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Abstract

This paper analyzes linear models. It investigates the di�erence

between the sum of squares of the residuals and the sum of squares of

the prediction errors when the parameter is estimated consecutively:

In case the regressors are "fractionally integrated" (in a very broad

sense) it is shown that the asymptotic behavior of this di�erence is

determined by the order of integration of the regressors.

1 Introduction

Most of the papers of the conference focus on some aspect of the analysis of
fractionally integrated processes themselves, i.e. one wants to make inference
on the parameter of integration or test hypotheses concerning the degree of
integration.

This paper focuses on the consequences of regressors being "fractionally
integrated": Suppose one has given a standard linear model

yt = x0t� + ut
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with all the usual assumptions ful�lled. Then it is well-known that byt = x0t�
is the best predictor for yt given xt: The problem, however, is that in general
we do not know � and therefore have to estimate it: Hence - in almost all
realistic situations - one has to replace byt by some other function bbyt depending
on the available information only:

bbyt = bbyt(xt; xt�1; :::; x1; yt�1; ::y1)
We will analyze the use of

bbyt = x0t
d�t�1 (1)

where d�t�1 is the OLS-estimator for � given xt�1; :::; x1; yt�1; ::y1.
If the usual conditions for consistency of the OLS-estimator are satis�ed

it is easily seen that

byt � bbyt ! 0

So asymptotically the di�erence between theoretically best and realistic pre-
dictor should converge to zero. This is, however, not true anymore for the
compound prediction error (This result goes back to some work of Dawid: For
a rather complete list of references one should consult e.g. Gerencer&Rissa-
nen(1992)): Indeed one can show in the stationary case (i.e. if

1

n

X
t�n

xtx
0
t ! R,

where R is nonsingular) that when using the predictor (1)

P
t�n

�
yt � bbyt�2 �Pt�n (yt � byt)2

p logn
!

1

2
(2)

where p is the dimension of the vector �. The qualitative nature of this result
sounds plausible: The more parameters we have to estimate, the bigger our
"loss" in predictive accuracy will be. Moreover, results like the one above
are often used to justify criteria for order estimation like e.g. BIC or FPE.

We are now going to generalize this result. We have, however, to bear
in mind that (2) is wrong in the case of nonstationary regressors: This is an
easy consequence of the results derived in Ploberger&Phillips(1998): Their

2



�ndings show that the nature of the nonstationarity in
uences the limiting
relationship (2).

So let us now assume that our processes xt and ut satisfy the following
assumptions:

1. The xt ful�ll the following requirement: There exist diagonal matrices
Dn = diag(n�1 ; :::; n�p) so that

D�1
n

X
t�n

xtx
0
tD!D R (3)

where!Dshould denote convergence in distribution and R is a random
matrix which is a.s. positive de�nite

2. The ut are i.i.d G(0; �2) and independent of the xt.

3. The �rst di�erences xt� xt�1 are stationary, ergodic, have nonsingular
variance-covariance matrix and there exists a � > 0 so that

E kxt � xt�1k
2+� <1

Remark 1.1 Assumption 1 is ful�lled if the processes are stationary - in this
case simply take all the � to be equal 1

2
. Moreover, we also cover the case

where the components are independent fractionally integrated process: for a
recent survey cf Robinson(1994): in these cases one has � > 1

2
depending on

the degree of integration. Our assumption may not be ful�lled if the process
is "fractionally cointegrated", but then we may be able to "rotate" our xt so
that we end up with a process following our assumption.

Remark 1.2 Assumption 2 is relatively restrictive, especially the Gaussian-
ity of the error terms seems very restrictive: On the other hand, this special
form of the error terms makes it possible to use the result from Phillips-
Ploberger, which simpli�es the proof enormously.

Remark 1.3 The last of our conditions is of only technical nature: I think it
would be possible to live without it - but only at the expense of a more di�cult
proof: Moreover, I think the restriction to processes where the �rst di�erences
are stationary is not that stringent, Moreover, the proof below shows is easily
generalized to integrated processes of higher order.
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2 The Main Theorem

Let us now formulate and prove the following theorem:

Theorem 2.1 Assume all of the above assumptions hold true. Then

P � lim
n!1

P
t�n

�
yt � bbyt�2 �P

t�n (yt � byt)2
�2 logn �

P
�i

= 1 (4)

So let us prove (4):
We will do this in three steps:
Let us �rst de�ne

�n =
X
t�n

�
yt � bbyt�2 �X

t�n

(yt � byt)2
First we establish that for all " > 0

P

"
�n

�2 logn �
P
�i

< 1� "

#
! 0 (5)

Then we construct random variables An so that

�n + An � 0 (6)

and
An= logn! 0 (7)

in probability and

E(�n + An=xt; xt�1; :::; x1)=(logn �
X

�i)! 1 (8)

in probability;
This would prove our theorem: (5) and (7) imply

P

"
�n + An

�2 logn �
P
�i

< 1� "

#
! 0 (9)

Moreover, if for some � > 0

� = limsupP
h
�2 > 1 + �

i
> 0
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then we could easily see that - because of (6) and (9)

limsupP

"
E(�n + An=xt; xt�1; :::; x1)=(�

2 logn �
X

�i) > 1 +
��

2

#
> 0

which would contradict (8).
So let us �rst establish (5): Let us denote for � 2 Rp by P� the probability

measure on the space of xn; xn�1; :::; x1; yn�1; ::y1 when yt = x0t�+ut. Keeping
in mind that the ut are Gaussian, it is an easy exercise of using the results of
sections 4 and 5 of Ploberger and Phillips(1998) to show that for all "; � > 0
and each compact set K the Lebesgue measure of(

