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Abstract

The aim of this paper is to extract mathematically talented students out of

a group of arbitrary high school students. We do this by applying a step-

wise discriminant analysis modified for ordinal data to the results of German

high school students at the international mathematics competition ”Kanga-

roo of Mathematics”. It turns out that three of the thirty given problems are

enough to discriminate between laureates, which we assume to be mathemati-

cally talented, and non-laureates. The three chosen problems are from different

mathematical fields.

KEY WORDS: Discriminant analysis for ordinal data, discrete kernel estima-

tion, testing mathematical talent, multiple choice competition

1 Introduction

Several international comparisons of high school students such as the test PISA

proved that German high school students cannot compete with students from
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most of the other countries in the study and show at best an average perfor-

mance. Especially their performance in Mathematics started an intensive and

still ongoing discussion about the educational system in Germany. It turned

out that the focus should not be only on students having problems in the sub-

ject but that there should also be support for gifted students. However, from

this point the question arises when a high school student should be called

gifted.

Former studies consider this question mainly from a didactic point of view.

They develop a catalogue of problems which they use for testing the students.

Depending on the students approach to solve the problem the student is said

to be either gifted or not (see for example Käpnick, 1998). Such an appraisal

depends strongly on the subjective opinion of the tester. Therefore, we want to

give objective criteria which enables to test mathematical talent. We are also

concerned with high school students being in the last three years. This is due

to the lack of students interested in studying mathematics and other sciences

at universities. From an universities point of view it is important to develop

an interest in mathematics in this age.

In this paper we analyze the performance of German high school students at the

competition ”Kangaroo of Mathematics”. In contrast to other competitions of

mathematics this competition has the advantage that whole classes participate.

Thus, we have data from less gifted students as well as from students which

proved their talent by an exceptional good performance. In this study we say

that a student is talented when he is awarded a prize. This is around 5% of

the participants. Further details concerning the data are given in section 2.

The aim of this paper is to classify types of problems which discriminate lau-

reates from the other participants. This is done by means of discriminant

analysis. The problem when applying discriminant analysis is that our data

is ordinal due to the multiple choice character of the problems. Hence, we

can distinguish only between a correctly solved problem, a wrong solution and

no solution which is an answer, too. We therefore apply a generalization of

discriminant analysis to our data.
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The rest of the paper is organized as follows. In section 2 the data and the

competition ”Kangaroo” are explained in more detail. Section 3 gives an de-

scriptive analysis of the data. Section 4.1 introduces discriminant analysis for

ordinal data and section 4.2 gives our results. In section 5 some conclusions

are given.

2 Description of the data

In this article we analyze data of the mathematics competition ”Kangaroo of

mathematics”. This competition is carried out once a year in many european

countries for all students from the third year on. One advantage for our pur-

poses is that at many schools whole classes participate at this competition.

Thus, the whole range from highly talented to less gifted students participate

at the competition. We consider in this paper students in the years 11 to 13

which are the last three years in the German high school system. These stu-

dents build one group in the competition having the same problems to solve.

Therefore, our data set contains 5854 students.

The competition contains 30 problems in a multiple choice system. This means

that for each problem five possible answers are given. One of these is the correct

answer and the others are wrong. It was also possible to give no answer at all.

The students had 75 minutes time for solving the problems. Every student

started with 30 points on his account. For the first ten problems the student

got three points added on his account for a correct answer and got 0.75 points

off for a wrong answer. For the problems 11 to 20 the student could gain either

four points for a correct answer or one point off for a wrong answer and for the

problems 21 to 30 the student obtained five or minus 1.25 points. Not solving

a problem was marked with zero points and was hence the better solution than

giving a wrong answer. Therefore, the students could reach between 0 and 150

points. Students which gained more than 82.5 points were awarded a prize.

The problems were chosen from fields of mathematics which have mostly been

covered in school up to year eleven. This includes subjects such as analysis,
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geometry and logic. The question of interest is whether some of these fields

enable to discriminate between winners of a prize and other students.

