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Abstract

Aiming at optimal prediction of the correct note corresponding to a vocal

time series we trained a classification algorithm on the basis of parts of inter-

pretations of Tochter Zion (Händel) and tested the algorithm on the remaining

parts.

As classification algorithm we use a radial basis function support vector

machine together with a “Hidden Markov” method as a dynamisation mech-

anism and some smoothing for categorical data. With this we were able to

obtain a minimum of 5% average classification error and a maximum of 26%

on data from an experiment with 16 singers.
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1 Introduction

Analogously to speech recognition systems on computers, our aim is to train a

classification algorithm in order to be able to predict the correct note corresponding

to a vocal time series.

As classification algorithm we use a radial basis function support vector machine

together with a “Hidden Markov” method as a dynamisation mechanism. With

this we were able to obtain a very reasonable predictive power on data from an

experiment with 16 singers singing “Tochter Zion” (Händel).

The paper is structured as follows: In Section 2 data preparation is described. In

Section 3 we describe the statistical methods used for prediction. In Section 4 the

results are reported and discussed.

2 Data Preparation

The time series data from an experiment with 16 singers singing “Tochter Zion”

(Händel) (cp. Weihs et al., 2001) is cut into overlapping sections of 256 observations,

overlaps starting in the middle of the preceding section. For all of these sections the

periodogram (cp. Brockwell and Davis, 1991) has been calculated (data sampled

with 11025 Hz in a 16 bit resolution). Hence, we get roughly 86 (= 2× (11025/256))

periodograms per one second of sound, whereas the duration of the whole song is

roughly 60 seconds.

In order to reduce complexity, we restricted the frequencies of the periodograms for

further analyses to those frequencies that can be performed by the human voice,

including fundamental frequencies and a reasonable amount of overtones. In partic-

ular, we chose the 40 Fourier frequencies in [258.4 Hz, 1938.0 Hz] for women, and

40 Fourier frequencies in [129.2 Hz, 1808.8 Hz] for men. Each of these frequencies

becomes a variable in the following sections.

“Tochter Zion” has the form ABA. The first parts A and B are used as the learning set

L. For each section in these two parts the algorithm is given the correct note (corre-

sponding to a fundamental frequency) ideally sung in the corresponding time period.
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The correct fundamental frequencies are derived from the piano accompaniment as

well as starting and ending points of the notes. A suitable segmentation procedure

has been described by Ligges et al. (2002). For our purposes, the segmentation

results were manually approved or corrected, respectively.

The last part A is used for assessing the goodness of the note classification (test

set T), i.e. the correct note is compared to the note predicted by the trained classifier.

3 Statistical Methods

3.1 Learning of Prediction Rules

After data preparation, different prediction rules are built on the learning data that

represent different stages of a multi-step learning procedure:

1. Basic quantization of evidence

The evidence on each note n ∈ N := {1, ..., N} in the observed periodogram

~xt at time point t, t = 1, ..., T , is quantized by the membership functions

m : N × ~x ∈ X of support vector machines with radial basis functions (see

Section 3.2). The membership functions are scaled such that for any given

periodogram they define a probability distribution over the notes: m(n, ~x) ≥ 0

and
∑N

n=1 m(n, ~x)) = 1 for all n ∈ N and all ~x ∈ X ⊆ RK .

2. Static Prediction

In the static fashion the note n̂s
t with the highest current evidence m(n, ~xt)

from the periodogram ~xt is predicted:

n̂s
t := arg max

n∈N
(m(n, ~xt)) (1)

3. Estimation of transition probabilities between notes

The transition probabilities between true notes are estimated by the observed

frequencies on the learning set.

