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1. Introduction

Cointegration techniques have been applied widely in empirical economics in recent

years. Numerous tests for cointegration and estimation methods for cointegrating

vectors have been suggested in the literature. Almost all results are based on asymp-

totic theory and the performance in �nite samples can di�er substantially across tests

and estimation methods, even though methods might be asymptotically equivalent

and e�cient. Cheung and Lai (1993), Gregory (1994), Toda (1995), and Haug (1996),

among others, provided Monte Carlo comparisons of size distortions and of powers for

various tests for cointegration. Stock and Watson (1993), Gonzalo (1994), Kitamura

and Phillips (1995), and Ho and Sorensen (1996), among others, compared with the

Monte Carlo method the performance of estimators in terms of, e.g., bias in median

and dispersion as measured by the interquartile range.

The purpose of this paper is to study the performance in �nite samples of

tests for parameter restrictions on cointegrating vectors. The Monte Carlo method

is employed for these purposes. Testing hypotheses suggested by economic theory

is a central concern of econometrics and testing hypotheses about restrictions on

parameters in cointegrating vectors is no exception. The goal is to apply tests that

have close to correct size and high power.

Wald tests have been proposed for testing linear restrictions on cointegrating

vectors for di�erent, though asymptotically equivalent, estimation methods. This

Monte Carlo analysis studies the e�ects of varying the estimation technique on cal-

culating the Wald test. The Wald test statistics are distributed as �2 under the null

hypothesis and reduce to a t statistic when only one cointegrating vector is present

and only a single parameter is involved. The t statistic is then distributed asymptot-

ically as normal.

The asymptotically e�cient estimation methods considered for the Wald or t

tests in this paper are (in alphabetical order of the chosen abbreviations): Bewley et

al.'s (1994) Box{Tiao canonical variates based method (BWLY); Park's (1992) canon-



ical cointegration regression method (CCR); Phillips and Loretan (1991), Saikko-

nen (1991), and Stock and Watson's (1993) dynamic ordinary least squares method

(DOLS); Phillips and Hansen's (1990) fully modi�ed ordinary least squares method

(FM); Johansen's (1988, 1991) maximum likelihood method (JOH); and Phillips'

(1991) band spectral regression methods (PH). The most popular method in empir-

ical applications seems to be JOH. Less often used are CCR, DOLS, FM and PH.

Other methods have been suggested in the literature. BWLY has been proposed

more recently and is included in this study because it may outperform JOH point

estimates in certain cases, as demonstrated by Bewley et al. The above methods

are applied to several data generating processes (DGPs) of practical relevance. The

Wald or t statistic for a linear restriction on the cointegrating vector is computed

from the parameter and variance estimates of each method. Then, empirical sizes

and powers of these tests are calculated and compared. The Monte Carlo method is

used in connection with a DGP that allows for endogenous, weakly exogenous, and

strongly exogenous regressors in the sense of Engle et al. (1983).

In previous research, Stock and Watson compared �nite sample critical values

of the t statistic for parameter restrictions on cointegrating vectors of �ve of the six

methods considered above. Their DGP revealed relatively modest size distortions.

Further, Li and Maddala (1994) suggested to use the moving block bootstrap to

correct size distortions for the t statistic for three of the above six methods. However,

these studies did not report results on test powers of the t tests. On the other hand,

Inder (1993) reported results for powers of t tests for one of the above methods (FM)

and other methods not considered in my paper. His preferred choice was a two-stage

method combining an error-correction regression with the FM method.

Section 2 brie
y outlines the various estimation methods used in the Monte

Carlo study. In Section 3, the Monte Carlo design is explained and results are dis-

cussed. Section 4 concludes.



2. The Wald test in cointegrated systems

2.1 The Box{Tiao Method of Bewley et al.: BWLY

Bossaerts (1988) and Bewley, in several papers, suggested a method for coin-

tegrated systems of equations based on the levels canonical correlation analysis sug-

gested by Box and Tiao (1977).1 This is in contrast to Johansen's well known method

which relates levels to �rst di�erences and does therefore incorporate information

on the presence of unit roots into the estimation. Bewley et al. used the Monte

Carlo method to compare Johansen's estimators to theirs and found for a bivari-

ate �rst{order model that their estimator is in several relevant cases less dispersed

and leptocurtic in small samples than Johansen's.2 Gonzalo derived for the bivariate

�rst order model the asymptotic distribution of Bewley's Box{Tiao estimator. The

distribution is non{symmetric and non{standard. Also, it includes terms that lead

to �nite{sample bias in the median. Despite these asymptotic problems, hypothesis

tests on cointegrating vectors in small samples with this method may outperform

those with Johansen's method, parallel to the �ndings of Bewley et al. for properties

of the two estimators.