� 2 K : P�

 "
�n

�2 log det
P

t�n xtx
0
t

�
1� "

2

#!
� �

)

converges to zero. It is now an elementary exercise to show that the dis-
tribution of P� is invariant of �. Therefore we may easily conclude that

P
��

�n

�2 log det
P

t�n
xtx

0
t

� 1�"
2

��
! 0:

Moreover, directly form (3) we see that

log det
P

t�n xtx
0
t

logn
! 2

X
�i (10)

(as R was assumed to be nonsingular!).
Therefore it remains to establish (6),(7),(8): For that purpose, the fol-

lowing Lemma is helpful:

Lemma 2.2 Let Rt =
P

s�t xsx
0
s. ThenP

t�n x
0
tR
�1
t�1xt

log detRt

! 1

Let us prove the Lemma: We have

log detRt � log detRt�1 =

log det
q
R�1t�1

�
R�1t�1 + xtx

0
t

�q
R�1t�1 = log det(I +

q
R�1t�1xtx

0
t

q
R�1t�1)

Elementary analysis shows that log det(I + A) � tr(A) = o(A) uniformly in
A for A! 0: Hence for every � > 0 there exists a � = � (�) > 0 so that for
all A with kAk < �

(1� �) trA � log det(I + A) � (1 + �)trA
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So suppose we could show that

tr(
q
R�1t�1 (xtx

0
t)
q
R�1t�1)! 0 (11)

(as
q
R�1t�1

�
R�1t�1 + xtx

0
t

�q
R�1t�1 is nonnegative de�nite this proves that the

norm of the matrix converges to zero, too): then for every � > 0 there exists

a K = K(�) so that for t > K




qR�1t�1 �R�1t�1 + xtx

0
t

�q
R�1t�1





 < � (�) and

therefore

(1� �) (log detRt � log detRK)

�
X
t�n

x0tR
�1
t�1xt

� (1 + �) (log detRt � log detRK) + log detRK

This would prove our lemma, since we know from (10) that log detRt !1 .
Therefore it remains to establish (11): �rst observe that

tr(
q
R�1t�1 (xtx

0
t)
q
R�1t�1 = x0tR

�1
t�1xt (12)

It is easily seen that

(xt � xt�1)(xt � xt�1)
0 � 2

�
xtx

0
t + xt�1x

0
t�1

�
so that

1

4

1

n

X
t�n

(xt � xt�1)(xt � xt�1)
0 �

1

n
Rn

According to our assumptions xt � xt�1 is ergodic and variance-covariance
matrix of its components is nonsingular: Therefore the left-handside of the
above inequality converges to some nonsingular matrix and we may conclude
that there exists a nonsingular matrix S so that for all but a �nite number
of n 2 N

Rn � nS (13)

Now let us suppose (12) is false: Then there exists an " > 0 and an in�nite
sequence J � N so that

x0nR
�1
n�1xn � " (14)
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for n 2 I: With the help of (13) we may conclude that x0nxn � "n for n 2 J .
Let us now de�ne M to be a natural number so that M � 2=". We have
postulated that

E f((xt � xt�1)(xt � xt�1)
0)g

1+�
<1

Then it is a standard exercise (Borel-Cantelli-Lemma and Chebyshev's in-
equality) that there exists a 
 < 1

2
so that (xn � xn�1) =n


 ! 0. Conse-
quently

sup
m�M

kxn � xn�mk =n

 ! 0

Let us now analyze

Rn�1 = Rn�m�1 +
X

n�1�i�n�M

xix
0
i (15)

It is easily seen that for all p-vectors a; b and all real � 2 (0; 1) we have
(a+ b) ( a+ b)0 � aa0 (1� �)�bb0( 1

�
+1). Let us now for n 2 I choose a = xn,

b = xi � xn and � = n��, where � is positive and so that � + 2 
 <1: then
we may conclude thatX
n�1�i�n�M

xix
0
i � Mxnx

0
n(1� n��)� n�

X
n�1�i�n�M

(xn � xn�i) ( xn � xn�i)
0

� Mxnx
0
n(1� n��)� n�+2
I for all but �nitely many n 2 J

�
2

3
Mxnx

0
n � n�+2
I for all but �nitely many n 2 J

Moreover, from (13) we can easily see that Rn�M�1 � nS=2 for all but �nitely
many n 2 J ; As � + 2 
 <1 n�+2
I < nS=4 for all but �nitely many n 2 J
and - consequently we have (for all but �nitely many n 2 J)

Rn�1 �
2M

3
xnx

0
n +

n

4
S

and therefore x0nR
�1
n�1xn �

3
2

1
M
� 3

4
", which directly contradicts (14)

Having established the lemma, it is now relatively easy to prove (6),(7),(8):
observe that

�n =
X
t�n

�
yt � x0t

d�t�1�2 �X
t�n

(yt � x0t�)
2
=

2
X
t�n

utx
0
t
d�t�1 +X

t�n

�
x0t
d�t�1�2

7



Then we can de�ne An = 2
P

t�n utx
0
t
d�t�1: the above equation immediately

shows that condition (6) is ful�lled: For proving (7) it can easily be seen
that E(A2

n=x1; :::; xn) = 4
P

t�n x
0
tR
�1
t�1x = O(log detRn) = O(logn), (cf. the

above lemma and (10)) therefore .

E(

 
An

logn

!2

=x1; :::; xn)! 0

which shows (7). It remains to show (8): But �n�An =
P

t�n

�
x0t
d�t�1�2 and

it is now an elementary task to show that

E(�n � An=x1; ::; xn) =
X
t�n

x0tR
�1
t�1xt

Then (8) is an immediate consequence of the above Lemma.
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