocation proportions are

given in Table 4.

As the right support points from the left-restricted compound optimal designs appear to be

high or very high (Table 4), we felt it is necessary to restrict the design interval at both ends,

and thus the interval [0, 60] in the original dose scale. The ensuing designs are supported on

the two ending points with the corresponding design allocation proportions shown in Table 5.

Merck started their dose ranging trial on that new rheumatoid arthritis drug using a safe

but sub-optimal design scheme before we could finish our derivation of the restricted interval

compound optimal designs. We were assured, however, of future considerations, at least as

the ‘gold standard’, for the upcoming dose ranging trials. In addition to estimating the model

parameters of the underlying dose response curve (Kalish, 1990; Meier et al., 1993; Zeng and

Zhu, 1997; Zhu and Wong, 2000), there is also a great need to estimate other percentiles besides

the median effective dose (α) (Flournoy, 1993; Rosenberger and Grill, 1997; Mats et al, 1997;

Zhu and Wong, 2001). For example, the low percentiles are of interest in toxicity studies such as

in virtually safe dose extrapolation problems, and the high percentiles are of interest in efficacy

studies. We are currently deriving the locally compound optimal designs for estimating a set of

percentiles in a dose response experiment for the same class of underlying dose response curves

on restricted and unrestricted design intervals.
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5 Appendix: Proofs

5.1 Proof of Theorem 2

The proof of Theorem 2 is divided into two lemmata, from which the assertion of the theorem

becomes obvious. The first lemma shows that a Φ-optimal design ξ∗ for estimating the vector

of weighted parameters in a binary response model will always be a two point design. The

second lemma deals with the symmetry of a Φ-optimal design with respect to the origin z = 0.

Lemma 3 Assume condition (I) is satisfied. Then any Φ-optimal design for estimating the

vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ) is supported on exactly two points.

Proof of Lemma 3: Suppose that the Φ-optimal design has at least three support points

z1 < z2 < z3, i.e. we have f(zi) = g(zi), i = 1, 2, 3, where f(z) denotes the left hand side

of the inequality (11). By the mean value theorem we obtain that there exist z′1, z
′
3 such that

z1 < z′1 < z2 < z′3 < z3 and f ′(z′i) = g′(z′i), i = 1, 3. Since f(z) ≤ g(z) holds for all z ∈ R,

the points zi, i = 1, 2, 3, are all tangent points, i.e. f ′(zi) = g′(zi). Applying the mean

value theorem again to the functions f ′(z), g′(z), we receive points z′′i , i = 1, . . . , 4 such that

z1 < z′′1 < z′1 < z′′2 < z2 < z′′3 < z′3 < z′′4 < z3 and f ′′(z′′i ) = g′′(z′′i ), i = 1, . . . , 4. Since

f ′′(z) = 2a for all z ∈ R, we have g′′(z′′i ) = 2a, i = 1, . . . , 4, which contradicts with condition

(I). �

Lemma 4 Assume that the function h is symmetric and that Φ is an information function

defined on the set of non-negative 2 × 2 matrices which satisfies (12). If there exists a Φ-

optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ) on

Z = R, then there also exists a symmetric Φ-optimal design for this problem.

Proof of Lemma 4: Assume

ξ =

{
z1

ω1

z2

ω2

· · ·
· · ·

zk

ωk

}
is a Φ-optimal design for estimating the vector of weighted parameters KT θ = (

√
λα,

√
1 − λβ),

define ξ− as the reflection of ξ at the origin and consider

1

2
ξ +

1

2
ξ− =

{−zk
ωk

2

· · ·
· · ·

−z1
ω1

2

z1
ω1

2

· · ·
· · ·

zk
ωk

2

}
.

From the assumptions of the lemma we can conclude that Φ(C(ξ)) = Φ(C(ξ−)). It then follows

from the concavity of the information function Φ that

Φ(C(ξ)) =
1

2
Φ(C(ξ)) +

1

2
Φ(C(ξ−))

≤ Φ(
1

2
C(ξ) +

1

2
C(ξ−)) = Φ(C(

1

2
ξ +

1

2
ξ−))

Thus the design 1
2
ξ+ 1

2
ξ− is at least as good as the original design ξ and is therefore a symmetric

Φ-optimal design for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ). �
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Proof of Theorem 2: By Lemma 3 and 4 it remains to prove the uniqueness of the support

of the Φ-optimal design.

