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Abstract:

The Desirability Index (DI) is a method for multicriteria optimization in industrial qua-
lity control. By design of experiment methods and transferring the multivariate into a
univariate optimization problem settings of influence factors are selected that lead to a
process with simultaneously optimized quality measures. In this paper a new field of
application for the DI is introduced — the field of process control. When a process was
designed with the objective of reaching the optimal value of the DI, the DI therefore is the
most appropriate measure to monitor this optimality over time. Based on the distribution
of the DI control charts for individual measurements are presented and advantages com-
pared to the traditional approaches are pointed out, especially caused by an innovative

procedure for the interpretation of out-of-control signals.

1 Introduction

The Desirability Index (DI), which was introduced by [HAR65] and extended primarily
by [DER80], by now has gained wide acceptance in practice in the course of multicri-
teria optimization in industrial quality management (e.g. [BAS02], [CARO01], [KORO02],
[PARO2]). Harrington’s desirability functions (DF) are based on exponential-type trans-
formations of the quality measures considered onto a unitless scale between 0 and 1. The
DI then combines the latter via the geometric mean or e.g. by taking the minimum of the
DFs ([KIMO0O]). By optimizing the DI using functional relationships between the quality
measures and the process influencing factors resulting from design of experiment methods,

optimal levels of the influence factors are selected, which optimize all quality measures
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simultaneously.

Once the quality of an industrial process has been initially optimized the ongoing process
quality is of strong interest in order to detect undesired process changes. For this purpose
so far separate univariate or multivariate control charts are used. A straightforward and
more appropriate approach for quality control in this case though is the utilization of
the DI not only for process optimization but also for quality control purposes. When
the process was designed with the objective of reaching optimality regarding the DI, it
is obviously the most appropriate measure to control its stability over time. In [WEBO03]
resp. [TRAO04]| the statistical distribution for different types of the DI was made available,
which provide the basis for designing specific control charts for the DI. A review of these
distributions is given in Chapter 2. Chapter 3 introduces control charts for individual
measurements of the DI, and in Chapter 4 an innovative procedure for the interpretation
of out-of-control-signals in DI control charts is presented. Afterwards a summary and an

outlook on further research fields completes the results in Chapter 5.

2 Distribution of the Desirability Index

In [WEBO03] the distributions of two types of DIs, namely the geometric mean and the
minimum of the DF's based on Harrington’s one-sided or two-sided DF's are derived. When
using the geometric mean an approximative approach arises as the most suitable one for
the one-sided case, whereas for the two-sided case the distribution of the DI is made

available for two quality measures Y; (i=1,2) with n; = 1 where

di(Y)) = e V™, i=1,...,k 0<n; <oo with (1)
2YV; — (USL; + LSL;) .
i USL; — LSL;, | o 2)
LSL/USL : Lower / Upper Specification Limit, and in the one-sided case
&G(Y)) = e, i=1,...,k with (3)
Y/ = by + biYi (4)

As control charts for the DI are based on its distribution function as a review only these

are presented in the following.
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Theorem 1 (DI Geometric Mean) Given k independent quality measures

Y; ~ N(w,o?) (i = 1,...,k) with DFs d; (1) resp. (3), the DI defined as

D := (HiC L d)Y* has the following distribution function:

log(k) + log(—log(D)) —
o

resp. [WEBO03], and in the two-sided case for k =2 and n; =1(i = 1,2)
D
Fo(D) = [ folD)a(D) with
0
fo(D) = V2 ) . <€$p <_ (—2log(D) — iy — ﬂ2)2>

2D 7T(0722 +0712 2(0722 +0712)
erf ((=2log(D))ds” — jaGs* + fiz01”)
5251\/5\/ Gy + 6,”

Fp(D) ~ 1-9® [ a } with pu* and 0**as defined in [SCH82]

