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Abstract

Recent results on so-called SEMIFAR models introduced by Beran (1997) are

discussed. The nonparametric deterministic trend is estimated by a kernel method.

The di�erencing- and fractional di�erencing parameters as well as the autoregressive

coe�cients are estimated by an approximate maximum likelihood approach. A data-

driven algorithm for estimating the whole model is proposed based on the iterative

plug-in idea for selecting bandwidth in nonparametric regression with long-memory.

Prediction for SEMIFAR models is also discussed brie
y. Two examples illustrate

the potential usefulness of these models in practice.

Key words: trend, di�erencing, long-range dependence, di�erence stationarity,

fractional ARIMA, BIC, kernel estimation, bandwidth, semiparametric models, fo-

recasting.

1 Introduction

SEMIFAR (semiparametic fractional autoregressive) models introduced by Beran

(1997) provide a modelling framework that enables us to separate and estimate

deterministic and stochastic trends as well as short- or long-memory components

in an observed time series. A SEMIFAR model is a fractional stationary or non-

stationary autoregressive model with a nonparametric trend. This extends Box-

Jenkins ARIMA models (Box and Jenkins 1976), by using a fractional di�erencing

parameter d > �0:5; and by including a nonparametric trend function g. The

trend function can be estimated by the well known kernel method (see e.g. Gasser

and M�uller 1979). The parameters may be estimated by an approximate maximum

likelihoodmethod proposed by Beran (1995). A data-driven algorithm for estimating
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SEMIFAR models, which is a mixture of these two approaches, was proposed by

Beran (1997).

This paper summarizes recent results on the estimation of SEMIFAR models and

the application of these models. Most of the paper is based on results in Beran

(1997). Some results from Beran and Ocker (1998) and in other preprints are also

included. For proofs we refer to these papers.

2 The model

A SEMIFAR model is a Gaussian process Yi with an existing smallest integer m 2
f0; 1g such that

�(B)(1� B)�f(1� B)mYi � g(ti)g = �i; (1)

where ti = ( i=n),� 2 (�0:5; 0:5), g is a smooth function on [0; 1], B is the backshift

operator, �(x) = 1 � Pp
j=1 �x

j is a polynomial with roots outside the unit circle

and �i (i = :::;�1; 0; 1; 2; :::) are iid zero mean normal with var (�i) = �2� . Here, the

fractional di�erence (1�B)� introduced by Granger and Joyeux (1980) and Hosking

(1981) is de�ned by

(1� B)� =
1X
k=0

bk(�)B
k (2)

with

bk(�) = ( �1)k �(� + 1)

�(k + 1)�(� � k + 1)
: (3)

The main motivation for introducing fractional autoregressive models (Hosking

1981, Granger and Joyeux 1980) was to model stationary time series with long-range

dependence (or long-memory) and to avoid the problem of overdi�erencing. Here,

long-range dependence is de�ned as follows (see, e.g. Mandelbrot 1983, Cox 1984,

Hampel 1987, K�unsch 1986, and Beran 1994 and references therein): A stationary

process Yi with autocovariances 
(k) = cov( Yi; Yt+k) is said to have long-range

dependence, if the spectral density f(�) = (2 �)�1
P1

k=�1 exp(ik�)
(k) has a pole

at the origin of the form

f(�) � cf j�j�� (j�j ! 0) (4)

for a constant cf > 0 and � 2 (0; 1); where " � " means that the ratio of the left and

right hand sides converges to one. In particular, this implies that, as k ! 1 ;the
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autocovariances 
(k) are proportional to k��1 and hence their sum is in�nite. For

SEMIFAR models, Zi = f(1�B)mYi�g(ti)g is a stationary fractional autoregressive
process. Thus, the spectral density of Zi is proportional to j�j�2� at the origin so

that the process f(1 � B)mYi � g(ti)g has long-memory if � > 0. If � = 0, Zi has

short-memory. 1 generalizes stationary fractional AR-processes to the nonstationary

case, including di�erence stationarity and deterministic trend. Four special cases of

model (1) are:

� (a) no deterministic trend + stationary process with short- or long-range

dependence;

� (b) deterministic trend + stationary process with short- or long-range de-

pendence;

� (c) no determinisitc trend + di�erence-stationary process, whose �rst di�e-

rence has short- or long-range dependence;

� (d) deterministic trend + di�erence-stationary process, whose �rst di�erence

has short- or long-range dependence.