Following Yang and Bewley, consider a p{dimensional vector autoregressive

representation of order k for the cointegrating relationship:

�Yt = �%� 0Yt�1 + �1�Yt�1 + � � �+ �k�1�Yt�k+1 + # + vt; t = 1 ; : : : ; T; (1)

with vt distributed IIN(0, �). Yt is a p�1 vector of variables integrated of order one,

denoted by I(1), and # is a vector of constants. � is the �rst di�erence operator and

�i is a p� p matrix. It is assumed that 0 < r < p . Then,% is a full rank p� r matrix

of error-correction vectors and � is a full rank p� r matrix of r cointegrating vectors

such that � 0Yt is integrated of order zero, denoted I(0).

1See Bewley and Orden (1994), Bewley et al. (1994), Bewley and Yang (1995), and Yang and

Bewley (1996). The last two papers describe cointegration tests within this system.
2See Phillips (1994) and Stock and Watson (1993) for a theoretical and an empirical study,

respectively, for Johansen's method. Phillips' results also apply to Bewley's Box-Tiao estimator.



The modi�ed Box{Tiao procedure described in Bewley and Orden uses the

least squares residuals gt and ht from regressing Yt on �Yt�1, : : :, and �Yt�k+1, and

from regressing [Y 0

t�1 1]0 on the same set of regressors, respectively. The speci�cation

considered in this paper allows for a constant in the cointegrating vector only. In other

words, the constant # is restricted.3 Next,

G0 = [ g1; : : : ; gT ]

and

H 0 = [ h1; : : : ; hT ]

are formed and the eigen{problem

hc�+iG0G�G0H(H 0H)�1H 0G
i bei = 0

is solved for p pairs of eigenvalues c�+i and eigenvectors bei, ordered so that c�+1 �

: : : � c�+p. In a model with r cointegrating vectors, the estimator of � is associated

with the r smallest eigenvectors:

b� = [be1; : : : ; ber] :
Parallel to Johansen and Juselius (1990) and Johansen (1991), a Wald test

for linear restrictions is applicable.4 The null hypothesis for linear restrictions on the

cointegrating vectors is

K 0� = 0 ;

where K is a (p+1)�(p+1�s) matrix. The Wald test{statistic involves normalizing

K 0 b� by its `standard deviation':

BWLYW = T 
 trace
h
fK 0 b�(cD�1 � I)�1 b� 0Kg(K 0bebe0K)�1

i
;

3See Johansen (1991) on the role of the constant in equation (1).
4Yang (1998) has recently suggested modi�cations that can be applied to any systems estimator

of a cointegrated process with variables integrated of order one. Wald like tests, not considered here,

are suggested based on estimators modi�ed to achieve asymptotic e�ciency and asymptotic mixed-

normality so that the test is asymptotically �2{distributed .



with be the eigenvectors corresponding to c�+r+1 > : : : > c�+p+1 and cD = diag(c�+1; : : : ; c�+r).
The BWLYW statistic is asymptotically distributed as �2 with r(p � s) degrees of

freedom. In the case of r = 1, the Wald statistic reduces to a statistic that is asymp-

totically distributed as normal:

BWLY = T :5K 0 b�1
24(c�+�11 � 1)

0@p+1X
i=2

(K 0bei)2
1A35�:5 :

The Bewley estimator involves choosing the unknown autoregressive order k.

Reimers (1993) compared various data based lag selection criteria in cointegrated

vector autoregressive systems using the Monte Carlo method and recommended the

Schwarz or Hannan{Quinn criterion. These are consistent estimators of the lag order,

whereas Akaike's criterion is not. Therefore, I will employ the Schwarz criterion.

2.2 Park's canonical cointegration regression method: CCR

Park (1992) derived a canonical cointegration regression estimator, �+, for

the cointegrating vector � (normalized) in the following single equation cointegration

model:

yt = �xt + ut; (2)

where ut is I(0) with mean zero. Park's canonical regression procedure is based on the

idea that cointegrating vectors are not unique and transformations using stationary

components of the model do not alter the cointegrating relation. Nonparametric

data transformations are used to remove asymptotically the cross serial correlations

between the regression errors and the innovations of the regressors.

