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Abstract

A monotone estimate of the conditional variance function in a heteroscedastic, nonpara-
metric regression model is proposed. The method is based on the application of a kernel
density estimate to an unconstrained estimate of the variance function and yields an esti-
mate of the inverse variance function. The final monotone estimate of the variance function
is obtained by an inversion of this function. The method is applicable to a broad class of
nonparametric estimates of the conditional variance and particularly attractive to users of
conventional kernel methods, because it does not require constrained optimization techniques.
The approach is also illustrated by means of a simulation study.
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1 Introduction

In regression analysis the assumption of homoscedasticity is often not satisfied and the efficiency

of the statistical analysis can be improved substantially by taking heteroscedasticity into account.

The classical example is the weighted least squares method, which requires estimates of the vari-

ance function. Other examples, where the estimation of the conditional variance is important

include the choice of a local bandwidth in nonparametric regression [see Müller and Stadtmüller
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(1987), Fan and Gijbels (1995)], the construction of confidence intervals for the conditional ex-

pectation [see Carroll (1987), Fan and Gijbels (1996)] and quality control [see Box (1988)]. In

contrast to the problem of estimating the conditional mean much less effort has been spent on

the construction of nonparametric variance function estimators. Carroll (1982) developed kernel

estimators in the context of linear regression, Müller and Stadtmüller (1987) and Hall and Carroll

(1989) analyzed kernel-type estimators without assuming a parametric form of the mean function,

and Müller and Stadtmüller (1993) studied a broad class of estimators of the conditional variance,

which are representable as quadratic forms. Local polynomial variance function estimators have

been proposed by Fan and Gijbels (1995) and Ruppert, Wand, Holst and Hössjer (1997), where

the latter authors also consider the problem of estimating derivatives of the variance function, a

topic with applications in engineering. More recently the estimation of the conditional variance

was considered by Fan and Yao (1998) in a time series context and by Yu and Jones (2004), who

proposed a localized normal likelihood approach.

In many applications monotone estimates of the regression and variance function are required

because of physical considerations. Such examples typically appear in growth curve models or

in models, where the conditional variance is a function of the conditional mean, which depends

monotonically on an explanatory variable. In contrast to the problem of estimating a monotone

conditional expectation [see e.g. Brunk (1955), Mukerjee (1988), Mammen (1991), Hall and

Huang (2001) among many others], the problem of estimating a monotone variance function

has not been considered so far in the literature. In the present paper we propose a simple and

efficient method for the estimation of a monotone conditional variance, which is based on the

evaluation of a kernel density estimate from some (not necessarily monotone) estimated values

of the variance function. This idea was introduced by Dette, Neumeyer and Pilz (2003) in the

context of estimating a monotone regression function and will be adapted to the specific problem

of statistical inference for the conditional variance. The method produces an estimate of the

inverse of the monotone variance function and is applicable to any of the unconstrained variance

function estimators mentioned in the previous paragraph.

In Section 2 we introduce some general notation and explain the basic idea of monotonizing a

function by kernel density estimation. Because most work on unconstrained variance estima-

tion suggests smoothing squared residuals from a nonparametric fit or pseudo-residuals by kernel

smoothing we mainly restrict ourselves to this type of variance function estimators, but the re-

sults of the paper remain valid for other estimation methods. In Section 3 we prove asymptotic

normality of the new estimate and show that it is first order asymptotically equivalent to the

unconstrained variance function estimate. We also mention the corresponding statements for the

local polynomial estimators of the conditional variance introduced by Fan and Gijbels (1995) and

Ruppert, Wand, Holst and Hössjer (1997). For the sake of brevity we restrict ourselves to the case

of a nonparametric regression model with a fixed design and independent errors, but extensions

to more general models (random design, time series) are briefly mentioned in Section 3.3. Finally,
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in Section 4 a small simulation study is presented which illustrates the finite sample properties of

the new monotone variance function estimates, while some of the more technical arguments are

deferred to the appendix in Section 5.

2 Preliminaries: monotonizing by kernel density estima-

tion

Consider the common nonparametric regression model

Yi,n = m(xi,n) +
√

s(xi,n)εi,n,(2.1)

where 0 ≤ x1,n < x2,n < . . . < xn,n = 1 are fixed design points satisfying
∫ xi,n

0

f(t)dt =
i

n
, i = 1, . . . , n(2.2)

for a positive design density f : [0, 1] → R [see Sacks and Ylvisaker (1970)], m : [0, 1] → R denotes

the regression and s : [0, 1] → R is a positive variance function. The errors ε1,n, . . . , εn,n are

assumed to be independent identically distributed with mean E[εi,n] = 0, variance Var(εi,n) = 1

and fourth moment E[ε4
i,n] = m4(xi,n), where m4 : [0, 1] → R

+ is a smooth function. For the sake

of a simple notation we omit the index n, whenever it is clear from the context, i.e. we use the

notation Yi, xi, εi instead of Yi,n, xi,n, εi,n in such cases. We assume that the design density f and

the variance function s are two times continuously differentiable and that the regression function

m satisfies certain smoothness conditions which will be specified below. Moreover, the variance

function is assumed to be strictly monotonic and we are interested in an estimate of this function,

which also satisfies this restriction.

In order to fix ideas let s denote an arbitrary strictly increasing function on the interval [0, 1],

then the inverse of s can be represented as

s−1(t) =

∫ 1

0

I{s(x) ≤ t}dx.(2.3)

Note that this function is not necessarily smooth, but smoothing can easily be accomplished by

considering the function

s−1(t, hd) =
1

hd

∫ 1

0

∫ t

−∞
Kd

(s(x) − u

hd

)
dudx,(2.4)

where hd is a bandwidth satisfying hd → 0 with increasing sample size and Kd is a two times

continuously differentiable, symmetric kernel with compact support, say [−1, 1]. Note that for

hd → 0 we have

1

hd

∫ 1

0

∫ t

−∞
Kd

(s(x) − u

hd

)
dudx =

∫ 1

0

I{s(x) ≤ t}dx + o(1)(2.5)
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and that for a positive kernel Kd the function s−1(t, hd) is always increasing, independently whether

the original function s has this property, because

∂

∂t
s−1(t, hd) =

1

hd

∫ 1

0

Kd

(s(x) − t

hd

)
dx ≥ 0.

For more details discussing the role of the inverse of s−1(t, hd) as a monotone approximation of

the function s we refer to Section 2 in Dette, Neumeyer and Pilz (2003).