3 Nonparametric kernel estimation of a trend

with long-memory errors

The problem of estimating g from data given by

Yi = g(ti) +Xi (5)

has been considered by various authors for the case where the error process Xt is

stationary with (i) short-range dependence, i.e. (4) holds with � = 0 (see e.g. Chiu

1989, Altman 1990, Hall and Hart 1990 and Herrmann, Gasser and Kneip 1992) or

(ii) long-range dependence, i.e. 0 < � < 1 (see e.g. Hall and Hart 1990, Cs�org�o

and Mielniczuk 1995 and Ray and Tsay 1997). For SEMIFAR models de�ned by

(1), the cases (i) and (ii) are obtained by setting m = 0 and � = �=2 = 0 (case

(i)), or m = 0 and � 2 (0; 1=2) (case (ii)) respectively. For m = 1 ;the same is

true for the �rst di�erence Yi � Yi�1: (Note, however, that for SEMIFAR models,

m 2 f 0;1g is an unknown parameter.) In addition to cases (i) and (ii), de�nition
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(1) also includes the case where � is negative so that the spectral density f of Yi (or

Yi�Yi�1 respectively) converges to zero at the origin. This case is sometimes called

\anti-persistence". The theorem below extends previous results on kernel estimation

to the anti-persistent case, and gives formulas for the mean squared error and the

optimal bandwidth that are valid for the whole range � 2 (�0:5; 0:5):

For estimating g by kernel smoothing, symmetric polynomial kernels of the form

K(x) = fPr
l=0 �lx

2lg1Ifjxj�1g (see e.g. Gasser and M�uller 1979) will be used. If (5)

holds, then, for a given bandwidth b > 0 and t 2 [0; 1]; the kernel estimate of g is

de�ned by

ĝ(t) = Kb � y(n) = 1

nb

nX
i=1

K(
t� ti
b

)Yi (6)

where y(n) = ( Y1; :::; Yn). Let n0 = [ nt],n1 = [ nb] and 0< � < 0:5, the following

notations will be used:

Vn(�; b) = ( nb)�1�2�
n0+n1X

i;j=n0�n1

K
�
t� ti
b

�
K
�
t� tj
b

�

(i� j); (7)

I(g00) =
Z 1��

�
[g00(t)]2dt (8)

and

I(K) =
Z 1

�1
x2K(x)dx: (9)

The following result is obtained under the assumption that (5) holds and that g is

at least twice continuously di�erentiable.

Theorem 1 Let bn > 0 be a sequence of bandwidths such that bn ! 0 and nbn !1 :

Then, under the stated assumptions and � in (1) in the interval (-0.5,0.5), we have

(i) Bias:

E[ĝ(t)� g(t)] = b2n
g00(t)I(K)

2
+ o(b2n) (10)

uniformly in � < t < 1��;

(ii)

lim
n!1

Vn(�; bn) = V (�) (11)

where 0 < V (�) <1 is a constant;
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(iii) Variance:

(nbn)
1�2�var(ĝ(t)) = V (�) + o(1) (12)

uniformly in � < t < 1��;

(iv) IMSE: The integrated mean squared error in [�; 1��] is given byZ 1��

�
Ef[ĝ(t)� g(t)]2gdt = IMSEasympt(n; bn) + o(max(b4n; (nbn)

2��1))

= b4n
I(g00)I2(K)