(a) Let ξ1, ξ2 be two Φ-optimal designs for estimating the vector of weighted parameters KT θ =

(
√

λα,
√

1 − λβ). From Lemma 3, we conclude that they are both supported on two points. The

concavity of the criterion function Φ implies that the design ξ3 = 1
2
ξ1 + 1

2
ξ2 is also Φ-optimal

for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ). If the support of

the design ξ1 does not coincide with the support of ξ2, the design ξ3 is supported on more than

two points, which contradicts the assertion of Lemma 3.

(b) Let ξ be a Φ-optimal design for estimating the vector of weighted parameters KT θ =

(
√

λα,
√

1 − λβ). The assumptions regarding the information function Φ imply that ξ− is also

Φ-optimal for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ). From

the concavity of the criterion function we derive that ξs = 1
2
ξ + 1

2
ξ− is also Φ-optimal. If the

support points of ξ are not equal to the support of ξ−, i.e. the support points of ξ are not

symmetric about the origin, this is a contradiction to the assertion of Lemma 3. Furthermore,

if the criterion function Φ is strictly concave, it follows that ξs = ξ and thus the uniqueness of

the Φ-optimal design. �

5.2 Proofs of Theorem 3 and Lemma 1

Proof of Lemma 1: Suppose that the Φ-optimal design ξ∗ for estimating the vector of

weighted parameters KT θ = (
√

λα,
√

1 − λβ) has at least three support points, i.e. there are

points A ≤ z1 < z2 < z3 < ∞ such that f(zi) = g(zi), i = 1, 2, 3, where f(z) denotes the

polynomial az2 + bz + c on the left hand side of inequality (11). The mean value theorem

implies that there exist points z′1, z
′
3 such that z1 < z′1 < z2 < z′3 < z3 and f ′(z′i) = g′(z′i),

i = 1, 3. Moreover, since f(z) ≤ g(z) for z ∈ [A,∞), z2 and z3 are both tangent points, i.e.

f ′(zi) = g′(zi), i = 2, 3. Applying the mean value theorem again, there exists z′′i such that

z′1 < z′′1 < z2 < z′′2 < z′3 < z′′3 < z3 and f ′′(z′′i ) = g′′(z′′i ), i = 1, 2, 3. Since f ′′(z) = 2a, we

have g′′(z′′i ) = 2a, i = 1, 2, 3, which contradicts with condition (I). Therefore the Φ-optimal

design ξ∗ for estimating the vector of weighted parameters KT θ = (
√

λα,
√

1 − λβ) has at most

two support points. From the discussion below Theorem 3, we obtain that ξ∗ has at least two

support points, hence ξ∗ is supported on exactly two points. �

Proof of Theorem 3 : For each λ ∈ (0, 1), first we notice that the Φ-optimal design ξ∗A
for estimating the vector of weighted parameters KT θ = (

√
λα,

√
1 − λβ) on the restricted

design space [A,∞) satisfies condition (11) on the interval [A,∞) but not on the whole real

axis. Otherwise, ξ∗A would also be optimal in the unrestricted situation. Since we assume

that the smaller support point for the unrestricted Φ-optimal design is not included in [A,∞),

we have two designs with different support points which are both optimal in the unrestricted

sense. This contradicts the uniqueness of the support of the unrestricted Φ-optimal design. The

above reasoning implies that there exists some z′ < A such that f(z′)h2(z′) > 1. Moreover, from

condition (II), it follows that there exists a point z′′ < z′ such that for z ≤ z′′ the inequality

f(z)h2(z) ≤ 1 holds again. Therefore we will encounter two intersection points z0, z1 between
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the functions f(z) and h−2(z) on the interval (−∞, A]. Assume that z0 < z1 < A and denote by

z2, z3 the support points of the design ξ∗A, where A < z2 < z3, i.e. f(zi) = g(zi) for i = 0, 1, 2, 3.

By applying the mean value theorem to f and g and bearing in mind that z2 and z3 are tangent

points, we obtain that there exist points z′1, z0 < z′1 < z1 < A and z′2, z2 < z′2 < z3 with

f ′(z′i) = g′(z′i), i = 1, 2 and f ′(zi) = g′(zi), i = 2, 3. A further application of the mean value

theorem yields that there exist points z′′i , i = 1, 2, 3, z′1 < z′′1 < z2 < z′′2 < z′2 < z′′3 < z3 where

f ′′(z′′i ) = g′′(z′′i ), i = 1, 2, 3, which leads to a contradiction with the fact that the equation

g′′(z) = 2a can have at most two different solutions. Therefore, the smaller support point for

the one-side restricted Φ-optimal design must be the left boundary point of the design interval.