In the present context we will use this concept to obtain monotone estimates of the variance

function. For the sake of transparency we restrict ourselves to the problem of estimating an

increasing variance function, the corresponding case of a decreasing variance is briefly mentioned

in Remark 2.1. Observing the discussion in the previous paragraph we only need an unconstrained

estimate of the variance function, and for this purpose we will use

ŝ(x) =

∑
i Kr

(
x−xi

hr

)
∆2

i∑
i Kr

(
x−xi

hr

) ,(2.6)

where Kr and hr denote a further kernel and bandwidth, respectively. We assume that the kernel

Kr is symmetric and has also compact support contained in the interval [−1, 1]. In (2.6) the

quantities ∆i will denote residuals from a nonparametric fit [see e.g. Hall and Marron (1990)] or

pseudo residuals [see e.g. Rice (1984) or Gasser, Sroka and Jennen-Steinmetz (1986)]. For the

sake of brevity we concentrate on the Nadaraya-Watson estimate based on smoothing squared

residuals, but other types of estimators could be considered as well [see Remark 3.3 for some

examples]. Estimators of the form (2.6) have been considered by several authors, including Müller

and Stadtmüller (1987, 1993), who mainly discussed pseudo residuals, Hall and Carroll (1989)

and Akritas and van Keilegom (2001), who proposed to use residuals from a nonparametric fit.

Different smoothing techniques in the context of estimating the conditional variance have been

proposed by Ruppert, Wand, Host and Hössjer (1997), Fan and Yao (1998) and Yu and Jones

(2004).

Following our general motivation for constructing an increasing variance function estimate we

propose the statistic

ŝ−1
I (t) =

1

Nhd

N∑
i=1

∫ t

−∞
Kd

( ŝ( i
N

) − u

hd

)
du(2.7)

as an estimate of s−1. The required monotone increasing estimate of the conditional variance is now

obtained by a simple inversion of this function and will be denoted by ŝI throughout this paper.

The properties of this estimate depend on the particular method used for the unconstrained vari-

ance function estimate ŝ, but we prove below that in all important cases the monotone increasing

estimate ŝI is asymptotically normal distributed and first order equivalent to the corresponding

unconstrained estimate. Note that the integral in (2.4) has been replaced by a simple quadrature

formula with equidistant nodes. Moreover, the estimate ŝI can be considered as a density estimate
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based on the “data” {( i
N

, ŝ( i
N

))| i = 1, . . . , N} and the number N used in this density estimator

does not necessarily coincide with the sample size n used for the calculation of the unconstrained

estimate. The indices “r” and “d” of the kernel functions Kr and Kd correspond to the phrase

“regression” and “density”, because we combine a regression with a density estimate to define

the estimator in (2.7). In the following we will discuss the properties of the new estimate for two

different types of residuals ∆i separately.

Remark 2.1. If the variance function s is supposed to be strictly decreasing the estimate can

easily be modified as

ŝ−1
A (t) :=

1

Nhd

N∑
i=1

∫ ∞

t

Kd

( ŝ( i
N

) − u

hd

)
du(2.8)

and the antitonic estimate is obtained by the inversion of this function.

3 Monotone variance function in action

3.1 Monotone variance function estimation with pseudo residuals

Following Hall, Kay and Titterington (1990) we define pseudo residuals by

∆i = ∆i,n =
r∑

j=0

djYi+j,(3.1)

where the quantities d0, . . . , dr are given weights satisfying

r∑
j=0

dj = 0,

r∑
j=0

d2
j = 1.(3.2)

In this case the preliminary estimator of the variance function is defined by

ŝ(x) =

∑n−r
i=1 K

(
x−xi

hr

)
∆2

i∑n−r
i=1 K

(
x−xi

hr

) .(3.3)

Two special choices of pseudo residuals are very popular and have been considered by Rice (1984)

[r = 1, d0 = −d1 = 1/
√

2] and Gasser, Sroka and Jennen-Steinmetz (1986) [r = 2, d0 = d2 =

1/
√

6, d1 = −2/
√

6], while some general properties of variance estimates based on pseudo residuals

are discussed in Dette, Munk and Wagner (1998) in the case of a homoscedastic regression model.

Throughout this paragraph we assume that the regression function is Lipschitz continuous of order

γ > 1
4
, which allows us to replace the quantities ∆i in (3.1) by their unobservable counterparts

∆ε
i = ∆ε

i,n =

r∑
j=0

dj

√
s(xi+j)εi+j(3.4)
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with sufficiently accuracy [see the proofs in Section 5.1 of the Appendix]. The main properties

of isotone variance function estimators using pseudo residuals are summarized in the following

theorem, for which we require some assumptions regarding the bandwidths hd, hr and the number

N used in the definition of the statistic ŝ−1
I , that is

hr → 0 , hd → 0,(3.5)

nhd → ∞ , nhr → ∞(3.6)

lim
hd→0,hr→0

hr/hd = ∞(3.7)

nh5
r = O(1) , n = O(N),(3.8)
1

nhrh2
d

= o(1).(3.9)

Theorem 3.1. Assume that the regression function m in the nonparametric regression model

(2.1) is Lipschitz continuous of order γ > 1/4 and that the assumptions stated at the beginning

of Section 2 and in (3.5) - (3.9) are satisfied. Let ŝI denote the isotone estimate of the variance

function s obtained as the inverse of the statistic (2.7) with the statistic (3.3) as preliminary

estimate, then it follows that for every t ∈ (0, 1) with s′(t) > 0

√
nhr

(
ŝI(t) − s(t) − Γ(hd, hr, t)

) D⇒ N (0, β2(t)),(3.10)

where the asymptotic bias and variance are given by

Γ(hd, hr, t) = κ2(Kd)
s′′(t)

(s′(t))2
h2

d + κ2(Kr)
(s′′f + 2s′f ′

f

)
(t)h2

r ,(3.11)

β2(t) =
s2(t){m4(t) − 1 + δr}

f(t)

∫ 1

−1

K2
r (u)du,(3.12)

respectively, for a given kernel K the constant κ2(K) is defined as

κ2(K) =
1

2

∫ 1

−1

v2K(v)dv,(3.13)

and the quantitiy δr is given by

δr =
r∑

k=1

(
r−k∑
j=0

djdj+k)
2 (r ≥ 1).(3.14)

Remark 3.2. Note that the dominating term in the representation (3.11) for the bias is given by

Γ(hd, hr, t) = κ2(Kr)
(s′′f + 2s′f ′

f

)
(t)h2

r + o(h2
r),(3.15)
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because hd = o(hr) by assumption (3.7). It was observed by Dette, Neumeyer and Pilz (2003)

in the context of estimating a monotone regression function that the choice of the bandwidth hd

in the density step is less critical compared to the choice of the bandwidth hr in the regression

step, and the same fact is true for the problem of estimating the conditional variance. Based on

an extensive numerical study we recommend to choose hd as hd = hα
r for some α ≥ 1.5 and the

approximation (3.15) is well justified.