4
+ ( nbn)

2��1V (�) + o(max(b4n; (nbn)
2��1)) (13)

(v) Optimal bandwidth: The bandwidth that minimizes the asymptotic IMSE is

given by

bopt = Copt n
(2��1)=(5�2�) (14)

where

Copt = Copt(�) =

 
(1� 2�)V (�)

I(g00)I2(K)

!1=(5�2�)
: (15)

Similar results can be obtained for kernel estimates of derivatives of g: For instan-

ce, the second derivative can be estimated by ĝ00(t) = n�1b�3
P
K((tj�t)=b)Yj where

K is a symmetric polynomial kernel such that
R
K(x)dx = 0 and

R
K(x)x2dx = 2 :By

analogous arguments, the optimal bandwidth is then of the order O(n(2��1)=(9�2�)):

Simple explicit formulas for V (�) can be given for � = 0 and � > 0 as follows (see

e.g. Hall and Hart 1990):

V (�) = 2 �cf

Z 1

�1
K2(x)dx; (� = 0) ; (16)

V (�) = 2 cf�(1� 2�) sin��
Z 1

�1

Z 1

�1
K(x)K(y)jx� yj2��1dxdy; (� > 0): (17)

In order to obtain similar formula for � < 0, at a point x let K(y) =
Pr

l=0 �l(x)(x�
y)l =: K0(x) + K1(x � y), where K0(x) = �0(x), K1(x � y) =

Pr
l=1 �l(x)(x � y)l.

Then we have

V (�) = 2 cf�(1� 2�) sin(��)
Z 1

�1
K(x)�(Z 1

�1
K1(x� y)jx� yj2��1dy �

Z
jyj>1

K0(x)jx� yj2��1dy
)
dx (18)

for � < 0. For the box-kernel (i.e. r = 0), formulas (16), (17) and (18) give the same

result

V =
22�cf�(1� 2�) sin(��)

�(2� + 1)
(19)

with V (0) = lim�!0 V (�) = �cf (see corollary 1 in Beran, 1997).
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4 Maximum likelihood estimation

Let �o = ( �2�;o; d
o; �o1; :::; �

o
p)

T = ( �2�;o; �
o)T be the true unknown parameter vector in

(1) where do = mo+�o; �1=2 < �o < 1=2 and mo 2 f 0;1g: The maximum likelihood

estimation of �o proposed by Beran (1995) for a constant function g = � can be

carried over directly to SEMIFAR models, since

�(B)(1� B)�
of(1� B)m

o

Yi � g(ti)g =
1X
j=0

aj(�
o)Bj[cj(�

o)Yi � g(ti)]

=
1X
j=0

aj(�
o)[cj(�

o)Yi�j � g(ti�j)];

where the coe�cients aj and ajcj are obtained by matching the powers in B: Hence,

Yi admits an in�nite autoregressive representation

1X
j=0

aj(�
o)[cj(�

o)Yi�j � g(ti�j)] = �i: (20)

Let bn (n 2 N) be a sequence of positive bandwidths such that bn ! 0 and nbn !1
and de�ne ĝ(ti) = ĝ(ti;m) by

ĝ(ti; 0) = Kbn � y(n); (21)

and

ĝ(ti; 1) = Kbn �Dy(n); (22)

with Dy(n) = ( Y2 � Y1; Y3 � Y2; :::; Yn � Yn�1): Consider now �i as a function of �:

For a chosen value of � = ( �2� ; m + �; �1; :::; �p)
T = ( �2� ; �)

T ; denote by

ei(�) =
i�m�2X
j=0

aj(�)[cj(�)Yi�j � ĝ(ti�j;m)] (23)

the (approximate) residuals and by ri(�) = ei(�)=
p
�1 the standadized residuals.