©erp (_ (—2log(D) m + /i2) ) ((=2log(D))dy? — jirGs? — jiz61?)
2(072 + 0'1 0720:’1\/5 /0:'22 + 0712
texp (‘ T ) ((=2log(D))d>” + (i 65" + f1261°)
2(2" + 01%) GaG1 V2V G2 + 612
rerp (_ (—2log(D) + iy + fiz) ) ((=2log(D))ds” + jirGs” — fizo1”)
2(d2° +61%) GaG1V2/ 6o + 612
©erp (_ (—2log(D) — > ((=2log(D))d\* + jirGs” — fiac1”)
2(d%" + GaG1V/27/ G2 + 612
©erp (_ (—2log(D fi1 + fla) ) ((=2log(D))d\* + iGs* + fia01”)
2( e + 512 0720:’1\/5 /0722 +0712
+exp (— (_QZOQ(D = ) ((=2log(D))d\* — [i1G5* — jizd1?)
2( 7. +512 52071\/5 /0722 +U~12
+exp (— (=2009(D) + i1 + ji2) ) (—2log(D))d\* — f165” + fia01%) \ \ .
2(522 +01 07251\/5 /0722 +O:12 !
- 2 _USLALSL 5 ° .o
M= usr,—zsL, " vsn,—isr, "7 T \ust, — st 7
erf(z) = 2-®(W2x)—1 (Gaussian Error Function),
®(z) :=  Distribution function of N'(0,1).

Since 1965 modifications of Harrington’s approach have been introduced, one type con-
cerned with altered desirability functions (see [DER80] as the most important one), the

other one aiming at different DIs e.g. the minimum of the DFs ([KIMO00]):
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Theorem 2 (DI Minimum DFs) Given k independent quality measures Y; ~ N (u;, 0?)
(t=1,...,k) with DFs d; (1) resp. (3), the DI D defined as D := min;_y __xd; has the
following distribution function:
k -
log(—log(D)) — i, : :
Fp(D) = 1- H<I> [( il OQN( ) =i )] (One-sided DFs) with
g
i=1
ﬂz’ = —(boi + blz‘ . MZ) and 5’3 = (bli)z . Uz'27
k L .
_ D Uni _ . _ D 1/n; .
Fp(D) = 1—H (—1+c1> {(( log 2) “Z)} + @ {(( log 2) ﬂ“)])
i=1 i i

(Two-sided DFs) with fi; and &} as defined in Theorem 1.

3 Control Charts for the DI

In principle the selection process of a control chart for the DI follows the same procedure
as for any univariate quality measure apart from some special challenging characteristics.
Almost all well-known univariate control charts were designed for normally distributed
quality measures, which cannot be assumed for the DI. So either a nonparametric control
chart (see [CHAO1] for a review) has to be chosen or the desired control chart type must
be derived for the distributions of the DI given in Theorem 1 and 2. Furthermore the
concerning choice is constricted to certain types of control charts:

In general control charts can be classified regarding the purpose of either monitoring the
process expectation or the process variability where also composite control charts exist
that simultaneously keep control of both parameters. With respect to the DI there is the
special situation that changes in the distribution of a quality measure Y; apart from very
restricted cases lead to shifts of the expectation as well as the variance of the DI due to
the nonlinear transformations of the quality measures in (1) and (3). This is an obvious
fact because of the restricted domain of the DI. Assuming the expectation of the DI comes
close to the interval borders a decrease of the variance must be the consequence in order
to ensure that the values of the DI keep up with the domain restriction. This implies
the necessity of simultaneously observing both process expectation and variance, and
therefore either composite control charts or a control chart for individual measurements
has to be chosen.

The latter will be the recommended one for most cases as the DI itself functions as an
"average quality value” at each particular point of time. An additional timewise averaging

often results in interpretation problems especially regarding the analysis of out-of-control
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signals. In general control charts for single measurements are suggested in the presence
of long time spans between samples and in situations of high variability of the DI so that
each realization of the DI has to be monitored separately. Based on the distribution of

the DI a control chart for single measurements of the DI is defined as follows:

Definition 3 (Single-Measurements Control Chart) Given a process characterized
by k quality measures, which have been combined by a DI D, and known distribution
functions Fp(D), the control (LCL, UCL)- and warning limits (LWL, UWL) of the single-

measurements control chart are:

LCL/UCL = Qooos/Quo9s, LWL/UWL = Qoo2/Qoors with
Qo = «-100%-quantile of Fp(D) and centerline Qg 5.