�

5.3 Proofs of Theorem 4 and Lemma 2

Proof of Theorem 4 : By the same line of argument as in the proof of Theorem 3, we can show

that there exist points z′, z′′, z′ > B, z′′ < A such that f ′(z′) = g′(z′) and f ′(z′′) = g′(z′′). Next,

we will show that a Φ-optimal design ξ∗A,B for estimating the vector of weighted parameters

KT θ = (
√

λα,
√

1 − λβ) on the two-side restricted interval [A, B] has only two support points

by contradiction. Assume that z1 < z2 < z3 are support points for ξ∗A,B. The mean value

theorem implies that there exist points z′1 and z′2 such that z1 < z′1 < z2 < z′2 < z3 and

f ′(z′i) = g′(z′i), i = 1, 2. Applying the mean value theorem to f ′ and g′ again, we found three

different values z′′1 , z
′′
2 , z

′′
3 such that f ′′(z′′i ) = g′′(z′′i ), i = 1, 2, 3. This leads to a contradiction

to the fact that the equation g′′(z) = 2a can have at most two different solutions. Thus the

Φ-optimal design ξ∗A,B has only two support points, which are given by the two boundary points

A and B of the design interval [A, B]. If A = −B and the conditions of part (b) of Theorem

2 are fulfilled, the optimality of the equally weighted design on −B, B follows along the same

lines as in the proof of part (b) of Theorem 2. �

Proof of Lemma 2 : The two designs under consideration are given by

ξ∗A,B =

 A B

ω1 1 − ω1

 and ξ∗−B,−A =

 −B −A

1 − ω1 ω1

 .

In order to determine the optimal weights at these points, we have to solve the system of

equations in (14) for both designs. Now a straightforward but tedious calculation shows that

both designs yield the same system of equations in (14). �

References

Chaloner, K. and Larntz, K. (1989). Optimal Bayesian Design Applied to Logistic Regression Experiments.

Journal of Statistical Planning and Inference 21, 191-208.

Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist. 24, 586-602.

Cook, R.D. and Wong, W.K. (1994). On the equivalence of constrained and compound optimal designs.

Journal of the American Statistical Association 89, 687-692.

18



Dai, Z. and Zhu, W. (2002). Locally compound optimal designs. Department of Applied Mathematics and

Statistics, State University of New York at Stony Brook, Technical Report 18.

Dette, H. (1997). Designing experiments with respect to standardized optimality criteria. Journal of the Royal

Statistical Society, Ser. B, 59 (1), 97-110.

Flournoy, N. (1993). A clinical experiment in bone marrow transplantation: Estimating a percentage point of

a quantal response curve. In: Case Studies in Bayesian Statistics, Editors: C. Gatsonis, J. S. Hodges, R.

E. Kass, and N. D. Singpurwalla. Springer-Verlag, 324-335.

Ford, I., Torsney, B. and Wu, C.F.J. (1992). The use of a canonical form in the construction of locally optimal

designs for non-linear problems. Journal of the Royal Statistical Society 54, 569-583.

Gart, J.J., Krewski, D, Lee, P.N., Tarone, R.E. and Wahrendorf, J. (1986). Statistical methods in cancer

research. Volume III–The design and analysis of long-term animal experiments. IARC Sci Publ. 79,

1-219.

Gaudard, M.A., Karson, M.J., Linder, E. and Tse, S.K. (1993). Efficient designs for estimation in the power

logistic quantal response model. Statistica Sinica 3, 233-243.

Haines, L., Perevozskaya, I. and Rosenberger, W. (2003). Bayesian optimal designs for phase I clinical trials.

Biometrics 59, 591-600.

Hedayat, A. S., Yan, B. and Pezzuto, J. M. (1997). Modeling and identifying optimum designs for fitting

dose-resonse curves based on raw optical density data. Journal of the American Statistician Association

92, 1132-1140.

Kalish, L.A. (1990). Efficient design for estimation of median lethal dose and quantal dose-response curves.

Biometrics 46, 737-748.

Kuk, A.Y.C. (2004). A litter-based approach to risk assessment in developmental toxicity studies via a power

family of completely monotone functions. Journal of the Royal Statistical Society Series C 53(2), 369

-402.

Lee, C.M.S. (1987). Constrained optimal designs for regression models. Comm. Statist. Part A - Theory and

Methods 16, 765-783.

Leuraud, K. and Benichou, J. (2001). A comparison of several methods to test for the existence of a monotonic

dose-response relationship in clinical and epidemiological studies. Statistics in Medicine 20(22), 3335-

3351.

Mats, V.A., Rosenberger, W.F. and Flournoy, N. (1997). Multiple-Objective Designs in Dose-Response Ex-

periments. Institute of Mathematical Statistics Lecture Notes –Monograph Series: New Developments

and Applications in Experimental Designs, 50-61.