Remark 3.3. It follows from the proof of Theorem 3.1 that the choice of a different smoothing

procedure in (2.6) does not change the asymptotic variance of the resulting monotone estimate of

the variance function, but its asymptotic bias. For example, if a local linear estimate [see Fan and

Gijbels (1996)] is applied to the squared pseudo residuals (3.1), then the resulting estimate ŝI is

asymptotically normal distributed, that is

√
nhr

(
ŝI(t) − s(t) − Γloc(hd, hr, t)

) D⇒ N (0, β2(t)),(3.16)

where the asymptotic variance is given by (3.12) and the bias is defined by

Γloc(hd, hr, t) = κ2(Kd)
s′′(t)

(s′(t))2
h2

d + κ2(Kr)s
′′(t)h2

r = κ2(Kr)s
′′(t)h2

r + o(hr).(3.17)

Other estimates for the regression step can be treated similarly. For example, if the local log-

linear estimator proposed by Yu and Jones (2004) is used as preliminary unconstrained estimate

of the conditional variance, the isotonized estimate ŝI has still asymptotic variance β2(t)/nhr,

asymptotic bias is given by

ΓY J(hd, hr, t) = κ2(Kd)
s′′(t)

(s′(t))2
h2

d + κ2(Kr)
(
s′′(x) − (s′(x))2

s(x)

)
h2

r + o(h2
r)

and the appropriately standardized version of ŝI is asymptotically normal distributed.

Remark 3.4. For the different estimates of the variance function considered in Theorem 3.1 and

Remark 3.3 it follows from the results of Müller and Stadtmüller (1993), Yu and Jones (2004)

and the proof of Theorem 3.1 that the isotone estimates of the variance function are first order

asymptotically equivalent to the unconstrained estimates.

Remark 3.5. Note that the asymptotic variance in Theorem 3.1 depends on the constant δr

defined in (3.14). For the estimator of Rice (1984) we have r = 1, d0 = −d1 = 1/
√

2, which yields

δ1 = d4
0 = 1/4 and

β2
R(t) =

s2(t)

f(t)

(
m4(t) − 3

4

)∫ 1

−1

K2
r (u)du.

A different weighting scheme was suggested by Gasser, Sroka and Jennen-Steinmetz (1986), who

used for a uniform design (d0, d1, d2) = 1√
6
(1,−2, 1) in the context of a nonparametric homoscedas-

tic regression model, and argued that this sequence yields a smaller bias in the approximation of
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the pseudo residuals by the quantities defined in (3.4). For this choice we obtain in Theorem 3.1

(r = 2) δ2 = 17/36,

β2
G(t) =

s2(t)

f(t)

(
m4(t) − 19

36

)∫ 1

−1

K2
r (u)du.(3.18)

Alternatively one could try to minimize the asymptotic variance (3.12) by an appropriate choice

of the weights d0, . . . , dr. Hall, Kay and Titterington (1990) determined for a fixed order r optimal

weights dj such that the quantity δr in (3.14) becomes minimal [see Table 1 of their paper]. For

this choice we have
r−k∑
j=0

djdj+k = − 1

2r
,

the minimal value of δr is obtained as δ opt
r = 1/4r and the resulting asymptotic variance is given

by

β2
opt(t) =

s2(t)

f(t)

(
m4(t) − 4r − 1

4r

)∫ 1

−1

K2
r (t)dt.(3.19)

Consequently the asymptotic variance in Theorem 3.1 can be decreased by using an optimal

difference sequence in the sense of Hall, Kay and Titterington (1990) and an increasing order r.

However, some care is appropriate in these asymptotic considerations. For realistic sample sizes

it is also necessary to obtain a sufficiently small bias of the pseudo residuals ∆i and optimal

sequences usually produce a small variance but a large bias. The general choice of the weights in

the definition of the pseudo residuals was carefully discussed by Dette, Munk and Wagner (1998)

in the context of homoscedastic nonparametric regression. These authors give some data driven

guidelines for choosing an appropriate order r and the corresponding weights d0, . . . , dr. In general

difference sequences for r = 1 or r = 2 will be sufficient and the improvement in efficiency by

using a larger order is negligible in most cases [compare also with the results of our simulation

study in Section 4].

3.2 Monotone variance function estimation with nonparametric resid-

uals

Following Hall and Marron (1990) we consider residuals

ε̂i = Yi − m̂(xi)(3.20)

where

m̂(x) =

∑n
i=1 K

(
x−xi

h

)
Yi∑n

i=1 K
(

x−xi

h

)(3.21)
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is the Nadaraya-Watson estimate of the regression function. The unconstrained estimate of the

conditional variance is now given by

ŝ(x) =

∑n
i=1 Kr

(
x−xi

hr

)
ε̂2

i∑n
i=1 Kr

(
x−xi

hr

) .(3.22)

Note that different bandwidths are used for the estimation of the regression and variance function

and that the kernels used in (3.21) and (3.22) do not necessarily coincide. The following result

is an analogue of Theorem 3.1 for the case, where residuals from a nonparametric fit are used in

the construction of a monotone estimate of the conditional variance. For its proof we require the

following assumption regarding the bandwidth h in the Nadraya-Watson estimate (3.21)

h → 0, nh → ∞, hr = O(h).(3.23)

Theorem 3.6. Assume that the regression function m in the nonparametric regression model

(2.1) is two times continuously differentiable and that the assumptions stated at the beginning of

Section 2, (3.5) - (3.9) and (3.23) are satisfied. Let ŝI denote the isotone estimate of the variance

function s obtained as the inverse of the statistic (2.7) with the statistic (3.22) as preliminary

estimate, then it follows that for every t ∈ (0, 1) with s′(t) > 0

√
nhr

(
ŝI(t) − s(t) − Γ(hd, hr, t)

) D⇒ N (0, δ2(t)),(3.24)

where the asymptotic bias is defined by (3.11) and the asymptotic variance is given by

δ2(t) =
s2(t){m4(t) − 1}

f(t)

∫ 1

−1

K2
r (u)du.(3.25)

Note that the asymptotic bias of the monotone estimates based on (3.3) and (3.22) coincide,

while there is a difference in the asymptotic variance. The asymptotic variance in (3.25) can be

considered as a limit (r → ∞) of the asymptotic variance of the monotone estimate using pseudo

residuals with an optimal difference sequence. We note, however, that for realistic sample sizes

these asymptotic differences are rarely observable.