Assuming that the values of the quality measures emanate from equidistant samples taken
from the ongoing process this grouping can be retained by using a control chart which is
based on the extreme values of each sample — the extreme value control chart (analogously
to [WEI99], p. 301).

Definition 4 (Extreme Value Control Chart) Given a process characterized by k qua-
lity measures from samples of size g, which have been combined by a DI D, and known
distribution functions Fp(D), the control (LCL, UCL)- and warning limits (LWL, UWL)

of the extreme value control chart are:

Qo = «a-100%-quantile of Fp(D) and centerline Qo5 resp. E(D).

The values of the quality measures are plotted one upon another at each point in time a
sample is taken. The process therefore is deemed to be in control if all values of the current
sample plot within the control limits, so that the decision is based on the extreme values
of each sample. Despite of the advantage of the retained sample grouping this approach
however leads to wider control limits than the single-measurements control chart. Which
control chart type is recommended for use has to be decided individually on the basis of
the considered process characteristics.

In comparison to existing control charts the introduced control charts prove to be superior
when applied to the DI. A simulation study (30000 runs) was carried out to assess the
performance of the single-measurements control chart (SMCC) in contrast to the Shewart-
Single-Measurements- (SHCC)([WADO02]) and the Fence Control Chart (FCC) based on
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the theoretical distribution of the DI by a computation of their In- and Out-Of-Control
Average Run Lengths (ARLs). A FCC (|[WEI99], p. 303 f.) is based on the theoretical or
empirical distribution of the quality measure at hand and shows analogies to the concept
of boxplots. When interpreting a boxplot all points that plot outside its outer fences are
denoted as outliers, i.e. lie in an abnormal distance from the other values considered.

Utilizing this concept the control limits of the FCC are computed as

LOL/UCL = Qo2 F 1.5 (Qor5 — Qo.2s) or LCL/UCL = qo25 F 1.5 (qo.75 — 0.25)%(5)
Qo/qe = «a-100% — Quantile of theoretical / empirical distribution

of the quality measure. (6)

In each case two quality measures were selected and combined either by the geometric
mean or the minimum of the DFs as a DI using one- and two-sided DFs. Table 1 shows
exemplary simulation results, i.e. control limits and In-Control-ARLs, to facilitate the
discussion of problems that can occur when applying the SHCC and FCC. Figures 1a)-d)
each use one of the parameter settings of the simulation to visualize and compare the
Out-Of-Control behaviour of the ARLs. For that purpose the control limits of the SHCC
and the FCC were adjusted so that the resulting In-Control-ARL-values at least roughly
equal the corresponding values of the SMCC. For Figures 1a)-d) the following parameter
settings were used (Y; ~ N (p;,02)):

Two-Sided DFs ((LSL,USL,n)[u, 0)):

k

Fig. 2a):  dy: (3,7,1)[5,0.3],  dp:(2,9,1)[3,0.8]; D:=(][d)"", (7)
=1

Fig. 2¢):  dy:(4,6,1.5)[4,0.2], dy:(3,7,1)[5,0.5]; D := 'Pllink d;. (8)

One-Sided DFs (DF's specified by (Y, d)):
Fig. 2b):  dy:(3,0.2),dy: (6,0.6), [u,0]:[6.41,0.2],[—0.98,0.53];
k
p=(Jw" )
i=1

Fig. 2d) :  dy : (7,0.4),ds : (10,0.9) resp. d; : (3,0.2),ds : (6,0.6),
(1, 0] : [9,1],[6.1,0.5]; D= min d; (10)