It is assumed that x0t is one and �xit = vit; i = 1 ; : : : ; m(so that p = m+1)

with the vit representing mean-zero random errors. De�ne z0t = ( ut v
0

t) and


 = lim
T!1

(1=T )
TX
t=1

TX
j=1

E(zjz
0

t)

� = lim
T!1

(1=T )
TX
t=1

tX
j=1

E(zjz
0

t):



The matrices 
 and � are partitioned in conformity with zt:


 =

"

uu 
uv

vu 
vv

#

and

� =

"
�uu �uv
�vu �vv

#
:

Next, yt and xt are modi�ed in order to eliminate nuisance parameters:

y+t = yt � bz0t
 b��1 b�2

b� + "
0b
�1vv b
vu

#!

and

x+t = xt � bz0t hb��1 b�2

i
;

where b�2 =
�b�vu b�vv�0 ;

b� = T�1
TX
1

bztbz0t;
and b� is the least squares estimate from equation (2). The next step is to apply least

squares estimation to equation (2) with y+t and x+t instead of yt and xt in order to

get the asymptotically e�cient estimators �+ and the associated variance-covariance

matrix hb
uu � b
0vu b
�1vv b
vui (x0t+x+t )�1 :
The Wald statistic for H0: h(�) = 0 with H(�) = @h=@� 0 of full rank q, the number

of restrictions, is:

CCR =
�
h0( b�+) hH( b�+)(C 0C)�1H( b�+)0i�1 h( b�+)� =b
u�v;

where


u�v = 
uu � 
uv

�1
vv 
vu

and is the long{run variance and b
u�v its estimate . C is the design matrix of the

CCR. The statistic has a limiting �2 distribution with q degrees of freedom. When

only one parameter is involved and r = 1, this test reduces again to a t statistic with

an asymptotic normal distribution.



The estimations of the long{run variance{covariance matrix 
 and � are car-

ried out using non{parametric methods. The method of Andrews (1991) is used

to calculate the test{statistic denoted by CCR-A. A quadratic spectral kernel with

the associated automatic, data{dependent, plug{in bandwidth estimator is employed.

Also, this kernel estimator is prewhitened with a �rst order vector autoregression, as

suggested by Andrews and Monahan (1992). Furthermore, to provide a comparison

for the performance of Andrews' estimators, the Bartlett window with four lags is

used instead to calculate the variances and covariances, denoted by CCR-B.

2.3 Phillips and Loretan, Saikkonen, and Stock and Watson's

dynamic ordinary least squares method: DOLS

Phillips and Loretan (1991), Saikkonen (1991), and Stock and Watson (1993)

suggested the dynamic ordinary least squares (DOLS) method for estimating coin-

tegrating vectors. Stock and Watson compared di�erent asymptotically e�cient es-

timators and recommended, based on a limited Monte Carlo study for U.S. money

demand, the DOLS estimator. If the variables are I(1) and there are r cointegrating

vectors among the p variables, then there are r least squares regressions. Each re-

gression has (p � r) regressors in levels, a constant, contemporaneous values, leads,

and lags of the �rst di�erence of each regressor. The DOLS estimator has a mixture

normal distribution and the Wald statistic for restrictions on the parameters in the

cointegrating vectors is distributed as �2. Again, the test reduces to a t statistic with

a limiting normal distribution when r = 1 and only one parameter is involved. I

use Schwarz's criterion in order to determine the appropriate lead and lag lengths for

the DOLS regressions. I calculate for the Wald (or t) statistics the variances again

with the quadratic kernel estimator of Andrews, denoted by DOLS-A.5 The Bartlett

method is used too, denoted by DOLS-B.

5See Stock and Watson.



2.4 Phillips and Hansen's fully modi�ed regression method:

FM

The procedure of Phillips and Hansen is similar to Park's. It is also a two{step

procedure and the asymptotic distributions of the two estimators are identical. Park's

procedure is to correct both, yt and xt, before applying least squares. In contrast,

Phillips and Hansen �rst modi�ed yt to get y
++

t and then corrected the least squares

estimates from the regression of y++t on xt in order to eliminate nuisance parameters,

leading to b�++. Phillips and Hansen's method employs semi-parametric corrections

that also lead to asymptotically median-unbiased estimates.

Phillips and Hansen's procedure applies least squares to equation (2) to get

the residuals bz0t = (but �x0t). De�ne

�++vu = �vu � �vv

�1
vv 
vu:

Next, the variance{covariance matrices are estimated again with Andrews' procedure.