Remark 3.7. A different choice of the estimator m̂ (for example a local polynomial or the Gasser-

Müller estimator) does not change the asymptotic result in Theorem 3.6. On the other hand, if

a different estimator is used for the smoothing of the squared residuals in (3.22) the asymptotic

bias has to be modified appropriately [compare with Remark 3.3]. Moreover, it can be shown by

similar arguments as given in Fan and Yao (1998) that the estimates ŝI considered in Theorem

3.6 and its corresponding preliminary estimate ŝ defined in (3.22) are first order asymptotically

equivalent.
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3.3 Extension to other models

The results discussed so far remain valid (subject to an appropriate modification of the constants)

for other nonparametric regression models. As an illustration consider the stochastic regression

model

Yi = m(Xi) +
√

s(Xi)εi,(3.26)

where (Xi, Yi)i∈Z is a strictly stationary two dimensional process with E[Yi | Xi = x] = m(x),

Var(Yi | Xi = x) = s(x) �= 0, E[ε4
i | Xi = x] = m4(x). Fan and Yao (1998) proposed s̃(x) = α̂ as

estimate of the conditional variance, where

(α̂, β̂) = argmin
α,β

n∑
i=1

{
r̂i − α − β(Xi − x)

}2

Kr

(Xi − x

hr

)

is the local linear estimate based on the nonparametric residuals r̂1, . . . , r̂n. These quantities are

defined by r̂j = â, where

(â, b̂) = argmin
a,b

n∑
i=1

{
Yi − a − b(Xi − Xj)

}2

K
(Xi − Xj

h

)

is the local linear estimate of the regression function (and its derivative) at the point Xj . If

s̃I denotes the isotonization of the conditional variance estimate obtained as the inverse of the

statistic (2.7) with ŝ = s̃, the assumptions of Theorem 3.6 and the conditions 1-5 in Appendix 1

of Fan and Yao (1998) are satisfied, then the statistic

√
nhr

{
s̃I(x) − s(x) − Γloc(hd, hr, x)

}

is asymptotically normal with mean 0 and variance δ2(x) defined in (3.25), where the quantity

Γloc(hd, hr, x) is given by (3.17) and f is the marginal density of X. Again the monotonized estimate

is first order asymptotically equivalent to the unconstrained estimate [see Fan and Yao (1998),

Theorem 1].

4 Finite sample properties

In this section we illustrate the finite sample properties of the monotone estimates of the condi-

tional variance by means of a small simulation study. We begin with a comparison of different

estimates based on pseudo residuals [see Section 3.1] and then compare the best estimates in this

class with the monotone variance estimates based on nonparametric residuals [see Section 3.2].

For the sake of brevity we restrict our study to two regression models, that is

Yi = sin(6xi) +

√
3

2
x2

i εi; i = 1, . . . , n(4.1)

Yi = xi +
√

xiεi; i = 1, . . . , n(4.2)
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where ε1, . . . , εn i.i.d. ∼ N (0, 1) and the sample size is n = 100. As a design a uniform design

(f(x) = 1) is considered, while the Epanechnikov kernel is used for the kernels Kd and Kr in the

density and regression estimate. The bandwidth hd for the density step is always given by hd = h3
r .

We applied 2000 simulation runs to calculate the squared bias, variance and mean squared error

in the interval [0, 1].

4.1 Finite sample properties of difference based estimates

In order to avoid boundary effects we use a local linear estimate based on the pseudo residuals (3.1)

in the regression step [for a definition of this estimate see also Section 3.3], where different orders

r and different sequences of weights are investigated. The choice of the bandwidth is important

for the performance of the estimate and we use the following simple plug-in-rule

ĥr =
(Â

n

)1/5

,(4.3)

where

Â =
1

n − r

n−r∑
i=1

(∆2
i − ∆̄2)2(4.4)

is the empirical variance of the pseudo residuals ∆2
1, . . . , ∆

2
n (Ā2 = 1

n−r

∑n−r
i=1 ∆2

i ). Because Â is a

consistent estimate of

1

n

n∑
i=1

Var(∆2
i ) ≈

∫ 1

0

s2(x)
{

2 + (m4(x) − 3)

r∑
�=0

d4
�

}
f(x)dx

the bandwidth (4.3) is (asymptotically) proportional to the global (with respect to the integrated

mean squared error criterion) optimal bandwidth, if a local linear estimate is applied to the pseudo

residuals ∆2
1, . . . , ∆

2
n. Smoothing parameters proportional to locally optimal bandwidths could be

obtained similarly, but the bandwidth (4.3) yields reasonable results in all cases considered in our

study.

Our first example investigates the optimal difference sequences introduced by Hall, Kay and

Titterington (1990), which minimize the asymptotic variance of the monotone estimate ŝI . In

Figure 4.1 we show the curves of the mean squared error, squared bias and variance with an

optimal difference sequence of order r = 1, 2, 3. Variance estimates based on pseudo residuals with

an optimal difference of larger order show a very similar picture and are therefore not depicted.
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Figure 4.1. Simulated mean squared error, squared bias and variance of the monotone variance

estimate (2.7) based on pseudo residuals with an optimal difference sequence proposed by Hall,

Kay and Titterington (1990); r = 1 : solid line; r = 2 : dashed line; r = 3 : dotted line. The upper

panel corresponds to model (4.1) and the lower panel to model (4.2).

We observe that for model (4.1) all estimates behave very similary with respect to the variance

criterion (with slight advantage for difference sequences of order r = 2, 3) and that the variance

of the estimate ŝI is strictly increasing. This reflects the asymptotic representation in Theorem

3.1, which shows that the variance must be proportional to

(nhr)
−1 · (2 +

1

4r
) · 3

2
· t2 · 0.6

(recall that f(x) ≡ 1 and that for the Epanechnikov kernel
∫

K2(u)du = 3/5). On the other

hand there are advantages with respect to the squared bias criterion for the estimates using

pseudo residuals with a lower order (r = 1, 2), while the monotone variance estimate based on

pseudo residuals with an optimal difference sequence of order 3 has a substantial larger bias. A

similar phenomenon was observed by Dette, Munk and Wagner (1998) in the context of variance

estimation in a homoscedastic nonparametric regression model. These differences are also reflected
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in the mean squared error curves, where the estimates with pseudo residuals of order two and three

have the best performance.