The x-axis indicates a shift in the expectation of the DI, which is estimated using the

arithmetic mean D of the DI resulting from all simulation runs, where the index (a, )
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sMcc | sHCcC | Fee || smec | sHee | Fec
Control Limits \ (3,7,1) [4,1] (3,7,1)[5,0.3]
Parameter of DFs (3,7,1) [6,4] (2,9,1)[3,0.8]
LCL 0.03913 | -0.2349 | -0.2514 | 0.4772 | 0.4167 | 0.4431
UCL 0.9215 | 1.01704 | 1.0138 | 0.8982 | 0.9133 | 0.8802
In-Control ARL | 10142 | o | oo | 99.80 | 20907 | 11018 |

Table 1: Simulated In-Control-ARLs for different parameter settings (LSL,USL,n)[u;,0;] with
Y; ~ N (pi,0?) based on two-sided DFs using the geometric mean as DI.

reflects the kind of shift in the distribution of the two underlying quality measures Y; and
Y,. Assuming that Y; ~ M (p;, 02) the index (a,b) is interpreted as

(a,0) = Vi~ N(m+a-01,00),Ys~N(p2+b-09,03). (11)

The ARL-values are only connected for illustration purposes to facilitate the comparison
of the different control charts.
When analyzing the simulation results the most important observations come out as

follows:

e The usage of the SHCC and FCC may lead to control limits outside the domain
of the DI as shown in the first example in Table 1. Despite on the one hand the
In-Control-ARL value is very high or even equals co this is also true for the Out-Of-
Control-ARL, which does not result in an appropriate control chart for the DI. These
situations can occur in the presence of high variances or skewed distributions of the
DI as the SHCC acts on the assumption of a symmetric distribution — namely a
normally distributed DI — and the FCC assumes symmetric distribution tails below

and above its quartiles.

e The effect of shifts in the expectation of the quality measures onto the expectation
as well as the variance of the DI becomes visible as the standard deviation sd(D) is

additionally plotted in Figures 2a)-d).

e The ARL behaviour of the SHCC and the FCC gets more and more problematic
with increasing skewness of the distribution of the DI (see Figures 1la),c),d)). The
corresponding density functions ([WEBO03]) of the DI can be found in Fig. 2, where
also a normal density with the expectation and the variance of the DI is added for

illustration purposes of the skewness. Shifts of E(D) towards the steeper side of the
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density function of the DI result in very high values of the corresponding Out-Of-
Control-ARL whereas the SMCC does not show this kind of extreme characteristic.
Only the example in Fig. 1b), where two one-sided DFs were combined by the
geometric mean, generates similar ARL shapes for all of the three control charts as
in this case the distribution of the DI comes close to a symmetric one (see Fig. 2a)).
In this specific case the SHCC and FCC are even able to detect a decrease in the
expectation of the DI slightly sooner than the SMCC.

Summing up, the advantages of the SMCC in comparison to the SHCC and FCC become
obvious especially in the presence of skewed distributions of the DI.

Analogous results concerning skewed distributions of the DI are obtained for the Extreme
Value Control Chart (see Definition 4) in comparison to the Shewart-z-Control Chart but
are not presented in detail here (see [TRA04]).

4 Interpretation of Out-Of-Control Signals

By using a control chart for the DI undesired process changes can be detected at points
in time when values of the DI plot outside the control limits, so that counteractions are
required in order to get back to an in-control-situation. In order to decide which coun-
teractions to carry out at first the cause of the specific out-of-control-signal has to be
determined, which in general is a challenging and frequently discussed task in multivari-

ate process control.

Though for multivariate control charts approaches like principal component analysis
([WEI99], p. 334 ff.), discriminant analyis ([CHU92]), special types of orthogonal de-
compositions ([MAS95]), regression fit ([MONO1], p. 529 ff.) or exact simultaneous con-
fidence intervals for parallel univariate control charts ([HAY94]) form means to facilitate
this problem, especially when the T?-chart is utilized, still no really satisfying general

approach for this problem exists.
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a) b)

20 25

15
3

fo(D)/9(D, var(D))

fo(D)/¢(D, var(D))
10

5

0

0.76 0.78 0.80 0.82 0.84 0.0 0.2 0.4 0.6 0.8
D D

Figure 2: Densities of the DI and a normal distribution ¢(D,var(D)) (dotted) related to the examples
in Figure 1a) ((1)) to 1d) ((4)).