The term �++vu represents the bias (due to endogeneity) of the regressors xt. The fully

modi�ed estimator of � is given by

b�++ = "
TX
t=1

�
y++t x0t � (0 b�++vu 0)�

# "
TX
t=1

xtx
0

t

#�1
;

where

y++t = yt � b
uv b
�1vv �xt:
The Wald test is

FM-A = h0( b�++) hH( b�++)(x0txt)�1 b
u�vH 0( b�++)i h( b�++):
The test statistic with the Bartlett window instead is denoted FM-B. The asymp-

totic corrections of the least squares estimator �++ and of �+ are equivalent. Both

estimators eliminate nuisance parameters asymptotically.



2.5 Johansen's maximum likelihood method: JOH

Johansen (1991) derived the Wald test within the following vector autoregres-

sive representation of order k:

Yt = �1Yt�1 + � � �+�kYt�k + # + vt:

The system is rewritten as an error-correction model, as in equation (1):

�Yt = �1�Yt�1 + � � �+ �k�1�Yt�k+1 +� Yt�k + #+ vt;

where

�i = � (I � �1 � � � � � �i) ; i = 1 ;2; � � � ; k � 1;

and

� = � (I � �1 � � � � � �k) :

The rank of the matrix � determines the number r of cointegrating vectors among

the variables in Yt, 0 � rank (�) = r < p . Ifr = 0, then � = 0 and all variables

appear only in �rst di�erences in the model and there are no cointegrating vectors.

If 0 < r < p , then the matrix � =&� 0 and � 0Yt is I(0).

For this procedure, the ordinary least squares residuals Rkt and R0t are calcu-

lated from regressions of [Y 0

t�k 1]0 on �Yt�1, : : : , and �Yt�k+1 and of �Yt on the same

set of regressors, respectively, to purge the system of short{run dynamics. Reduced

rank regressions are then employed to estimate the cointegrating vectors. The major

di�erence to Bewley's method is that it relates in the canonical correlation analysis

the levels of lagged Yt, instead of �rst di�erences, to Yt. Bewley's method extracts

�rst the most nonstationary components and then the stationary canonical variates,

whereas Johansen's method extracts �rst the stationary canonical variates. Bewley

et al. argued that their method ensures small sample (in addition to asymptotic)

orthogonality between the estimated stationary and most nonstationary variates.

The cross correlation matrix of the residuals is given by

Sij = T�1
TX
i=1

RitR
0

jt;



where i; j = 0 ; k. The eigenvalues c��1 > : : : > c��p+1 are the solutions of
�����Skk � Sk0S

�1
00 S0k

��� = 0

and represent the squared canonical correlations.

For a given r, the cointegrating vectors in � are given by the eigenvectors asso-

ciated with the r largest eigenvalues, c��1 > : : : > c��r and these are the reduced rank

estimators of �. It can be shown that this estimator is equivalent to the maximum

likelihood estimator when errors are Gaussian. Johansen and Juselius (1990) and Jo-

hansen (1991) suggested to use a Wald test for the linear restrictions as described in

Section 2.1. For the JOH statistic, be is replaced by the eigenvectors corresponding toc��r+1 > : : : > c��p+1 and cD = diag(c��1; : : : ;c��r). The JOH statistic is asymptotically

distributed as �2 with r(p � s) degrees of freedom. In the case of r = 1, the Wald

statistic reduces again to a t statistic that is asymptotically distributed as normal.

2.6 Phillips' spectral regression method: PH

Phillips (1991) proposed to employ a block triangular representation of the

cointegrated system and to apply nonparametric methods to the regression errors

from the system. The advantage of this approach is that it is not necessary to be

explicit about the generating mechanism of the errors. Phillips suggested to use so{

called Hannan{e�cient spectral regressions. Because cointegration is concerned with

long{run relationships, it is possible to focus on the most relevant frequency by using

band spectral regression at zero frequency. In other words, the regressors are I(1)

processes whose power is concentrated at the origin. Full frequency band regression

is not needed for e�cient estimation in large samples. However, it may be useful

in small samples. Furthermore, the system spectral method leads to cointegration

estimators that are asymptotically median unbiased and symmetrically distributed

and an optimal theory of inference applies. Hypothesis tests can be carried out using

asymptotic �2 tests. Also, full spectral estimation is asymptotically equivalent to

maximum likelihood.