4. Dynamized Prediction

A Hidden Markov Model (see Section 3.3) is instantiated with these transition
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probabilities and the scaled membership values as emission probabilities. With

this model, we estimate the probability p(n|~x1, ..., ~xt) that the true note is

n given the current observed periodogram ~xt and all observed periodograms

before ~x1, ..., ~xt−1. Based on these estimates, the second rule predicts the note

with highest estimated probability:

n̂d
t := arg max

n∈N
(p̂(n|~x1, ..., ~xt)) (2)

5. New quantization of evidence from predictors

How often a note n is confused with another by some predictor n̂ 6= n on the

learning set is counted in the so-called confusion matrix:

C(L) =


c1,1 c1,2 . . . c1,K

c2,1 c2,2 . . . c2,K

...
...

. . .
...

cK,1 cK,2 . . . cK,K

 (3)

with ci,j :=
∑TL

t=1 Ii(n̂t)Ij(nt). Divided by its sum ci,. :=
∑TL

t=1 Ii(n̂t) each row

of C(L) gives the relative frequencies on the learning set that j was the true

note, given that i was predicted. The standardized rows are thus estimators

of the conditional probabilities for each note p(j|n̂ = i):

p̂(j|n̂ = i) :=
ci,j

ci,.

.

That way, p̂(n|n̂s) and p̂(n|n̂d), n, n̂s, n̂d ∈ N, quantize the evidence one gets

from the predictions n̂s or n̂d for the note n.

6. Smoothed Static and Dynamic Prediction

Especially for professional singers vibrato is observed in singing. In order not

to mix vibrato with tone changes, a smoothing algorithm with a window size

adapted to the individual singer is used. To do smoothing at time point t,

one uses the evidence for the notes one gets from p̂(n|n̂s
s) or p̂(n|n̂d

s) in some

window around t: s ∈ Wt(w) := [max(t− w, 1), min(t + w, T )]. To predict,

equal weight is given to the evidence at any time point s in the interval:

n̂ss
t := arg max

n=1,...,N

(∑
s∈Wt

p̂(n|n̂s
s)

)
(4)

n̂sd
t := arg max

n=1,...,N

(∑
s∈Wt

p̂(n|n̂d
s)

)
(5)
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The optimal size of w ∈ {1, ..., L} is determined in terms of learning error rate.

L is some definition of the minimum length of a tone. Here, L = 20 which is

the length of time of a quaver in the given experiment.

3.2 Support Vector Machines with Radial Basis Functions

(RBFSVM)

For the quantization of the strength of membership we use support vector ma-

chines using radial basis function kernels (cp. Vapnik, 1995, and Schölkopf, 1998)

as implemented in the Support Vector Machine (SVM) toolbox 2.51 for Matlab by

Schwaighofer (2002).

SVMs are identifying so called “support vectors” most important for the distinction

between objects of two classes given measurements ~x ∈ X on the objects. We train

support vector machines for each note n (y(n) := 1) against all others {1, ..., N} \n
(y(n) := −1) on the basis of the observed periodogram ~x ∈ X. The support vectors

are defining points of the decision surface between these two classes.

In the linearly separable case, any finite number of observations from the two classes

in some finite data set D can be separated without errors by linear hyperplanes. The

support vectors of the basic linear SVM span those two parallel hyperplanes that

separate the observations in D with the largest margin between them. That is, the

hyperplane is defined by the equation:

~wn(D)′~x + θn(D) := 0,

where the normal ~wn(D) of the hyperplane is given by

~wn :=

TD∑
t=1

αt(n)yt(n)~xt (6)

with non-negative parameters αt(n), t = 1, ..., TD that are non-zero for the so-called

support vectors. The optimal parameters ~wn(D) and θn(D) are chosen such that all

objects of the data set with yt(n) = 1 lie “above” and all objects with yt(n) = −1 lie

“below” the hyperplane, t = 1, ..., TD, and such that the size of the margin 2
‖~wn(D)‖

is maximal.
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In the linearly non-separable case, one first of all does the kernel trick: one maps

the data via some function Φ into some higher dimensional feature space, and con-

structs a separating hyperplane with maximum margin there. By the use of a kernel

function, it is possible to compute the separating hyperplane without explicitly car-

rying out the map into the feature space (Schölkopf and Smola, 2002, p.15). As

in some arbitrarily high dimensional feature space one can separate any two finite

dimensional groups of distinct objects without error, in case of overlapping groups

one has to fight overfit. In case of support vector machines, one reaches a higher

fit the smaller the margin is. To allow for errors, one does no longer only maxi-

mize the margin but its sum with some error penalty term in dependence of some

parameter C. The larger C is, the higher the penalty is for errors.