3 Descriptive analysis of the data

In order to obtain an impression of the achievement of the 5854 high school

students in the years 11 to 13, at first a brief descriptive analysis of the data

is given. The students reached between 0 and 128.75 points, meaning that the

best student was more than 20 points below the optimal 150-point-score. The

average score was about 48 points, so less than a third of the highest possible

account. Also the graph (see fig. 1) of the distribution points out, that the

results are highly concentrated within the region of 30 to 60 points. 13% of

the students could not even hold the starting credit and just under 1% took

the 100-points-hurdle. Thus, the laureates – which are those 261 students, who

achieved more than 82.5 points – represent only a fraction of 4.5% of the 5854

participants.

It is of interest whether there can be found other characteristics beside the

final scores which help to differ between this two groups – the laureates and
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Figure 1: Distribution of the final scores
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the non-laureates. Thus, at first the distribution of the answers is considered

in more detail. The question under consideration is whether there exist any

differences between the structures of the answers of the laureates and of the

other students.

The group of the laureates does not only differ in that way from the non-

laureates, that they solved most of the answers correctly, but also that they

answered in a more structured form. In contrast to the non-laureates, which

mostly spread their attempts of solutions nearly uniformly to the five given

possible answers, the prize winners rather favoured one specific answer. This

way of answering is typical for most of the problems and shown exemplarily

for one noticeable problem in figures 2 and 3. But as that special problem also

demonstrates the preferred answer of the laureates could be the wrong one.
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Figure 2: Answers of the non-

laureates for problem 30
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Figure 3: Answers of the laureates

for problem 30

4 Discriminant analysis for discrete data

The support of the mathematical comprehension of young persons causes the

problem to search out their potentials as soon and precisely as possible and to

advice them with suitable methods. The laureates are said to have particular

mathematical abilities. Therefore, what we aim at is to use the given answers

to identify the talented in the whole group of students.
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The utilized stepwise discriminant analysis tackles a further problem at the

same time. Its aim is to develop a rule which reassigns any student singled out

back to his own group. That is done by finding step by step those problems

out of the 30 given with which it is possible to construct such a rule. Thus, a

reliable classification is guaranteed using only a few exercises. This is useful in

two ways: The first advantage is that these few problems can be presented to

other groups of students to rate their mathematical skills. The second one is to

deduce from the chosen set of problems certain topics which allow to identify

the students with high mathematical potential.

4.1 Theoretical approach

The point of departure is the same as in the case of the classical discriminant

analysis: We consider the population Ω which is divided in g mutually exclusive

classes Ω1, . . . , Ωg. The aim is to find a decision rule which assigns an object

ω ∈ Ω with vector of observations y = (y1, . . . , yp)
′, in which p is the number

of variables observed, to one of the g classes. This is done by means of the

discriminant function dk(y) = p(k)f(y|k), k = 1, . . . , g, where p(k) denotes the

a priori probability that ω comes from the set k and f(y|k) is the distribution

of y in Ωk. The function allocates ω with observation y exactly to that class

k∗ for which

dk∗(y) = max
k

(dk(y)) for all k ∈ {1, . . . , g}

holds.

In practice the problem arises that the included functions p(k) and f(y|k)

are unknown. For estimating these functions a training set is used. Therefore,

those objects are chosen of which the class they belong to is known.

The prior probability p(k) often is estimated directly by using the training

set. However, a problem will arise if this training set is a stratified sample and

thus, the proportion of the members belonging to the different groups will be

no longer representative for the whole set. Groß (1988) and McLachlan (1992)

discuss what can be done in that case.
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Furthermore, f(y|k) has to be estimated. Because of the ordinal scaling of the

data with only a few categories the problem arises that the classical type of

density estimation – based on the assumption of normal distribution – cannot

be used. Thus, a discrete kernel is taken in order to estimate the density.

In case of continuous variables these are discussed since the middle of the 20th

century. The idea is to use a kernel function, which has the same characteristics

as a density function, to transform the observations of the sample pointwisely.

That produces a smoothing of the frequency distribution observed, and thus,

an imitation of the density function. Based on that fact Aitchison and Aitken

(1976) give a first impulse to transfer the theory to categorical data.