The block triangular error correction representation is given by

�Yt = 
�0Yt�1 +  t; (3)

with 
0 = ( �1; 0), �0 = (1 ; �� 0). Further,

 t =

"
1 � 0

0 I

#
�t

and

Yt =

"
Y1t
Y2t

#
with Y1t an I(1) variable and Y2t a vector of m variables, each I(1), so that p = m+1.

� 0t = ( �1t �2t) and �t is I(0).

The �rst step is to apply least squares to equation (3) to get the residuals

b t = � Yt � 
 b�0Yt�1:
Next, �nite Fourier transforms are calculated:6

!�(�) = (2 �T)�:5
TX
t=1

�Yt exp
it�

!�(�) = (2 �T)�:5
TX
t=1

Y�t exp
it�

!Y (�) = (2 �T)�:5
TX
t=1

Yt�1 exp
it�

!b (�) = (2 �T)�:5
TX
t=1

b t expit�

for � � [��; �], Y 0

�t = ( Y1t;�Y
0

2t), and !0Y (�) = ( !1(�); !2(�))', partitioned con-

formably with Yt. Also, it holds that !b (�) = !�(�)�
 b�0!Y (�). Next, the smoothed
periodogram estimates are computed.7 The e�cient weight function

�(�s) = bf  (!j)�1
6The Cooley{Tukey Fast Fourier algorithm in GAUSS is used.
7Instead of the smoothed periodogram estimates, other conventional spectral estimates could be

used.



is used for all

�s � B(j) =
�
!j �

�

2M
< � � !j +

�

2M

�
for a frequency band with width �

M
so that M !1 when M

T
! 0:

bf  (!j) =
2M

T

X
B(j)

[!�(�s)� 
 b�0!Y (�s)] [!�(�s)� 
 b�0!Y (�s)]�
bf22(!j) =

2M

T

X
B(j)

!2(�s)!2(�s)
�

bf2�(!j) =
2M

T

X
B(j)

!2(�s)!�(�s)
�:

The estimate b� is consistent so that

f  (!j)
p
! f  (!)

as T !1 . The full spectrum estimator of� is

~� = �

24 1

2M

MX
j=�M+1


0 bf�1  (!j)
 bf 0  (!j)
35�

24 1

2M

MX
j=�M+1

bf�12� (!j)
bf�1  (!j)


35
Nonlinear estimation is not necessary because 
 is known. The spectral estimator at

the origin (zero frequency) is

~�(0) =
h
� bf�122 (0)

bf2�(0) bf�1  (0)
. h
0 bf�1  (0)
i :
The usual Wald statistic (denoted PH(zero))is constructed for ~�(0) with the variance

de�ned by8

VT0 =
2M

T

h

0 bf�1  (0)
 bf22(0)i�1 :

3. The Monte Carlo Design and Results

The DGP used in my Monte Carlo study is similar to the one used by, among

many others, Gonzalo (1994). It is given for p = 2 by

yt � �x1t = �t
8Results for the PH statistic calculated with the full spectrum estimators, denoted PH(full), are

not reported in all Tables because, in general, PH(zero) performs better.



a1yt + a2x1t = �t

�t = ��t�1 + ut

�t = �t�1 + �(�t�12 � �t�13) + et

and "
ut
et

#
= iid N

""
0

0

# "
1 ��

�� �2

##
:

Gonzalo showed that this DGP can be expressed as a DGP with moving average

errors or, alternatively, as an error{correction model. The DGP can be extended to

p > 2.9 The parameter space experimented with is:

p = (2 ;3)

T = (50; 100; 250)

� = (1 ;1:08; 1:14)

a1 = (0 ;1)

a2 = 1

� = ( :3; : 6; : 8; : 9)

� = (0 ; : 8)

� = ( �:5;0; : 5)

� = ( :5;1; 2):

The pseudo-normal variates ut and et are generated by the RNDN function in GAUSS.

A sample of size T+200 is generated and 5000 replications are used for every experi-

ment. I start at u0 = 0 and e0 = 0 and discard the �rst 200 observations to mitigate

startup e�ects. The parameter value choices for the DGP are motivated by choos-

ing realistic values so that the DGP should come close to actual processes found in

non{arti�cial data.10

I used GAUSS, COINT 2.0, and own code for all simulations. When a1 = 0,

9See Haug, footnote 27, for details on one possibility.

10See Haug for more details.



x1t is weakly exogenous with respect to the parameter of interest and with a1 = 1 it

is endogenous. It is strongly exogenous when a1 = 0 and � = 0.