Meier, K.L., Bailer, A.J. and Portier, C.J.(1993). A measure of tumorigenic potency incorporating dose-

response shape. Biometrics 49, 917-926.

19



Nagler, J. (1994). Scobit: an alternative estimator to logit and probit. American Journal of Political Science

38, 230-255.

Prentice, R.L. (1976). A generalization of the probit and logit methods for dose response curves. Biometrics

32, 761-768.

Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York.

Pukelsheim, F. and Torsney, B. (1991). Optimal weights for experimental designs on linearly independent

support points. Annals of Statistics 19 (3), 1614-1625.

Rosenberger, W.F. and Grill, S.E. (1997). A sequential design for psychophysical experiments: An application

to estimating timing of sensory events. Statistics in Medicine 16, 2245-2260.

Silvey, S.D. (1980). Optimal Design. Chapman and Hall, London.

Stukel, T. A. (1988) Generalized logistic models. Journal of the American Statistical Association 83, 426-431.

Throne, J.E., Weaver, D.K., Chew, V. and Baker, J.E. (1995). Probit analysis of correlated data: multiple

observations over time at one concentration. Journal of Economic Entomology 88(5), 1510-1512.

Wang, S.J. and Hung, H.M. (1997). Large sample tests for binary outcomes in fixed-dose combination drug

studies. Biometrics 53(2), 498-503.

Wu, C.F.J. (1988). Optimal design for percentile estimation of a quantal response curve. In: Optimal Design

and Analysis of Experiments, Editors: J. Dodge, V.V. Fedorov and H.P. Wynn. North Hollander,

Amsterdam, 213-233.

Zeng, Q. and Zhu, W. (1997). Optimal designs with multiple objectives for rheumatoid arthritis dose-rangeing

study using ACR responder index. Merck Technical Report 54.

Zhu, W. and Wong, W.K. (1998). Multiple-Objective Designs in Dose-Response Experiments. Institute

of Mathematical Statistics Lecture Notes –Monograph Series: New Developments and Applications in

Experimental Designs, 73-82.

Zhu, W. and Wong, W.K. (2000). Multiple-Objective Designs in Dose-Response Experiments. Journal of

Biopharmaceutical Statistics 10, 1-14.

Zhu, W. and Wong, W.K. (2001). Bayesian Optimal Designs for Estimating a Set of Symmetrical Quantiles.

Statistics in Medicine 20, 123-137.

20



Table 2: Selected unrestricted compound optimal designs for the Merck dose ranging trial in

terms of percentiles

λ̃ .1 .2 .3 .4 .5 .6 .7 .8 .9

x1 ED11.4 ED13.6 ED15.5 ED17.2 ED18.9 ED20.7 ED22.7 ED25.2 ED28.8

x2 ED88.6 ED86.4 ED84.5 ED82.8 ED81.1 ED79.3 ED77.3 ED74.8 ED71.2

Table 3: Selected unrestricted compound optimal designs for the Merck dose ranging trial in

terms of support points

λ̃ .1 .2 .3 .4 .5 .6 .7 .8 .9

x1 -56.94 -48.94 -42.96 -37.90 -33.26 -28.73 -23.99 -18.56 -11.23

x2 106.94 98.94 92.96 87.90 83.26 78.73 73.99 68.56 61.23

Table 4: Selected left-restricted compound optimal designs in terms of support points x1, x2

and normalized support points z1, z2

λ̃ z1 z2 x1 x2 ω1 ω2

.1 -0.625 2.606 0 129.25 0.385 0.615

.2 -0.625 2.478 0 124.10 0.428 0.572

.3 -0.625 2.360 0 119.39 0.464 0.536

.4 -0.625 2.242 0 114.70 0.496 0.504

.5 -0.625 2.118 0 109.71 0.526 0.474

.6 -0.625 1.977 0 104.07 0.553 0.447

.7 -0.625 1.805 0 97.21 0.578 0.422

.8 -0.625 1.575 0 88.02 0.597 0.403

.9 -0.625 1.213 0 73.51 0.598 0.402

Table 5: Selected 2-side unsymmetrically-restricted compound optimal designs (supported at

the boundary values x1 = 0, x2 = 60 (z1 = −0.625, z2 = 0.875))

λ̃ .1 .2 .3 .4 .5 .6 .7 .8 .9

ω1 0.492 0.495 0.499 0.503 0.509 0.516 0.524 0.535 0.550

ω2 0.508 0.505 0.501 0.497 0.491 0.484 0.476 0.465 0.450
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