Suppose that S(k) = {x(k)
1 , . . . ,x

(k)
N

k
} is the training set of size Nk, k = 1, . . . , g,

with p-dimensional vectors of observations of objects belonging to class k. The

training set is summarized in a matrix of observations for the k-th group:

X(k) =




x
(k)
11 x

(k)
12 . . . x

(k)
1p

x
(k)
21 x

(k)
22 . . . x

(k)
2p

...
...

. . .
...

x
(k)
Nk1 x

(k)
Nk2 . . . x

(k)
Nkp




=




X
(k)
1·

X
(k)
2·

...

X
(k)
Nk·




.

The aim is to use this matrix of observations to estimate the value of the

density for a ”new” object, which does not come from the training set. Assume

that y = (y1, . . . , yp)
′ is the vector of observations belonging to the considered

object. Then the density at this point can be estimated by

p̂(y|X(k),λ(k)) =
1

Nk

Nk∑
i=1

p∏
j=1

Kj(yj|x(k)
ij , λ

(k)
j ). (1)

The vector λ(k) = (λ
(k)
1 , . . . , λ

(k)
p )′ consists of the smoothing parameters con-

cerning the p characters of class k. Kj(yj|x(k)
ij , λ

(k)
j ) is a kernel function belong-

ing to the j-th character. The individual shape of the kernel conforms to the

structure and number of parameters which are considered.

For ordinal scaled data a kernel is chosen which uses and processes the infor-

mation of ranking. If we consider the value yj of an object which has to be

assigned newly, the kernel function should take into account the distance of
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yj to the parameter value xij of the object just observed. Thus, the kernel is

defined as decreasing, if for a greater distance the weighting of the probability

is lower. Thereby, special modes of distance attributes can be considered as

discussed in Tutz (1990).

Based on this condition Aitchison and Aitken (1976) suggest a kernel for the

ordinal three parameter values which are supposed to be the set of T = Tj =

{0, 1, 2} for all j (without loss of generality). The kernel for λ
(k)
j = λ is given

by

Kj(yj|x(k)
ij , λ

(k)
j = λ) xij = 0 xij = 1 xij = 2

yj = 0 λ2 1
2
(1 − λ2) (1 − λ)2

yj = 1 2λ(1 − λ) λ2 2λ(1 − λ)

yj = 2 (1 − λ)2 1
2
(1 − λ2) λ2

The kernel has the assumed decreasing attribute for λ ∈ [2
3
, 1].

After defining the kernel function the smoothing parameter has to be opti-

mized. Aitchison and Aitken (1976) specify for the choice of λ
(k)
j as above the

maximization of the jackknife likelihood W (λ
(k)
j |X(k)). ¿From all λ

(k)
j in [2

3
, 1]

that value is taken which maximizes

W (λ
(k)
j |X(k)) =

Nk∏
i=1

p̂(x
(k)
ij |X(k)

·j \ {x(k)
ij }, λ(k)

j ),

whereas X
(k)
·j \ {x(k)

ij } is the j-th column of X(k) in which the i-th observation

is left out. As soon as an optimal λ for each of the characteristics j = 1, . . . , p

is found in this way, the final estimator (1) can be determined with the

set of these. For the chosen parameter λopt p̂(y|X(k),λ
(k)
opt) is a consis-

tent estimator for f(y|k) (Aitchison and Aitken, 1976). Hall (2001) gives a

review of generalization of this ordinal estimator to more than three categories.

By means of this estimator we can find an estimated discriminant rule of the

following form:

Allocate the object with vector of observations y to class k∗, if

p(k∗)p̂(y|X(k∗),λ(k∗)) ≥ p(k)p̂(y|X(k),λ(k)) for all k ∈ {1, . . . , g}.
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In the special case of two classes that means for example: Allocate the object

with vector of observations y to class 1, if

p(1)p̂(y|X(1),λ(1)) ≥ p(2)p̂(y|X(2),λ(2)),

and to class 2 otherwise.

