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Abstract

In this paper we consider the asymptotic distribution of S-estimators
in the nonlinear regression model with long-memory error terms. S-
estimators are robust estimates with a high breakdown point and good
asymptotic properties in the iid case. They are constructed for linear
regression. In the nonlinear regression model with long-memory errors
it turns out, that S-estimators are asymptotically normal with a rate
of convergence of n1�H , 1 =2< H < 1. But the distribution depends
heavily on the unknown parameter vector.
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1 Introduction

In the last years long-memory has been modeled in various �nancial time series.

But even �nancial time series are quite often a good example for contaminated

data. Consider for example �nancial market price series: the data are typically

quite reliable but market crashes could generate large movements well outside the

range of typical behaviour. From this it seems natural to consider the behaviour

of robust estimation techniques under the assumption of long memory in the data.

Also the consideration of nonlinear regression seems natural in this context.
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A �rst model of long-memory time series was given by Mandelbrot/van

Ness(1968) by introducing fractional Brownian motion. Another popular model is

the extension of the classical ARIMA models of Box/Jenkins(1970) to fractional

ARIMA models introduced by Granger/Joyeux(1980) and Hosking(1981).

In general a stationary process Xt is said to have long memory, if

Cov(Xt; Xt+k) := Rk �k!1 L(k)jkj2H�2; H 2 (1=2; 1); (1)

where L(k) is slowly varying for k �!1.

For a more detailed discussion of long-memory time series see for example Be-

ran(1994) or Sibbertsen(1999a).

One possibility to measure the quality of an estimator in the case of contaminated

data is the breakdown point introduced by Hampel(1971). The breakdown point

is the smallest fraction of contaminated data that can cause an estimator T to

take on values arbitrarily far from T (X), where X is the correct sample.

One possible class of estimators with a high breakdown point and also good

asymptotic properties are S-estimators introduced by Rousseeuw/Yohai(1984).

S-estimators have an asymptotic breakdown point of 1=2, which is the best pos-

sible asymptotic breakdown point. Moreover there are other good robustness pro-

perties, such as the exact �t property, which are ful�lled by S-estimators.

S-estimators were introduced by Rousseeuw/Yohai(1984) for the linear regression

model with iid errors under strong regularity conditions. Davies(1990) generali-

zed the results of Rousseeuw/Yohai(1984) to weak regularity conditions for the

regressors including trends. Sibbertsen(1999a,b) proved asymptotic normality of

S-estimators in the linear regression model with long-memory error terms. Saka-

ta/White(1998) considered S-estimators in the nonlinear regression model with

dependent and heterogenous observations under quite general conditions. The
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idea of this paper is to generalize the results of Sibbertsen(1999b) to nonlinear

regression with long-memory error terms.

The idea of S-estimators is based on a scale M-estimation, but in contrary to this

technique S-estimators �rst estimate the scale and subsequently the regression

parameter. So this estimator is scale invariant in contrary to M-estimators. But

because of this de�nition, there is no loss of e�ciency for S-estimators compared

to M-estimators.

To de�ne S-estimators, let � be a real function satisfying the following assumpti-

ons:

1. � is symmetric, continuously di�erentiable and �(0) = 0;

2. there exists a c > 0, such that � is monotonously increasing in [0; c ] and

constant in [c;1).

For every set fe1; : : : ; eng the scale estimator s(e1; : : : ; en) is then de�ned as a

solution of the equation

1

n

nX
i=1

�(
ei
s
) = K; (2)

where the constant K is given by E�[�] = K and � denotes the standard normal

distribution. If (2) has more than one solution, s(e1; : : : ; en) is the supremum of

all the solutions. If there is no solution, s(e1; : : : ; en) = 0.

The S-estimator �̂ of the regression parameter � is de�ned as

�̂ = min
�
fs[e1(�); : : : ; en(�)]g (3)

and the scale estimator �̂ is

�̂ = s[e1(�̂); : : : ; en(�̂)]: (4)
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For a more detailed discussion of robust regression estimates see for example

Rousseeuw/Leroy(1987).

In the rest of the paper we consider mainly the function  (x), which is the

derivative of the function �(x) de�ned above. Because of the de�nition of �  is

a redescending function. The most popular choice for the function  is Tukey's

biweight because of its smoothness.

2 Asymptotic normality

Let us consider the nonlinear regression model

yt = f(xt; �) + "t; t = 1 ; : : : ; n; (5)

where xt are the regressors, � is the unknown p-dimensional parameter vector,

f : IR � IR
p ! IR is the regression function ful�lling regularity conditions men-

tioned later and "t is a sequence of Gaussian long-memory random variables.

The function f(x; �) shall ful�ll the following regularity conditions:

(F1) f 0(x; �) := @
@�
f(x; �) exists for all �;

(F2) f 0(x; �)f 0(x; �)T is �nite and regular 8x; �.