Assuming that f�i(�o)g are independent zero mean normal with variance �2�;o; an

approximate maximum likelihood estimator of �o is obtained by maximizing the

approximate log-likelihood

l(Y1; :::; Yn; �) = �n
2
log 2� � n

2
log�2� �

1

2
n�1

nX
i=m+2

r2i (24)

with respect to � and hence by solving the equations

_l(Y1; :::; Yn; �) = 0 (25)
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where _l is the vector of partial derivatives with respect to �j (j = 1 ; :::; p+2) :More

explicitly, �̂ is obtained by minimizing

Sn(�) =
1

n

nX
i=m+2

e2i (�) (26)

with respect to � and setting

�̂2� =
1

n

nX
i=m+2

e2i (�̂): (27)

The result in Beran (1995) can be extended to SEMIFAR models:

Theorem 2 Let �̂ be the solution of (26) and (27); and de�ne �o� = ( �2�;o; �
o
�)

T =

(�2�;o; �
o; �o2; :::; �

o
p+1)

T : This means that, �o2 = d = mo + �o is replaced by �o2;� = �o:

Then, as n!1 ;

(i) �̂ converges in probability to the true value �o;

(ii) n
1

2 (�̂� �o) converges in distribution to a normal random vector with mean zero

and covariance matrix

� = 2 D�1 (28)

where

Dij = (2 �)�1
"Z �

��

@

@�i
log f(x)

@

@�j
log f(x)dx

#
j�=�o

�
: (29)

It should be noted that in theorem 2, both, the fractional di�erencing parameter

� and the integer di�erencing parameter m are estimated from the data. The asym-

ptotic convariance matrix does not depend on m: Theorem 2 can be generalized

to the case where the innovations �i are not normal, and satisfy suitable moment

conditions.

Theorem 2 is derived under the assumption that the order p = po of the autore-

gressive polynomial in (1) is known. In practise po needs to be estimated by applying

a suitaible model choice criterion. In a recent paper, Beran et al. (1998) showed

that, for the case where g is equal to a constant �; consistency properties of model

choice criteria, such as the BIC (Schwarz 1978, Akaike 1979) and the HIC (Hannan

and Quinn 1979), are analogous to the case of stationary short-memory autore-

gressive processes, provided that a consistent estimate of � is used. By analogous

arguments, theorem 2 can be extended to the case where po is estimated:
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Theorem 3 Under the assumptions of theorem 2, let po be the true order of the

polynomial � in (1) and de�ne

p̂ = arg minfAIC�(p); p = 0 ;1; :::; Lg (30)

where L is a �xed integer, AIC�(p) = n log �̂2� (p) + � � p and �̂2� (p) is the maximum

likelihood estimate of the innovation variance �2�;o using a SEMIFAR model with

autoregressive order p: Moreover, de�ne �̂ by (26) and (27) with p set equal to p̂:

Suppose furthermore that � is at least of the order O(2c log logn) for some c > 1:

Then the results of theorem 2 hold.

5 A data-driven algorithm

The following algorithm is an adaptation of that in Beran (1995) by replacing �̂ by a

kernel estimate of g: This algorithmmakes use of the fact that d is the only additional

parameter, in addition to the autoregressive parameters, so that a systematic search

with respect to d can be made. The optimal bandwidth is estimated by an iterative

plugin method similar to the one in Herrmann, Gasser and Kneip (1992) and Ray

and Tsay (1997). The steps of the algorithm are de�ned as follows:

Step 1: De�ne L =maximal order of �(B) that will be tried, and a su�ciently �ne

grid G 2 (�0:5; 1:5): Then, for each p 2 f 0;1; :::; Lg; carry out steps 2 through
4.

Step 2: For each d 2 G; set m = [ d+ 0 :5]; �= d �m; and Ui(m) = (1 � B)mYi;

and carry out step 3.