Note that for the regression model (4.2) the second derivative of the variance function vanishes,

which results in a substantially smaller bias in Theorem 3.1. As a consequence the variance has a

stronger impact on the mean squared error and we expect that variance estimates based on optimal

difference sequences of larger order have a better performance. These asymptotic properties are

clearly reflected in the squared bias and variance curve (see the lower panel of Figure 4.1). The

variance estimates ŝI based on pseudo residuals with an optimal difference sequence of order two

and three have the best performance with respect to the mean squared error criterion and the

differences between the three estimates are now mainly caused by the variance.
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Figure 4.2. Simulated mean squared error, squared bias and variance of the monotone variance

estimate (2.7) based on pseudo residuals with a difference sequence of the form (4.5); r = 1 : solid

line; r = 2 : dashed line; r = 3 : dotted line. The upper panel corresponds to model (4.1) and the

lower panel to model (4.2).
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Figure 4.2 shows the corresponding curves for model (4.1) and (4.2) if the difference sequence

di = (−1)i

(
r
i

)
(
2r
r

)1/2
r = 1, 2, 3(4.5)

is used for the construction of the pseudo residuals ∆i in (3.1). As pointed out by Dette, Munk

and Wagner (1998) these difference sequences reduce the bias at the cost of a larger variance.

Note that for r = 1 and r = 2 this choice yields the difference sequences proposed by Rice (1984)

and Gasser, Sroka and Jennen-Steinmetz (1986), respectively. For order r = 3 this effect is clearly

visible in model (4.1), where we observe a slightly smaller curve for the squared bias (compare

also the upper panels in Figure 4.1 and 4.2), but a larger variance. For both models the difference

sequence with r = 1 has the best performance in the class (4.5) and the decrease with respect to

the bias does not compensate the increase in variance.

In model (4.1) the estimate with a difference sequence of order r = 1 produces the smallest mean

squared error curve among the estimates using difference sequences of the form (4.5) [see the

upper panel Figure 4.2], but the estimate with an optimal difference sequence of order r = 2 has a

similar mean squared error [see Figure 4.1 and note that for r = 1 the optimal difference sequence

and the difference sequence of the form (4.5) coincide]. In model (4.2) the best optimal difference

sequence (obtained by using the order r = 2 or r = 3) yields a substantially smaller mean squared

error than the best difference sequence from the class (4.5).

Variance estimates based on pseudo residuals with optimal difference sequences produce a sub-

stantially smaller variance and mean squared error compared to the estimators using the difference

sequences of the form (4.5). Because other simulation results (which are not depicted here for the

sake of brevity) show a similar picture we recommend the use of the optimal difference sequences

if pseudo residuals are used in the construction of the monotone estimate ŝI of the conditional

variance. We now compare these estimates with the monotone variance estimates based on non-

parametric residuals introduced in Section 2.2.

4.2 Pseudo or nonparametric residuals?

For the construction of the nonparametric residuals ε̂i = Yi − m̂(xi) we use a local linear estimate

m̂ with bandwidth

h =
( σ̂2

n

)1/5

,(4.6)

where σ̂2 = 1
2(n−1)

∑n
i=2(Yi−Yi−1)

2 is the nonparametric estimate of Rice (1984) for the integrated

variance. Again a local linear estimate based on the nonparametric residuals ε̂2
1, . . . , ε̂

2
n is used in

the preliminary regression step. The bandwidth hr was chosen according to the plug-in rule (4.3)

where the pseudo residuals ∆2
i in (4.4) are now replaced by the nonparametric residuals ε̂2

i .
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Figure 4.3. Simulated mean squared error, squared bias and variance of the monotone variance

estimate (2.7) based on pseudo residuals with an optimal difference sequence order r = 1 (solid

line), with an optimal difference sequence of order r = 2 (dashed line) and based on nonparametric

residuals (dotted line). The upper panel corresponds to model (4.1) and the lower panel to model

(4.2).

Throughout this section monotone variance estimators obtained from the nonparametric residuals

ε̂2
1, . . . , ε̂

2
n will be denoted by ŝN

I , while the estimates obtained from pseudo residuals with the best

optimal variance sequence (r = 2) and the best sequence of the form (4.5) (r = 1) are denoted

by ŝD2
I and ŝD1

I , respectively. Note that in the case r = 1 the optimal difference sequence and the

difference sequence of the form (4.5) coincide. For both models (4.1) and (4.2) we observe in Figure

4.3 that the estimate ŝN
I has the smallest variance followed by ŝD2

I and ŝD1
I . This corresponds to

asymptotic theory, which shows that the asymptotic variance of the statistics ŝN
I , ŝD1

I , ŝD2
I is given

by
6

5

s2(t)

nhr
,

51

40

s2(t)

nhr
,

27

20

s2(t)

nhr
,

respectively. However, Figure 4.3 also shows that there are differences in the behaviour with

respect to the squared bias criterion. In both models the estimate ŝN
I produces the largest bias
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(but this is negligible in the model (4.2)). The estimate ŝD2
I has a smaller (squared) bias in both

models than ŝD1
I . In model (4.1) the estimates based on pseudo residuals have a smaller mean

squared error than ŝN
I over a broad range of the interval [0, 1]. Only at the right boundary of

the interval [0, 1] the smaller variances of ŝN
I compensate its larger bias, such that it becomes the

best estimate in our comparison. On the other hand in model (4.2) the bias can be neglected and

the mean squared error is dominated by the variance. As a consequence the monotone variance

estimate ŝN
I based on nonparametric residuals yields the smallest mean squared error for the

complete interval [0, 1].

5 Proofs

5.1 Proof of Theorem 3.1.

The proof is performed in several steps. At first we calculate the asymptotic bias and variance of

the statistic ŝ−1
I defined in (2.7), secondly, we establish asymptotic normality of this estimate and

finally we use this result to obtain the assertion of Theorem 3.1. For the sake of transparency we

assume that N = n; the general case is obtained by exactly the same arguments with an additional

amount of notation.