The inclusion of stationary autoregressive errors (AR) at a long lag (twelve

lags in the above DGP) is motivated by a study by Rossana and Seater (1995) who

demonstrated this to be a feature of many macroeconomic time{series at a disaggre-

gated level.11 This case will be considered only in Table 4 and � will be set to zero

otherwise.

Table 1 reports the empirical sizes of the tests for a nominal 5% level two{

sided t test when � = :8. For BWLY and JOH, the distributions of the t statistic are

invariant to changes in the value of �, the sign of �, and to whether a1 = 1 or a1 = 0.

Various values for T, �, and � are considered. In general, size distortions increase

as the sample size decreases, except for BWLY, where distortions change little. For

T=250, the t statistic calculated with Johansen's method has overall the most stable

size with the least distortion across the various values of � and � when a1 = 1. It has

the least size distortion of all methods in seven out of the nine cases considered. In

the two other cases, it ranked second and third. The size distortion of JOH ranges

from .093 to .109 for the nominal .05 level test size. This distortion is not trivial,

however, compared to the other tests, which reach empirical sizes in the 90% range,

it has rather good size properties. When a1 = 0, the preferred tests in terms of size

are CCR-A and JOH, followed by FM-A. Di�erences are not very large.

Table 1 also gives results for T=100 and T=50. The relative rankings change

somewhat for a1 = 1. However, overall JOH is still the preferred test with the least

size distortions. On the other hand, the FM-A test is preferred when a1 = 0. It leads

to much less size distortions in smaller samples than CCR-A and JOH.

In general, BWLY does not perform better in Table 1 than JOH. Also, CCR,

DOLS, and FM perform in all cases considered better with Andrews method (A) than

with the Bartlett window (B). In summary, the results for size distortions suggest to

11They further showed that temporal aggregation can distort this underlying process and lead to

an integrated moving average process instead.



employ the JOH test when a1 = 1 and the FM-A test when a1 = 0.12 Alternatively,

the results suggest that test sizes should be corrected. The literature has suggested

bootstrap techniques for this purpose.13 Li and Maddala (1994) suggested to use the

moving block bootstrap and showed that it works well for t statistics in cointegrated

systems.14

Tables 2 and 3 report powers of t tests. The null hypothesis is H0 : � = 1

and the alternative hypothesis is H1 : � = 1 :14. Powers depend crucially on the

value of � and larger values would produce much higher powers and the reverse holds

for lower values.15 For the power studies, the untrue null hypothesis that � = 1 is

tested when the data are generated under the alternative, and the Tables report the

rejection frequency for two{sided t tests at the 5% signi�cance level. Size{adjusted

or empirical powers are reported throughout the paper. These powers are based on

critical values calculated as quantiles under the null hypothesis, for every sample size

and DGP used (instead of using asymptotic critical values).

Table 2 depicts powers for � = :8 when a1 = 1. For a sample of 250, the BWLY

statistic produces in several cases the highest powers. However, it also produces out-

liers with the lowest powers among all test. The same holds true for samples of T=100

and T=50, however, the performance of the BWLY test deteriorates somewhat rel-

ative to the other tests as T falls. Contrary to Bewley et al.'s �ndings, the earlier

mentioned asymptotic problems of Bewley's estimator come to bear when testing hy-

potheses on cointegrating vectors. When T=250, CCR-B leads overall to the highest

and most stable powers across the various values of � and �. When T=100, FM-B

performs relatively well, followed closely by PH(zero), DOLS-B, and CCR-B. When

T=50, the performance of DOLS-B, FM-B, CCR-B, and PH(zero) is very similar.

Overall, the CCR-B test is preferable in terms of power when a1 = 1. In general, the

12See Banerjee et al. (1993, Chapter 8) on testing for a1 = 0.
13Algebraic derivations of Edgeworth expansions for size corrections seem to be too cumbersome

here.

14See also Davidson and MacKinnon (1996) on sizes of bootstrap tests in general.

15Table 4 considers H1 : � = 1 :08.



Bartlett window (B) outperforms Andrews' method (A) in the power studies.

Table 3 studies the powers of the t tests for � = :8 when a1 = 0. The BWLY

test performs well in many cases but again produces outliers with the lowest powers

among all tests. Regardless of sample size, the PH(zero) test leads overall to the

highest and most stable powers among all tests and it is the preferred test when

a1 = 0.