Step 3: Carry out the following iteration:

Step 3a: Let bo = �omin(n(2��1)=(5�2�) ; 0:5) with 0 < �o < 1 and set j = 1 :

Step 3b: Set b = bj�1:

Step 3c: Calculate ĝ(ti;m) using the bandwidth b: Set X̂i = Ui(m)� ĝ(ti;m):

Step 3d: Set ~ei(d) =
Pi�1

j=0 bj(�)X̂i�j; where the coe�cients bj are de�ned by

(4).
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Step 3e: Estimate the autoregressive parameters �1; :::; �p from ~ei(d) and

obtain the estimates �̂2� = �̂2� (d; j) and ĉf = ĉf (j): Estimation of the

parameters can be done, for instance, by using the Splus functions ar.burg

or arima.mle. If p = 0 ;set �̂2� equal to n�1
P
~e2i (d) and ĉf equal to

�̂2� =(2�):

Step 3f: Set b2 = b(5�2�)=(9�2�) and estimate g00 by

ĝ00(t) =
1

nb32

nX
j=1

~K(
tj � t

b2
)Uj(m)

where ~K : R! R is a polynomial symmetric kernel such that ~K(x) = 0

for jxj > 1;
R ~K(x)dx = 0 and

R ~K(x)x2dx = 2 :Calculate I(ĝ00):

Step 3g: Calculate V and Copt from � and the estimated parameters obtained

in Step 3f. Set

bj = Copt n
(2��1)=(5�2�):

Step 3h: Increase j by one and repeat steps 3b through 3g 4 times. This

yields, for each d 2 G separatly, the ultimate value of �̂2� (d); as a function

of d:

Step 4: De�ne d̂ to be the value of d for which �̂2� (d) is minimal. This, together

with the corresponding estimates of the AR parameters, yields AIC�(p) (as a

function of p) and the corresponding values of �̂ and ĝ for the given order p:

Step 5: Select the order p that minimizes AIC�(p): This yields the �nal estimates

of � and g:

The factor (5�2�)=(9�2�) in step 3f in
ates the bandwidth b to a bandwidth b2,

which is optimal for estimating g00 in the case of � = �o. The estimated parameters,

the selected bandwidth b̂ as well as the estimated trend ĝ(t), t 2 [0; 1], by the

above algorithm are all consistent. Denote by bM the true optimal bandwidth that

minimizes the IMSE, then we have:

Theorem 4 Assume that the conditions of theorems 1 to 3 hold and that g is at

least four times continuously di�erentiable, then

(i) the results for �̂ as given in theorem 2 hold,
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(ii)

b̂ = bMf1 +Op(n
2(2�o�1)=(9�2�o))g; (31)

(iii)

ĝ(ti) = g(ti)f1 +Op(n
2(2�o�1)=(5�2�o))g: (32)

6 SEMIFAR forecasting

Let Y1; :::; Yn be observations generated by a SEMIFAR model of order p with pa-

rameter vector � = ( �2� ; d; �1; :::; �p)
T (where d = m + �). The aim is to predict a

future observation Yn+k for some k 2 f 1;2; 3; :::g: Denote by Xi a zero mean frac-

tional AR process of order p with parameter vector �� = ( �2� ; �; �2; :::; �p+1)
T ; and

de�ne tn+k = ( n+ k)=n = tn + k=n: Then

Yn+k = �(tn+k) + Un+k (33)

with

�(tn+k) = g(tn+k); Un+k = Xn+k (34)

if m = 0 ;and

�(tn+k) = Yn +
kX

j=1

g(tn+j); Un+k =
kX

j=1

Xn+j (35)

if m = 1. Thus, to predict Yn+k from Y1; :::; Yn; two problems need to be solved:

1. extrapolation of the function �(t) to t = tn+k;

2. prediction of the stochastic component Un+k:

Since for SEMIFAR models only general regularity conditions on g are imposed,

the deterministic trend g(t) may behave in an arbitrary way in the future. This is

in contrast to parametric trend models. However, we may obtain the predictions

of ĝ(tn+j) for j 2 f 1;2; :::; kg by a local constant or a local linear extesion of ĝ(tn).