For the calculation of the asymptotic bias we first note that it follows from Lemma 2.1 in Dette,

Neumeyer and Pilz (2003)

ŝ−1
I (t) = s−1(t) + κ2(Kd)h

2
d(s

−1)′′(t) + ∆n(t) + o(h2
d) + O

( 1

nhd

)
,(5.1)

where the term ∆n(t) is given by

∆n(t) =
1

nhd

n∑
i=1

∫ t

−∞

{
Kd

( ŝ( i
n
) − u

hd

)
− Kd

(s( i
n
) − u

hd

)}
du = ∆(1)

n (t) +
1

2
∆(2)

n (t),(5.2)

and the quantities ∆
(j)
n (t) (j = 1, 2) in this decomposition are defined by

∆(1)
n (t) =

−1

nhd

n∑
i=1

Kd

(s( i
n
) − t

hd

){
ŝ(

i

n
) − s(

i

n
)
}

,(5.3)

∆(2)
n (t) =

1

nh3
d

n∑
i=1

∫ t

−∞
K ′′

d

(ξi − u

hd

){
ŝ(

i

n
) − s(

i

n
)
}2

du,(5.4)

with |ξi − s( i
n
)| < |ŝ( i

n
)− s( i

n
)| (i = 1, . . . , n). With an appropriate modification at the boundary

it follows by similar arguments as in Müller and Stadtmüller (1993) for the second term

∆(2)
n (t) = O

( 1

hd

(
h4

r +
1

nhr

))
.(5.5)
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Replacing the density estimate in the denominator of ŝ( i
n
) by nhrf( i

n
) we obtain for the first term

of the decomposition (5.2)

∆(1)
n (t) =

(
∆(1.1)

n (t) + ∆(1.2)
n (t) + ∆(1.3)

n (t)
)
(1 + op(1)),(5.6)

with

∆(1.1)
n (t) =

−1

n2hdhr

n∑
i,j=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)(∆ε
j)

2 − s( i
n
)

f( i
n
)

,(5.7)

∆(1.2)
n (t) =

−1

n2hdhr

n∑
i,j=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)(∆m
j )2

f( i
n
)

,(5.8)

∆(1.3)
n (t) =

−2

n2hdhr

n∑
i,j=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)∆m
j ∆ε

j

f( i
n
)

,(5.9)

where for j = 1, . . . , n − r the quantities ∆ε
j , ∆

m
j are defined by

∆m
j =

r∑
�=0

d�m(xj+�)(5.10)

∆ε
j =

r∑
�=0

d�

√
s(xj+�)εj+�,(5.11)

respectively, and we use the notation ∆ε
j = ∆m

j = 0, whenever j ∈ {n − r + 1, . . . , n}. A straight-

forward calculation and the assumption of Lipschitz continuity for the regression function show

that

∆m
j =

r∑
�=0

d�m(xj+�) =

r−1∑
�=0

( �∑
k=0

dk

)(
m(xj+�) − m(xj+�+1)

)
= O

( 1

nγ

)

(uniformly with respect to j = 1, . . . , n), and it follows that

∆(1.2)
n (t) = O

( 1

n2γ

)
.(5.12)

Next, consider the first term in (5.7), which has expectation

E[∆(1.1)
n (t)] =

−1

n2hdhr

∑
i,j

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)
r∑

�=0

d2
�s(xj+�) − s( i

n
)

f( i
n
)

(5.13)

= − 1

hrhd

∫ 1

0

∫ 1

0

Kd

(s(x) − t

hd

)
Kr

(y − x

hr

)
f(y)

s(y)− s(x)

f(x)
dydx · (1 + o(1))

= −h2
rκ2(Kr)

∫ 1

0

1

hd

Kd

(s(x) − t

hd

){
s′′(x) +

2s′(x)f ′(x)

f(x)

}
dx · (1 + o(1))

= −h2
rκ2(Kr)

(s′′f + 2s′f ′

fs′

)
(s−1(t)) · (1 + o(1)),
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The remaining third term has obviously expectation E[∆
(1.3)
n (t)] = 0, while the second moment

can be estimated similarly as in the previous paragraph, that is

E[(∆(1.3)
n (t))2] =

4

n4h2
dh

2
r

∑
i,i′,j,j′

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)

×Kd

(s( i′
n
) − t

hd

)
Kr

(xj′ − i′
n

hr

)∆m
j ∆m

j′ E[∆ε
j∆

ε
j′ ]

f( i
n
)f( i′

n
)

(5.14)

= O
( 1

n1+2γhr

)
,

where we used the fact that ∆ε
i and ∆ε

j are uncorrelated, whenever |i− j| > r. Therefore Markov’s

inequality yields

∆(1.3)
n (t) = Op

( 1

n1/2+γh
1/2
r

)
= op

( 1√
nhr

)
,(5.15)

and a combination with (5.1), (5.2), (5.5), (5.13), (5.15) shows that

√
nhr

{
ŝ−1

I (t) − s−1(t) − κ2(Kd)h
2
d(s

−1)′′(t) + h2
rκ2(Kr)

(s′′f + 2s′f
fs′

)
(s−1(t))

}
,(5.16)

= Zn + op(1),

where the random variable Zn is defined as

Zn =
−1

n3/2hd

√
hr

n∑
i,j=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)(∆ε
j)

2 − E[(∆ε
j)

2]

f( i
n
)

(5.17)

For the variance of Zn we obtain

Var(Zn) =
1

n3h2
dhr

∑
i,i′,j,j′

Kd

(s( i
n
) − t

hd

)
Kd

(s( i′
n
) − t

hd

)
Kr

(xj − i
n

hr

)
Kr

(xj′ − i′
n

hr

) Lj,j′

f( i
n
)f( i′

n
)

=
(1 + o(1))

n3h2
dhr

∑
i,i′,j

Kd

(s( i
n
) − t

hd

)
Kd

(s( i′
n
) − t

hd

)
Kr

(xj − i
n

hr

)
Kr

(xj − i′
n

hr

) r∑
k=−r

Lj,j+k

f( i
n
)f( i′

n
)
,(5.18)

where the quantities Lj,j′ are defined by

Lj,j′ = E[(∆ε
j)

2(∆ε
j′)

2] − E[(∆ε
j)

2]E[(∆ε
j′)

2].(5.19)

We now calculate these expectations separately, that is

r∑
k=−r

E[(∆ε
j)

2]E[(∆ε
j+k)

2] =

r∑
k=−r

( r∑
�=0

d2
�s(xj+�)

)( r∑
�′=0

d2
�′s(xj+k+�′)

)
(5.20)

= (2r + 1)s2(xj)(1 + o(1)),

uniformly with respect to j = 1, . . . , n, where we used the convention s(xi) = 0, whenever i �∈
{1, . . . , n}. The investigation of the first term in (5.19) is more difficult, but a straightforward
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calculation gives

r∑
k=−r

E[(∆ε
j)

2(∆ε
j+k)

2] =
r∑

�=0

d4
�s

2(xj+�)m4(xj+�) + 3
r∑

�,�′=0
� �=�′

d2
�d

2
�′s(xj+�)s(xj+�′)

+ 2
r∑

k=1

r∑
�,�′,p,p′=0

d�d�′dpdp′

√
s(xj+�)s(xj+�′)s(xj+k+p)s(xj+k+p′)