The quality of this decision rule can be characterized by its error rate which

can be estimated by the leaving-one-out method. By counting the number of

misclassifications separately for each class, the estimated expected error rate

is given by

ε̂ = Ê(ε(X, f)) =

g∑
k=1

p(k)
nk

Nk

. (2)

nk (k = 1, . . . , g) is the number of misallocated objects which are originally

from class k. Of course, the error rate has to be minimized. However, if one

considers a great number of variables, it is common that with successive inclu-

sion of variables for constructing the allocation rule the estimated (expected)

error rate at first decreases continuously, but at a certain number of variables it

increases (see Seber, 1984). Hence, we use in this paper a selective method that

chooses the relevant variables. We concentrate on stepwise forward selection,

for which the estimated error rate serves as criterion. The procedure starts

with an empty subset of variables. At each step that variable is added which,

in combination with the subset considered in the preceding step, minimizes the

estimated error rate. As soon as the rate increases for the first time one further

step is carried out as a trial. If the rate is continuously increasing, the pro-

cedure stops and those variables are taken which have produced the minimal

error rate. If the rate starts decreasing again, the procedure is continued.

4.2 Empirical results

In this section the discriminant analysis for discrete data described in section

4.1 is applied to the ”Kangaroo”-data. Before constructing the decision rule

the data has to be divided into two subsets: one training set for estimation

and one testing set for proving the quality of our decision rule afterwards. To
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raise the 4.5% rate of the laureates in the set of students we take a stratified

sample, separately for both groups. The training set is of size 1700 composed

of N1 = 200 laureates and N2 = 1500 other students.

Past experience has shown that the rate of laureates for the group of students

of that age do not differ strongly from one year to another. Thus, the a priori

probabilities needed for the decision rule are calculated by the results of the

competitions of three years. Let p(1) = 0.051 be the a priori probability for

being a laureate, then p(2) = 0.949 is the probability for not being a member

of this group of bests. With that basic components the discriminant analysis

can be carried out to find the relevant problems step by step.

However, in the first step the problem arises that the estimated error rate

is ε̂ = 0.051 for every single problem, so that the criteria of selecting that

problem out of the 30 given which produces the smallest rate does not work

at all. Hence, without choosing one starting variable the procedure has to

continue with the second step in a modified way. All 435 pairs of problems are

compared in order to obtain a starting pair. After finding an initial pair, in

every following step this first subset can be combined with one more variable

as described in section 4.1.

0.04 0.05 0.06 0.07 0.08 0.09
estimated error rate

1 problem 

2 problems 

3 problems 

4 problems 

5 problems 

6 problems 

Figure 4: Progression of the minimal estimated error rates
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The progression of selection is shown in figure 4. ¿From the fourth step on the

minimal estimated error rate begins increasing step by step. Also the range,

in which the values are located, gets higher stepwise. While the error rates

corresponding to step 3 vary in a range of about 1%, in the sixth step the

range is increased to a value of nearly 4%.

Thus, the procedure creates a decision rule based on three problems (numbers

23, 25 and 20 as shown in the appendix). The allocation rule characterizes

those students as laureates who answered all three questions correctly.

Number 23 clearly is a combinatoric problem. Students can solve it with clev-

erness and a good basic knowledge in this mathematical context. But it is

possible as well to tackle the problem with logical comprehension and to find

the right solution intuitively.

For solving problem number 25 it is sufficient to apply basic tools from analysis

as long as those were discussed at school. Have in mind that also students

from class 11 participate where analysis has not to be discussed necessarily in

Germany. For instance, the function asked for can be found by exclusion.

At first sight problem number 20 seems to be of geometric nature, but it

also has to be solved in an analytical way. The important thing is not the

spatial imagination like in many other of the geometric problems asked in the

competition.

Thus, the three problems 20, 23 and 25 suffice to get a reliable rule. That is

only a part of 10% of the questions has to be asked in order to obtain a rule

which enables us to find the mathematically talented students. Thus, some of

the mathematical fields considered in the competition are not included in the

chosen set of problems as for example the spatial imagination or the theoretical

arithmetic. These seem to be not that relevant for the identification of the

laureates.