We use radial basis function kernels which are local gaussian densities around data

points:

K
(
~x, ~y|σ2

)
= exp

(
−
∑K

k=1(xk − yk)
2

2σ2

)
, (7)

where σ2 defines the width of the RBF-kernel.

The decision surface between note n and all others is now defined by the equation(
K(~wn(C, σ2,D), ~x) + θn(C, σ2,D)

)
:= 0 (8)

where the optimal ~wn(C, σ2,D) is also some weighted sum of support vectors in the

data set D as in (6). The size of the margin in the feature space is

2

K(~wn, ~wn|σ2)
.

To quantize the membership of a time point t with observed periodogram ~xt ∈ X

to the notes n ∈ N we use the signed euclidean distance to the corresponding

hyperplanes:

m∗(n, ~x|C, σ2,D) =
K(~wn(C, σ2,D), ~x|σ2) + θn(C, σ2,D)√

K(~wn(C, σ2,D), ~wn(C, σ2,D))
. (9)

To let the membership values for some observed periodogram ~x ∈ X define some

probability distribution over the set of notes N, we standardize them with the so-

called softmax transformation (Bridle, 1990):

m(n, ~x|C, σ2,D) =
exp (m∗(n, ~x|C, σ2,D))∑

n∈N

exp
(
m∗(n, ~x|C, σ2,D)

) .
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Two parameters have to be chosen and are not part of the automatic optimization

procedure of RBFSVMs: The parameter C that controls the trade off between

margin maximization and error minimization and the kernel width σ2. To adjust

(C, σ2) otherwise, one can use the Bernoulli loss experiment, and any optimization

method that finds extremal points of multidimensional functions to minimize some

estimate of the error probability in dependence of (C, σ2). We estimate the error

probability by cross-validation: we partitioned the learning set by means of sampling

stratified on notes such that 75% of the objects from the learning set form the

training set T, and 25% the validation set V.

One often applied optimization method is the gradient decent algorithm used by

Chapelle et al. (2001) for (heavier) SVM model selection. As many of these methods,

the gradient decent algorithm might get stuck in local minima, yet, it does not if

the error surface is convex. Nevertheless, given certain restrictions on the functions’

surface, these algorithms are optimal optimization strategies. Otherwise, they are

heuristic optimization strategies (Luenberger, 1973).

Based on model assumptions on the error surface, one can alternatively apply

methods from statistical experimental design to optimize parameters. We assumed

here that the error probability can be approximated by some quadratic function of

(log10(C), − loge(σ
2)/K) restricted to the cube [−1, 2]2.

That way we restricted the search for the best parameters (C, σ2) on the rectangle

[ 1
10

, 100]× [K
e2 , Ke]. Defining 5 optimal experimental points according to a central-

composit plan for two variables (see e.g. Weihs and Jessenberger, 1999) the quadratic

function was fitted and optimal parameters were determined by the minimum of the

fitted quadratic function on the rectangle.

3.3 Hidden Markov Model

Hidden Markov Models are used to model time series. In a Hidden Markov Model,

one assumes that the distribution P ~Xt
of the random vector ~Xt of observables of

some system only depends on the state St = s the system is in: P ~Xt
≡ P ~X|s for all

t = 1, ..., T with St = s ∈ S. The time dependency results from the dependency

among states. This is modelled by some markov chain: that is the distribution of the
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state of the system at time point t depends on the past only through the last state

before: PSt = PS|s− for all t = 2, ..., T with St−1 = s− ∈ S. Therefore parameters of

the distributions in an HMM are the states’ transition probabilities p(s|s−), s, s− ∈ S

and the the so-called emission probabilities p(~x|s), ~x ∈ X, s ∈ S.