×E[εj+�εj+�′εj+k+p′εj+k+p]

= s2(xj)

{
(m4(xj) − 3)

r∑
�=0

d4
� + 3 + 2m4(xj)

r∑
k=1

r−k∑
�=0

d2
�d

2
�+k

+ 2
r∑

k=1

( r∑
�,s=0
� �=s+k

d2
�d

2
s + 2

r∑
�,s=0
� �=s

d�d�+kdsds+k

)}
(1 + o(1))

= s2(xj)

{
(m4(xj) − 3)

( r∑
�=0

d4
� + 2

r∑
k=1

r−k∑
�=0

d2
�d

2
�+k

)
+ 3

+ 2

r∑
k=1

([ r∑
�=0

d2
�

]2

+ 2
[r−k∑

�=0

d�d�+k

]2)}
(1 + o(1))

= s2(xj)

{
m4(xj) + 2r + 4

r∑
k=1

[r−k∑
�=0

d�d�+k

]2
}

(1 + o(1)),(5.21)

uniformly with respect to j = 1, . . . , n. Combining (5.18) - (5.21) and observing the definition of

δr in (3.14) we thus obtain

Var(Zn) =
(1 + o(1))

n3h2
dhr

n∑
i,i′,j=1

Kd

(s( i
n
) − t

hd

)
Kd

(s( i′
n
) − t

hd

)
(5.22)

× Kr

(xj − i
n

hr

)
Kr

(xj − i′
n

hr

)(m4(xj) − 1 + δr)s
2(xj)

f( i
n
)f( i′

n
)

=
1

h2
dhr

∫ 1

0

Kd

(s(z) − t

hd

)∫ 1

0

Kd

(s(y) − t

hd

)

×
∫ 1

0

s2(x)(m4(x) − 1 + δr)

f(y)f(z)
Kr

(x − y

hr

)
Kr

(x − z

hr

)
f(x)dxdydz · (1 + o(1))

=
s2(s−1(t))(m4(s

−1(t)) − 1 + δr)

(s′(s−1(t))2f(s−1(t))

∫ ∫ ∫
Kd(w)Kd(v)Kr(u)

×Kr

(s−1(t + hdv) − s−1(t + hdw)

hr

+ u
)
dudvdw · (1 + o(1))

=
t2[m4(s

−1(t)) − 1 + δr]

(s′(s−1(t))2f(s−1(t))

∫ 1

−1

K2
r (u)du · (1 + o(1)).

A similar calculation and an application of Orey’s (1958) central limit theorem for arrays of m-
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dependent random variables finally shows that Zn is asymptotically normal distributed, that is

Zn
D−→ N (0, ξ2(t)),(5.23)

where the asymptotic variance ξ2(t) is defined by

ξ2(t) =
t2{m4(s

−1(t)) − 1 + δr}
(s′(s−1(t))2f(s−1(t))

∫ 1

−1

K2
r (u)du,

and from (5.16) we have

√
nhr

{
ŝ−1

I (t) − s−1(t) − κ2(Kd)h
2
d(s

−1)′′(t) + h2
rκ2(Kr)

(s′′f + 2s′f ′

fs′

)
(s−1(t))

}
(5.24)

D−→ N (0, ξ2(t)).

The final assertion regarding the asymptotic normality of the estiamte ŝI is now obtained by

similar arguments as presented in the proof of Theorem 3.2 in Dette, Neumeyer and Pilz (2003),

and for the sake of self-consistency we indicate the main steps in this derivation. By a second

order Taylor expansion we obtain [see Dette, Neumeyer and Pilz (2003), Lemma A.1]

ŝI(t) − s(t) = −(ŝ−1
I − s−1)

(s−1)′
(s(t)) + op

( 1√
nhr

)
,

which yields

√
nhr

{
ŝI(t) − s(t) − Γ(hd, hr, t)

}

= −
√

nhr

{(ŝ−1
I − s−1)

(s−1)′
(s(t)) + Γ(hd, hr, t)

}
+ op(1)

= −
√

nhrs
′(t)

{
(ŝ−1

I − s−1) ◦ s(t) + κ2(Kd)
s′′(t)

(s′(t))3
h2

d + κ2(Kr)
(s′′f + 2s′f

fs′

)
(t)h2

r

}
D−→ N (0, (s′(t))2ξ2(s(t))),

where we used (5.24) and the fact that s′′/(s′)3 = −(s−1)′′. Finally, a straightforward calculation

shows that

(s′(t))2ξ2(s(t)) =
s2(t){m4(t) − 1 + δr}

f(t)

∫ 1

−1

K2
r (u)du = β2(t),

where β2(t) is the asymptotic variance defined in (3.12).

�

5.2 Proof of Theorem 3.6.

The proof of Theorem 3.6 is performed by similar arguments as the proof of Theorem 3.1 and

for this reason we will only indicate the main differences. First we note that the arguments

given at the beginning of the proof of Theorem 3.1 remain valid. This follows by some standard
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calculations using the differentiability of the regression function and some basic properties of the

Nadaraya-Watson estimate. Therefore we obtain

√
nhr

{
ŝ−1

I (t) − s−1(t) − κ2(Kd)h
2
d(s

−1)′′(t) + h2
rκ2(Kr)

(s′′f + 2s′f
fs′

)
(s−1(t))

}
(5.25)

= Wn + op(1),

where the statistic Wn is defined by

Wn =
−1

n3/2hd

√
hr

n∑
i,j=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

) ε̃2
j − E[ε̃2

j ]

f( i
n
)

,(5.26)

the quantities ε̃j are given by

ε̃j =
√

s(xj)εj −
n∑

�=1

wj�

√
s(x�)ε� =

n∑
�=1

wj�(
√

s(xj)εj −
√

s(x�)ε�),(5.27)

and

wj� =
K

(
x�−xj

h

)
∑n

q=1 K
(

xq−xj

h

)(5.28)

denote the weights of the Nadaraya-Watson estimate. In the following we will make use of the

estimate

Wn = Vn + op(1),(5.29)

where the statistic Vn is defined by

Vn =
−1

n3/2hd

√
hr

n∑
i,j=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)s(xj)(ε
2
j − 1)

f( i
n
)

.(5.30)

With this representation it now follows by a similar calculation as given in the proof of Theorem

3.1 that

Var(Vn) =
(1 + o(1))

h2
dhr

∫ ∫ ∫
Kd

(s(x1) − t

hd

)
Kd

(s(x2) − t

hd

)
(5.31)

×Kr

(x3 − x1

hr

)
Kr

(x3 − x2

hr

)f(x3)s
2(x3)(m4(x3) − 1)

f(x1)f(x2)
dx1dx2dx3

=
t2(m4(s

−1(t)) − 1)

f(s−1(t))(s′(s−1(t))2

∫
K2

r (u)du · (1 + o(1)) ,

and a straightforward application of Ljapunoff’s Theorem yields

Vn
D⇒ N (0, δ̃2(t))(5.32)

where the asymptotic variance δ̃2(t) is defined as

δ̃2(t) =
t2{m4(s

−1(t)) − 1}
(s′(s−1(t))2f(s−1(t))

∫
K2

r (u)du.
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The assertion of Theorem 3.6 now follows by exactly the same arguments as given at the end of

the proof of Theorem 3.1.