Finally, Table 4 studies the behavior of the tests for � = :6 instead of � = :8,

three instead of two cointegrated variables, AR errors, and � = 1 :08 instead of 1:14

under the alternative hypothesis. To save space, Table 4 reports results only for one

value of � and �. Before discussing the e�ect of changing �, I will discuss the other

cases. Increasing p leads to more size distortion and lower powers in general, but

leaves the relative rankings of the tests unchanged. Similarly, the introduction of AR

errors into the DGP increases size distortions and lowers powers in general without

changing relative rankings. As expected, a lower value of � under the alternative

hypothesis leads to substantially lower powers.

For � = :6 and a1 = 1, the results for powers in Table 4 di�er from those in

the other Tables where � = :8. The parameter � measures the speed of adjustment

to the equilibrium cointegrating relationship. A high value indicates a slower speed

of adjustment and vice versa. Bewley et al. (1994) reported experimental results for

Johansen's estimator that showed that it performs well when speeds of adjustment

are high and that it produces outliers when the speed of adjustment is slow.16 Table

4 con�rms these results for the t tests. JOH produces the highest and most stable

powers when � takes on low values of .6 or .3 (not reported), however, it performs

worse than other tests when � takes on larger values of .8 or .9 (not reported). On

the other hand, when a1 = 0, changes in � do not a�ect the previous results.

16Phillips (1994) provided a theoretical analysis showing that the �nite sample distribution is

leptocurtic in the general case.



4. Conclusion

This paper used the Monte Carlo method to study the performance of tests

of linear restrictions on cointegrating vectors. The t statistics were calculated for

several cointegration estimators and size distortions and test powers were compared.

In terms of size distortions, Johansen's t test is preferred.17 However, the size is often

double of its nominal value and bootstrap or other techniques should be considered

to correct sizes, as suggested by Li and Maddala (1994). Johansen (1998) proposed

recently a Bartlett type correction factor for the likelihood ratio instead of the Wald

test in cointegrating systems.

In terms of size{adjusted test powers, the JOH test performance depends crit-

ically on the speed of adjustment to the cointegration equilibrium and produces rel-

atively low powers when the adjustment speed is slow. Instead, the CCR-B test is in

general preferred when regressors are not weakly exogenous, and the PH(zero) when

they are weakly or strongly exogenous. These results suggest to explore size correc-

tions for the CCR and PH based tests. Xiao and Phillips (1998a) developed recently

asymptotic expansions for Wald tests. They proposed a modi�ed Wald test that uses

a bandwidth selection criterion to minimize second order e�ects and is modi�ed by

using consistent estimates of second order terms.18

Overall, the Monte Carlo results indicate serious size distortions of Wald tests.

Also, powers in samples of size 100 and below are very low for the Wald tests in

cointegrated systems. The paper shows that the problems of Wald tests found in

stationary cases are compounded in the cointegrating cases.19

17When a1 = 0, the FM-A test has somewhat better size in samples of 50 and 100 observations

than JOH.
18See also Xiao and Phillips (1998b) on the issue of using second order expansions and mean

squared error approximations for e�cient frequency domain regression estimators.

19See for example Bera et al. (1981).



REFERENCES

Andrews, D. W. K., 1991, Heteroskedasticity and autocorrelation consistent covari-

ance matrix estimation, Econometrica 59, 817{858.

Andrews, D. W. K., and Monahan, J. C., 1992, An improved heteroskedasticity

and autocorrelation consistent covariance matrix estimator, Econometrica 60,

953{966.

Banerjee, A., Dolado, J. J., Galbraith, J. W., and Hendry, D. F., 1993, Cointegration,

error{correction, and the analysis of non{stationary data (Oxford University

Press, Oxford, UK).

Bera, A. K., R. P. Byron, and C. M. Jarque, 1981, Further evidence on asymp-

totic tests for homogeneity and symmetry in large demand systems, Economics

Letters 8, 101{105.

Bewley, R., and Yang, M., 1995, Test for cointegration based on canonical correlation

analysis, Journal of the American Statistical Association 90, 990{996.

Bewley, R., and Orden, D., 1994, Alternative methods of estimating long{run re-

sponses with applications to Australian import demand, Econometric Reviews

13, 179{204.

Bewley, R., Orden, D., Yang, M., and Fisher, L. A., 1994, Comparison of Box{Tiao

and Johansen canonical estimators of cointegrating vectors in VEC(1) models,

Journal of Econometrics 64, 3{27.

Bossaerts, P., 1988, Common nonstationary components of asset prices, Journal of

Economic Dynamics and Control 12, 348{364.

Box, G. P. E., and Tiao, G. C., 1977, A canonical analysis of multiple time series,

Biometrika 64, 355{365.