�̂(tn+k) is obtained by inserting ĝ(tn+k) in (34) or ĝ(tn+j) for j 2 f 1;2; :::; kg in (35).

Note that Xi = Ui = Yi� g(ti) for m = 0 ;and Xi = Ui�Ui�1 = Yi� Yi�1� g(ti)

for m = 1 :Let 
(k) = cov( Xi; Xi+k) denote the autocovariances of Xi: Using the

mean square criterion, the best linear predictor of Un+k based on Y1; :::; Yn is de�ned
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by Ûn+k = �T
optX(n) where X(n) = ( X1; :::; Xn)

T and the vector �opt = ( �1; :::; �n)
T

minimizes the mean squared prediction errorMSE = E[(Un+k�Ûn+k)
2]: The values

of �opt and the corresponding optimal mean squared prediction error MSEopt are

given by

Theorem 5 For all integers r; s > 0; de�ne


(s)r = [ 
(r + s� 1); 
(r + s� 2); :::; 
(r)]T ; (36)

~

(n)
k =

kX
j=1



(n�1)
j ; (37)

and denote by �n = [ 
(i � j)]i;j=1;:::;n the covariance matrix of X(n): Then, the

following holds.

i) If m = 0 ;

�opt = ��1
n 


(n)
k ; (38)

MSEopt = 
(0)� [

(n)
k ]T��1

n [

(n)
k ]; (39)

ii) If m = 1 ;

�opt = ��1
n ~


(n)
k ; (40)

MSEopt =
k�1X

s=�(k�1)

(k � j sj)
(s)� [~

(n)
k ]T��1

n [~

(n)
k ]: (41)

Note in particular that, as k ! 1 ;the MSE tends to a �nite constant in the case

of a stationary stochastic component (m = 0), whereas it diverges to in�nity in the

case of a nonstationary stochastic component (m = 1) :More speci�cally we have

Corollary 1 De�ne cf = lim�!0 j�j2�f(�) where f is the spectral density of Xi; and

let

�(�) =
2�(1� 2�) sin��

�(2� + 1)
(42)

for 0 < j�j < 0:5 and �(0) = lim�!0 �(�) = 2 �:Then, as k ! 1 ;the following

holds:

i) If m = 0 ;

MSEopt ! 
(0) = var(Xi); (43)
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ii) If m = 1 ;

MSEopt � cf�(�)k
1+2�: (44)

Moreover, for known values of g and � a (1 � �)100%�prediction interval for

Yn+k; is given by

Ŷn+k � z�=2
q
MSEopt (45)

where Ŷn+k = �(tn+k + �T
optX(n) and the values of �opt and MSEopt are obtained

from theorem 1. If g and � are estimated, the quantities in (45) are replaced by the

corresponding estimated quantities.

7 Data examples

7.1 Exchange rate German Mark/US dollar

Figure 1a displays the logarithm of the daily exchange rate between the Ger-

man Mark (DM) and the US dollar, between September 1985 and August 1990

(n = 1287). More speci�cally, the logarithm of the value of 100 DM in US dollars,

divided by a baseline value, is plotted. There has been some discussion in the recent

literature about possible unit root behaviour or long memory in foreign exchange

rates (see e.g. Cheung 1993, Liu and He 1991, and references therein). In view of

this, it is interesting to see which hypothesis may be supported by �tting SEMIFAR

models. Using the BIC, we obtain p̂ = 0 ;with d̂ = 0 :96 and a 95%-con�dence

interval for d of [0:91; 1:00]: Thus, d appears to be slightly below 1 though the value

of 1 (unit root) is just in the con�dence interval. Moreover, there is an apparent

deterministic trend function. For the di�erence, the estimated function ĝ (�gure

1c) is almost always positive, indicating a predominantly increasing trend in the

original series. Almost no, or even a negative, trend can be observed between about

observations 600 to 800. Compared to the random variability, the trend in the dif-

ferenced series may appear negligible (�gure 1b). However, for the original data, it

is cumulated so that the deterministic trend function is the dominating component