Subsequently, it has to be checked whether students are assigned to the two

groups correctly in general by our rule. For this purpose the classification rule

obtained by the training set is applied to the 61 laureates and the 4093 other

students of the testing set. The rule considers a student as laureate if he or she

11



answered all three problems correctly. In the case of non-laureates these are

41, that is about 1%. 41 of the 61 laureates are allocated to the group of non-

laureates. The weighting with the prior probabilities gives the estimated error

rate of 0.0437, which is satisfactory. By these three problems from the topics

combinatoric, analysis and geometry in combination with finding the solution

in an analytical way the laureates can be identified in a sufficient reliable way.

As seen in the case of the testing sample, although the chosen decision rule

produces a small estimated error rate, it allocates a great number of the lau-

reates incorrectly. Thus, our set of students, who are identified as ”laureates”,

consists only of a very small number of non-laureates. But the problem is that

many of the real laureates are not member of our created group. Hence, our

rule identifies the non-laureates precisely, but the laureates not as good as it

would be desirable. So a student who fails the test cannot automatically be

considered as not talented. However, it should never be the objective of a de-

cision rule to classify a student as bad by the means of three problems. Still,

future works should take up this problem and develop a decision rule which

prevents this misclassification.

5 Summary

We considered the results of German high school students being in their last

three years at the international mathematics competition ”Kangaroo of math-

ematics”. The aim of the paper was to find a decision rule to decide which of

the students can be seen as highly gifted in mathematics. The advantage of the

data was that whole classes participated at the competition rather than single

students which are at least mathematically interested anyway. Therefore, we

had access to the performance of highly talented students as well as to the

performance of less gifted students. We said that a student is highly talented

when he was awarded a prize. About 5% of the participants were laureates.

The competition was organized in a multiple choice character by giving five

possible answers of which one was the correct one for each problem. Not solving

the problem was marked better than giving a wrong solution. Therefore, we
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had three categories for each problem. The whole competition was consisting

of thirty problems from almost all fields of mathematics which have mostly

been discussed in high school up to year eleven.

In order to obtain a decision rule we applied a stepwise discriminant analysis

modified for ordinal data to the results from the competition. It turned out that

three out of the thirty problems are enough to discriminate between laureates

and non-laureates by obtaining a satisfying error rate. The three problems are

from different mathematical fields showing that a broad knowledge of mathe-

matical ideas is an important criterion for mathematical talent.

Our decision rule gave better results by assigning the non-laureates to the right

group. This shows that a student assigned to be talented by our decision rule

is really highly gifted with a high probability whereas we cannot discriminate

a student who fails this test as being not talented. However, as it should never

be the idea of such a decision rule to grade a student as definitely bad our

decision rule can still be seen as a good indicator for extracting highly gifted

students.
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Appendix

The three chosen problems

Problem number 23

At a horse race horses A, B, C, D and E take part. While discussing the possible

coming-ins the experts realize that they know the horses so poorly that nearly

every coming-in seems to be possible. The only restriction is that B never

reaches the finishing line before A does it. How many possible coming-ins will

exist under this restriction, if it is assumed that all horses pass the finish at

different times?

(A) 110 (B) 105 (C) 72 (D) 64 (E) 60

Problem number 25

Which of the following functions has got the characteristics (1) to (3):

(1) f(x) is defined for all x ≥ 0.

(2) It is valid, that f(x) ≥ −2 for all x ≥ 0.

(3) There exists one real figure x, x ≥ 0, with f(x) = −2.

(A) f(x) = |x − 2| (B) f(x) = x2 − 2x − 1 (C) f(x) = 1−3x
x

(D) f(x) = x2 − x − 2 (E) f(x) = |x + 2| − 2

Problem number 20

The hypotenuse of a right-angled triangle should be 0.9 cm long, the legs of the

triangle should be of length a cm resp. b cm. Which of the following numbers

is the smallest?

(A) a2 + b2 (B) (a + b)2 (C) 0.9 (D) a + b (E) ab

15