In case the proposed single-measurements control chart (SMCC) or the Extreme Value
Control Chart (EVCC) for the DI are used as defined in Definitions 3 and 4 the control
limits for the DI can be transformed into control limits for the underlying desirability
functions as well as the individual quality measures. Assuming the usage of the geometric
mean as DI the control limit for a specific DF is dependent on the values of the remaining
ones as the product of the DF's is taken. So low values of one DF may be compensated
for by a high value of another DF. Therefore the resulting control limit does not comply
with the usual horizontal line but is determined seperately for each realization of the DI,

where only the lower control limit of the DI is of primary interest as ”too high” values of

a DI in principle do not exist.

Theorem 5 (Lower Control Limit for DF) Given a process characterized by quality

measures Y1, ..., Yy and respective DFs dy, ..., dy (1) or (3) as well as DI D, for which a
lower control limit LC'L was calculated as described in theorems 3 and 4, the lower control

limit of a specific DF is determined as

LCLF
[T d;

JFi

LCLy, = ie{l,..., k}.

This relationship can directly be seen from the inequalities

k 1/k k

LCLF

[[e) >icre]]d>rLcrtsd > f : (12)
i=1 i=1 j;l dj
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The interpretation of an out-of-control-signal in the SMCC or EVCC thus can be carried
out in the resulting control chart for a specific DF. In case the realizations of the DF do not
show any irregularities like trends, an increasing variance or extreme values in contrast to
the lower control limit, the signal is mainly caused by another quality measure. So specific
and suspicious DFs can be systematically monitored. In most applications it won’t be
necessary to set up all (maximal (k — 1)) control charts for the DF.

Analogously control limits for the quality measures can be derived, where it depends on
personal preferences what kind of control chart to analyze. Here attention should be
paid to the fact that a lower control limit only results for one-sided DFs (3) with desired
maximization of the quality measure Y;, for minimization problems an upper control limit
is determined. For two-sided DFs (1) one gets a lower control limit for realizations on the
left hand side of the target value 7; = (LSL; + USL;)/2 and accordingly an upper one

for values on the right hand side.

Theorem 6 (Control limits for quality measures) Given a process characterized by
quality measures Y1, ..., Yy and respective DFs dy, ..., dy (1) or (3) as well as DI D, for
which o lower control limit LC'L was calculated as described in theorems 3 and 4, the

control limit for a specific quality measure is determined as
1. One-sided DF:

1 LCLF UCL,, forb; <0
— | —log | —log - —byi| = .
by [I=: d; LCL,, forby; >0
JFi
As for values HchiLl;_ > 1 the outer logarithm is undefined, for by; < 0 the control limait
j=1"7

i#i
UCL,, 1is set to a constant value above the maximum realization of Y;. For by; > 0 a

constant value below the minimum realization of Y; is assigned to LC Ly, .
2. Two-Sided DF:

1/n;
1 LCLF
LCL, = —= |(USL;—LSL;)- | —log | =——— — (USL; + LSLy)| , Y; < T,
Yi 2 Hég:l d]
B J# _
B 1/n; ]
1 LCLF
! 2 [T d;
J#

In the one-sided case the proposition results from a distinction subject to the sign of by;
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ueL .
3
!
LCLy | | 1 !
° 0 20 40 60 80 100 ) 0 20 40 60 E;O 100
t t
Figure 3: Example: Interpretation of an Out-Of-Control-signal using two-sided DF's (1)
using
LCLF
exp [—exp(—(bo; + bi; - yi))] > Hk (13)
1 d,
i
LCLF
& bi;-y; > —log | —log - — boi, (14)
[Ti=1 d;
J7#i

and for two-sided DFs the distinction is carried out regarding the sign of
(2y; — (USL; + LSL;)), which is equivalent to the sign of (y; — T):