We finally prove the remaining estimate (5.29) noting that

Wn − Vn = 2An − Bn,(5.33)

where

An =
1

n3/2hd

√
hr

n∑
i,j,�=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)wj�εjε� − E[wj�εjε�]

f( i
n
)

√
s(xj)s(x�)

Bn =
1

n3/2hd

√
hr

n∑
i,j,�,�′=1

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)wj�wj�′ε�ε�′ − E[wj�wj�′ε�ε�′]

f( i
n
)

√
s(x�)s(x�′) .

Obviously, we have E[An] = E[Bn] = 0, while we obtain for the variance of An

Var(An) = E[A2
n]

=
1

n3h2
dhr

∑
i,i′,j,j′,�,�′

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)
(5.34)

× Kd

(s( i′
n
) − t

hd

)
Kr

(xj′ − i′
n

hr

)E[wj�wj′�′εjε�εj′ε�′]

f( i
n
)f( i′

n
)

√
s(xj)s(xj′)s(x�)s(x�′)

=
(1 + o(1))

n3h2
dhr

{
c1

∑
i,i′,j,�

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)
Kd

(s( i′
n
) − t

hd

)
Kr

(xj − i′
n

hr

)w2
j�s(xj)s(x�)

f( i
n
)f( i′

n
)

+c2

∑
i,i′,j,�

Kd

(s( i
n
) − t

hd

)
Kr

(xj − i
n

hr

)
Kd

(s( i′
n
) − t

hd

)
Kr

(x� − i′
n

hr

)wj�w�js(xj)s(x�)

f( i
n
)f( i′

n
)

}

for some constants c1, c2 > 0. Observing the definition of wij in (5.28) it therefore follows

Var(An) =
(1 + o(1))

nh2
dhrh2

{
c1

∫ ∫ ∫ ∫
Kd

(s(x1) − t

hd

)
Kr

(x2 − x1

hr

)

× Kd

(s(x3) − t

hd

)
Kr

(x2 − x3

hr

)
K2

(x2 − x4

h

)s(x2)s(x4)f(x4)dx1dx2dx3dx4

f(x1)f(x2)f(x3)

+c2

∫ ∫ ∫ ∫
Kd

(s(x1) − t

hd

)
Kr

(x2 − x1

hr

)

× Kd

(s(x3) − t

hd

)
Kr

(x4 − x3

hr

)
K2

(x2 − x4

h

)s(x2)s(x4)dx1dx2dx3dx4

f(x1)f(x3)

}

= O
( 1

nh

)
.

A similar but tedious calculation shows that

Var(Bn) = O
( hr

nh2

)
,(5.35)

and from (5.33) the estimate (5.29) follows, which completes the proof of Theorem 3.6.
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strukturen.

References

M. Akritas, I. van Keilegom (2001). Nonparametric estimation of the residual distribution. Scand.

J. Statist., 28, 549-567.

G. E. P. Box (1988). Signal to noise ratios, performance criteria and transformation. Technomet-

rics (with discussions) 30, 1-40.

H. D. Brunk (1955). Maximum likelihood estimates of monotone parameters. Ann. Math.

Statist., 26, 607-616.

R. J. Carroll (1982). Adapting for heteroscedasticity in linear models. Ann. Statist., 10, 1224-

1233.

R. J. Carroll (1987). The effect of variance function estimation on prediction-intervals. In: Proc.

4th Purdue Symp. Statistical Decision Theory and Related Topics (eds. J. O. Berger and S. S.

Gupta), Vol. II, Springer Heidelberg.

H. Dette, A. Munk, T. Wagner (1998). Estimating the variance in nonparametric regression -

what is a reasonable choice? J. Roy. Statist. Soc., Ser. B, 60, 751-764.

H. Dette, N. Neumeyer, K. F. Pilz (2003). A simple nonparametric estimator of a mono-

tone regression function. Technical report, Department of Mathematics. http://www.ruhr-uni-

bochum.de/mathematik3/preprint.htm

J. Fan, I. Gijbels (1995). Data driven bandwidth selection in local polynomial fitting: variable

bandwidth and spatial adaption. J. Roy. Statist. Soc., Ser. B, 57, 371-394.

J. Fan, I. Gijbels (1996). Local polynomial modelling and its applications. Chapman and Hall,

London.

J. Fan, W. Yao (1998). Efficient estimation of conditional variance functions in stochastic regres-

sion. Biometrika 85, 645-660.

T. Gasser, L. Sroka, G. Jennen-Steinmetz (1986). Residual variance and residual pattern in

nonlinear regression. Biometrika, 73, 626-633.

23



P. Hall, R. J. Carroll (1989). Variance estimation in regression: the effect of estimating the mean.

J. Roy. Statist. Soc., Ser. B, 51, 3-14.

P. Hall, L. S. Huang (2001). Nonparametric kernel regression subject to monotonicity constraints.

Ann. Statist., 29, 624-647.

P. Hall, J.W. Kay, D.M. Titterington (1990). Asymptotically optimal difference-based estimation

of variance in nonparametric regression. Biometrika 77, 521 - 528.

P. Hall, J.S. Marron (1990). On variance estimation in nonparametric regression. Biometrika

77, 415-19.

E. Mammen (1991). Estimating a smooth monotone regression function. Ann. Statist., 19,

724-740.

R. Mukerjee (1988). Monotone nonparametric regression. Ann. Statist., 16, 741-750.

H. G. Müller, U. Stadtmüller (1987). Estimation of heteroscedasticity in regression analysis. Ann.

Statist. 15, 610-625.

H. G. Müller, U. Stadtmüller (1993). On variance function estimation with quadratic forms. J.

Statist. Plann. Inf. 35, 213-231.

J. Rice (1984). Bandwidth choice for nonparametric regression. Ann. Statist., 12, 1215-1230.
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