(see �gures 1a and d). Note however that no formal test was applied here to test

for signi�cance of the trend. Formal procedures for doing so are currently under

investigation. The good �t of the model is demonstrated by �gures 1e and f where

the sample autocorrelations and the histogram of the residuals are displayed.
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In conclusion, for the observed period, the daily DM/US $ exchange rate is de-

scribed in good approximation by a process whose �rst di�erence consists of a de-

terministic trend plus a fractional autoregressive process with fractional di�erencing

parameter � = �0:04: Since d = m + � = 1 is just at the border of the 95%-

con�dence interval, a simpler, and perhaps acceptable, model for the stochastic part

of the �rst di�erence may be iid normal observations. Note that formal tests in Fong

and Ouliaris (1995), reject the hypothesis of random walk (i.e. d = 1 and po = 0)

for the DM/US $ exchange rate. Fong and Ouliaris conjecture that this may be due

to long-range dependence. Our results suggest that rejection of the random walk

hypothesis may be caused by the presence of a (slight) deterministic trend (which

is another type of long memory) instead of a stochastic long-memory component.

7.2 Temperature data for the northern hemisphere

Figure 2a displays, for the years 1854-1989 and the northern hemisphere, yearly

averages of monthly deviations of the observed temperature from monthly averages

obtained from the time period 1950-1979. The series seems to exhibit an increasing

S-shaped trend which is generally understood as \global" warming. The question

arises, whether, instead of a deterministic trend (global warming), this increase may

be explained by a stochastic or spurious trend.

Fitting SEMIFAR models of orders p = 0 ;1; 2; 3; 4; 5; the BIC turns out to have

a distinct minimum at p = 0 :The satisfactory autocorrelations and histogram of

the residuals (�gures 2b and c), con�rm that p = 0 provides a reasonable �t. The

estimated function g is an S-shaped function and the estimated value of d is 0.27

([0:14; 0:41]); indicating stationarity with long-range dependence in the stochastic

part of the process. In conclusion, within the given framework, the most plausi-

ble model for the temperature data appears to be an S-shaped deterministic trend

that shows a pronounced increase in the middle part, plus stationary long-memory

deviations. This supports, the conjecture of global warming.
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8 Final remarks

In this paper, we introduced a semiparametric method for time series modelling

that incorporates stochastic trends, deterministic trends, long-range dependence

and short-range dependence. Estimation of these models was discussed in details.

The trend function is modelled nonparametrically. In particular, the method helps

the data analyst to answer the question which of these components are present in the

observed series. How well the di�erent components can be distinguished depends on

the speci�c process and, in particular, on the shape of the trend function. Therefore,

in order that the proposed method is e�ective in general, the observed series must

not be too short. In cases where one has su�cient a priori knowledge about the

type of trend (e.g. linear, exponential etc.), parametric trend estimation is likely

to provide more accurate results. This can be done simply by replacing the general

function g in (1) by the corresponding parametric function.

Further re�nements of the method, such as local polynomial �tting of g, local

bandwidth choice (see e.g. Brockmann 1993), bootstrap con�dence intervals, fa-

ster algortihms (see Gasser et al. 1991) or other smoothing methods, etc., will

be worth pursuing in future. Also, various extensions of SEMIFAR models are

possible. For instance, as for classical ARIMA models, stochastic seasonal com-

ponents can be included by multiplying the left hand side of (1) by a polynomial

�seas(B) =
P
�j;seasB

sj where s 2 N is the seasonal period. For example, for

monthly data, s is typically equal to 12. Other extensions, such as inclusion of pa-

rametric and nonparametric explanatory variables, other seasonal components and

nonlinearities in the stochastic part of the process, are subject of current research.
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