In our case a time series represents a sung interpretation of “Tochter Zion”. The

system is the singer, the states are the notes nt ∈ {1, ..., N} and the observables

the periodograms ~Xt, t = 1, ..., T . Clearly, since the 256 observation sections of the

time series are shorter than a note, the note sung in one section depends on the note

sung in the preceding section.

For each sequence of notes nt ∈ N, t = t1, ..., T and known prior distribution for Nt1 ,

the transition and emission probabilities determine the probability to have observed

~xt, t = t1, ..., T . Therefore, the probability p(n|~xt1 , ..., ~xT ) of some note n at the end

of some sequence of time points for which we do not know the true note but only the

periodograms ~xt, t = t1, ..., T , is the sum of the probabilities of any path leading to

n. It can be calculated using the forward step in the forward-backward procedure

for finding the next state in HMMs (cp. Rabiner and Juang, 1993).

4 Results

Note prediction was done on the basis of two different algorithms: RBFSVM

with Hidden Markov model (RBFSVM-HMM) and without such model (RBFSVM-

static). Moreover, on these two algorithms smoothing (labelled smoothed) was ap-

plied or not (pure). Table 1 shows the prediction error rates on the last part A of

“Tochter Zion” for the various combinations of algorithms and each singer.

From the last column of the table it is apparent that 4 singers can be predicted with

less than 7.5% error, whereas other 4 singers only with more than 15% error.

Figures 1 (a, b) show the predicted notes vs. the ideal notes in the various 256

observations sections generated by the optimal algorithm for the best and the worst

predictable singer, i.e. for T1 and B4. The figures should be interpreted as follows:

Ideal notes are indicated in grey, sung notes in black. Ideal notes are overplotted

by sung notes. Thus a horizontal black line on white background indicates an error.
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singer pure smoothed

static HMM static HMM

S1 20.5 14.8 18.5 14.6

S2 15.4 10.9 11.5 10.1

S3 20.2 13.2 19.5 12.1

S4 14.8 6.7 9.7 5.6

A1 23.2 18.9 20.1 17.8

A2 28.6 20.3 26.1 19.4

A3 12.8 5.6 10.0 5.4

A4 17.2 13.9 12.3 13.6

A5 23.9 10.6 22.3 10.2

T1 10.6 5.5 8.8 5.4

T2 18.3 9.5 14.5 6.3

T3 18.4 11.5 14.0 10.3

B1 17.4 10.9 12.3 8.3

B2 28.0 21.2 23.5 19.6

B3 20.0 14.1 19.2 14.3

B4 29.0 27.4 24.5 27.7

minimum 10.6 5.5 8.8 5.4

median 19.2 12.4 16.5 11.2

maximum 29.0 27.4 26.1 27.7

Table 1: Prediction error rates on the last part A of “Tochter Zion”.

Very low black lines also indicate misclassification, that can often be identified as

caused by breathing periods or silence, respectively. Obviously, in “B4” more errors

occur than in “T1”.

The figure help interpreting the possible causes of error rates. Singers with lots of

singing errors cannot be well predicted, like singer “B4” who has problems with

correct timing.
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a) Predicted vs. ideal "notes" for singer "T1"
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b) Predicted vs. ideal "notes" for singer "B4"
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Figure 1: Predicted notes (black) vs. ideal notes (grey) for singers T1 and B4.
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5 Conclusion

With our classification algorithm we were able to nearly optimally predict singers

who delivered “correctly” sung notes in the training period. The corresponding

goodness of classification appears to be well enough to generate nearly correct midi

files corresponding to songs sung by such singers.

Unfortunately, the prerequisites are quite strong. For the learning step a singer

has to sing each possible note of the song separately, otherwise a segmentation and

corresponding “ideal” notes must be given by the supervisor. In our experiment, the

first two parts AB of the whole song (ABA) were used for learning, while the last part

A was used for assessing the goodness of prediction. Obviously, errors of the singers

are correlated, as well as probabilities of note changes. Therefore, if arbitrary notes

are presented for learning, error rates might become worse.
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