— > — 15
«rp ( ‘ USL; — LSL; > 1= 4, (15)
J#i
l/ni
LCL*
L

Fig. 3 shows an exemplary control chart for the DI resulting from two quality measures
Y] and Y5 with specified two-sided DF's as well as a control chart for the quality measure
Y1, for which the control limit was set up subject to Theorem 6. At ¢t = 80 the DI plots
below the lower control limit of the DI, which is reflected in the control chart for Vi,
as the realization of Y; does not exceed the lower control limit represented by grey dots.
When interpreting this control chart it becomes obvious that Y; does not show any special
irregularity at ¢ = 80 but the lower control limit does by taking an extreme value. So it

follows that the out-of-control-signal is primarily caused by Y5.
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1 1
ucL ucL
a o m
LCcL LCcL B
g =
A Yy A Yy
o Y, <o Y
0 o Y3 0 o Ys
2 4 6 8 10 12 14 2 4 6 8 10 12 14

t t

Figure 4: Exemplary control charts for the DI (Minimum DFs) with possible interpretation of
Out-Of-Control-signals

The situation, in which the minimum of the DF's is applied as a DI, is addressed dif-
ferently as in this case there is no possibility for compensating low values of individual
quality measures. Focussed is rather the detection of the specific quality measure which
is responsible for the value of the DI in presence of an out-of-control-signal at hand. For
this purpose a symbol is chosen for each individual quality measure, which is used in the
control chart of the DI for visualizing from which quality measure the displayed value of
the DI originates (Fig. 4). The interpretation of an out-of-control-signal therefore can
directly be carried out in the control chart of the DI and thus is independent of the type
of DF.

Observing the left part of Fiig. 4 the out-of-control-signals at points 8 and 9 can be assigned
to Yi. The right part however shows another important advantage of the approach pro-
posed. Besides the analysis of the out-of-control-signals also trends or structural changes
of the process become visible. From point 8 on all displayed values of the DI originate

from Y3 so that its desirability has permanently decreased.

For the EVCC the proposed approach for the geometric mean as well as the minimum of
the DF's is also valid, merely the structure of the EVCC is retained when transforming

the LCL of the DI into control limits for the DFs and the quality measures.



5 SUMMARY AND OUTLOOK 14

5 Summary and Outlook

In this paper multivariate process control as a new and very promising application field
for the DI is introduced. So far the DI is only used for multicriteria optimization. Based
on the statistical distribution of the DI provided in [WEBO03], a Single-Measurement- as
well as an Extreme Value Control Chart for two types of DIs, i.e. either the geometric
mean or the minimum of the DFs, is presented. Compared to existing control charts for
multivariate process control purposes many advantages become obvious, e.g. a complexity
reduction compared to separate univariate control charts as only one control chart has
to be monitored over time. This is also true for multivariate control charts though, for
which however the interpretation of out-of-control signals is a challenging and problematic
task. For the proposed control charts an appropriate approach for the analysis of out-of-
control situations could be developed. Furthermore in comparison to existing univariate
control charts as the Shewart-Single-Measurements- or the Fence Control Chart the ARL
behaviour of the charts proposed shows superiority, especially with regard to very skewed
distributions of the DI, as no symmetric or even normal distribution can be assumed. In
addition the restricted domain of the DI has to be considered. Existing control charts in
presence of high variances of the DI often consist of control limits outside the domain. A
more detailed discussion is carried out in [TRA04].

For future work many perspectives exist. On the one hand other types of control charts
for the DI can be developed, e.g. X- or S-charts, but process expectation and process
variance have to be monitored simultaneously by using composite control charts, as they
are not independent for the DI. On the other hand the approach presented could be
extended with regard to other types of DFs (e.g. [DERS0]), where in the first stage the
distribution of the DI has to be derived.
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