Cheung, Y.{W., and K. S. Lai, 1993, Finite sample sizes of Johansen's likelihood

ratio tests for cointegration, Oxford Bulletin of Economics and Statistics 55,

313{328.

Davidson, R., and MacKinnon, J. G., 1996, The size distortion of bootstrap tests,

Queen's University, Institute for Economic Research, Discussion Paper No. 936.

Engle, R. F., Hendry, D. F., and Richard, J.{F., 1983, Exogeneity, Econometrica

51, 277{304.

Gonzalo, J., 1994, Comparison of �ve alternative methods of estimating long{run

equilibrium relationships, Journal of Econometrics 60, 203{233.

Gregory, A., 1994, Testing for cointegration in linear quadratic models, Journal of

Business and Economic Statistics 12, 347{360.

Haug, A. A., 1996, Tests for cointegration: A Monte Carlo comparison, Journal of

Econometrics 71, 89{115.

Ho, M. S., and Sorensen, B. E., 1996, Finding cointegration rank in high dimension

systems using the Johansen test. An illustration using data based Monte Carlo

simulations, Review of Economics and Statistics 78, 726{732.

Inder, B., 1993, Estimating long-run relationships in economics, Journal of Econo-

metrics, 57, 53 68.

Inder, B., 1995, Finite sample arguments for appropriate estimation of cointegrating

vectors, Monash University, Department of Econometrics.

Johansen, S., 1998, A small sample correction for tests of hypotheses on cointegrating

vectors, European University Institute.

Johansen, S., 1991, Estimation and hypothesis testing of cointegration vectors in

Gaussian vector autoregressive models, Econometrica 59, 1551{1580.



Johansen, S., 1988, Statistical analysis of cointegration vectors, Journal of Economic

Dynamics and Control 12, 231{254.

Johansen, S., and Juselius K., 1990, Maximum likelihood estimation and inference

on cointegration - With applications to the demand for money, Oxford Bulletin

of Economics and Statistics 52, 169{210.

Kitamura, Y., and P. C. B. Phillips, 1995, E�cient IV estimation in nonstationary

regression, Econometric Theory 11, 1095{1130.

Li, H., and G. S. Maddala, 1994, Small sample inference in cointegrated systems

using bootstrap methods, paper presented at the Econometric Society Summer

Meetings in Quebec City.

Park, J. Y., 1992, Canonical cointegrating regressions, Econometrica 60, 119{143.

Phillips, P. C. B., 1994, Some exact distribution theory for maximum likelihood

estimators of cointegrating coe�cients in error{correction models, Econometrica

62, 73{93.

Phillips, P. C. B., 1991, Spectral regression for cointegrated time series, in: Non-

parametric and semi{parametric methods in economics and statistics, ed. by

W. Barnett, Cambridge University Press, Cambridge.

Phillips, P. C. B., and Hansen, B. E., 1990, Statistical inference in instrumental

variable regression with I(1) processes, Review of Economic Studies 57, 99{125.

Phillips, P. C. B., and M. Loretan, 1991, Estimating long run economic equilibria,

Review of Economic Studies 58, 407 436.

Reimers, H., 1993, Comparison of tests for multivariate cointegration, Statistical

Papers 33, 335-359.

Rossana, R. J., and Seater, J. J., 1995, Temporal aggregation and economic time

series, Journal of Business and Economic Statistics 13, 441{451.



Saikkonen, P., 1991, Asymptotically e�cient estimation of cointegrating vectors,

Econometric Theory 7, 1{21.

Stock, J. H., and Watson, M. W., 1993, A simple estimator of cointegrating vectors

in higher order integrated systems, Econometrica 61, 783{820.

Toda, H. Y., 1995, Finite sample performance of likelihood ratio tests for cointe-

grating ranks in vector autoregressions, Econometric Theory 11, 1015 1032.

Xiao, Z., and P. C. B. Phillips, 1998a, Higher order approximations for Wald statis-

tics in cointegrating regressions, Working Paper, available from

http://korora.econ.yale.edu/phillips.htm.

Xiao, Z., and P. C. B. Phillips, 1998b, Higher order approximations for frequency

domain time series regressions, Journal of Econometrics 86, 297 336.

Yang, M., 1998, System estimators of cointegrating matrix in absence of normalising

information, Journal of Econometrics 85, 317 337.

Yang, M., and Bewley, R., 1996, On cointegration tests for VAR models with drift,

Economics Letters 51, 45{50.