A necessary tool for the investigation of the asymptotic behaviour of S-estimators

is the Hermite rank of a function:

De�nition (Hermite rank)

Let Z be a standard normal random variable. A function G : IR ! IR

with E[G(Z)] = 0 and E[G2(Z)] < 1, is said to have Hermite rank m,

if E[G(Z)Pq(Z)] = 0 for all Hermite polynomials Pq; q = 1 ; : : : ; m� 1 and

E[G(Z)Pm(Z)] := JG(m) 6= 0 .
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The function JG(l) is de�ned by

JG(l) := E[G(Z)Pl(Z)]; l 2 IN: (6)

Hermite polynomials, normalized by q! provide an orthonormal basis in the L2 -

space with respect to the standard normal distribution. So every such function

G(�) can be expanded into a series

G(Z) =
1X
q=m

JG(q)
Pq(Z)

q!
:

For G(Z) with Hermite rank 1, Taqqu(1975) showed that the normalized sum

n�HL
�

1

2

V ar(n)
nX
i=1

G(Zi)

JG(1)

is asymptotically standard normal.

We can now establish asymptotic normality for S-estimators in the nonlinear

regression model.

Theorem 1 (asymptotic normality)

Let �̂n be a sequence of S-estimators for the regression parameter in the nonlinear

regression (5) with long-memory errors. Then if the conditions F1, F2 hold and

if

(1) E 0 6= 0 � > 0;

(2) J (Q) 6= 0 ;

we have

n1�HL
�

1

2

V ar(n)J (Q)(1)
�1(�̂n � �0)

d
�! N(0; �20

E� 
2

(E� 0)2
[f 0(x; �0)f

0(x; �0)
T ]�1):
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Proof

From the de�nition of S-estimators we have

0 = n�H
nX
t=1

f 0(xt; �̂n) (
yt � f(xt; �̂n)

�̂n
): (7)

where 0 is the p - dimensional vector (0; : : : ; 0)T .

Taylor expansion of the function f(xt; �0) respectively �0 gives

f(xt; �̂n) = f(xt; �0) + f 0(xt; �0)(�̂n � �0): (8)

From equation (7) together with (8) we have

0 = n�H
nX
t=1

f 0(xt; �̂n) (
yt � f(xt; �̂n)

�̂n
)

= n�H
nX
t=1

f 0(xt; �̂n) (
yt � f(xt; �0)� f 0(xt; �0)(�̂n � �0)

�̂n
)

= n�H
nX
t=1

f 0(xt; �̂n) (
rt � f 0(xt; �0)(�̂n � �0)

�̂n
);

where rt := yt � f(xt; �0) denotes the residual process.

For the function  we have the Taylor expansion

 (z + h) =  (z) + h
Z 1

0
 0(z + th)dt: (9)

Applying relation (9) twice to  we obtain

 (z + h) =  (z) + h
Z 1

0
 0(z)dt+ h2

Z 1

0

Z t

0
 00(z + sh)dsdt: (10)
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Applying Fubini's theorem to the right-hand side of equation (10) gives

 (z + h) =  (z) + h[ 0(z) + h
Z 1

0
(1� s) 00(z + sh)ds]: (11)

Setting ht := �f 0(xt; �0)
T (�̂n � �0)=�̂n and zt := rt=�̂n relation (11) gives for (7)

1

n

nX
t=1

f 0(xt; �̂n)
f 0(xt; �0)

Tn1�HL
�

1

2

V ar(�̂n � �0)

�̂n
�

�[ 0(
rt
�̂n

) + ht

Z 1

0
(1� s) 00(zt + sht)ds] =

n�HL
�

1

2

V ar

nX
t=1

f 0(xt; �̂n) (
rt
�̂n

): (12)

We now have to prove two assertions:

1)
1

n

nX
t=1

[ 0(
rt
�̂n

)�
f 0(xt; �0)

T (�̂n � �0)

�̂n

Z 1

0
(1� s) 00(zt + sht)ds]f

0(xt; �̂n)f
0(xt; �0)

T

P
�! E� 

0[f 0(xt; �0)f
0(xt; �0)

T ] (13)

and

2) n�HL
�

1

2

V ar

nX
t=1

 (
rt
�̂n

)f 0(xt; �̂n)
d
�! N(0; E�[ 

2][f 0(xt; �0)f
0(xt; �0)

T ]):

Let us prove assertion 1) �rst.

To this end, we show �rst:
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j
1

n

nX
t=1

f 0(xt; �0)
T (�̂n � �0)

�̂n

Z 1

0
(1� s) 00(zt + sht)dsf

0(xt; �̂n)f
0(xt; �0)

T j
P
�! 0:

(14)

This expression follows from (F2) and the consistency of �̂n and �̂n. We also have
R 1
0 (1� s) 00(zt + sht) � k  00k1 and k 00k1 is �nite.

Here kfk1 denotes the 1-norm of the function f .

To show (13) the �rst term on the left-hand side of this equation has to be

considered. We have:

j
1

n

nX
t=1

f 0(xt; �̂n)f
0(xt; �0)

T [ 0(
rt
�̂n

)�  0(
rt
�0
)]j ! 0: (15)

This can be seen from the following inequality, which holds because of the consi-

stency of the scale estimation:

j
1

n

nX
t=1

f 0(xt; �̂n)f
0(xt; �0)

T [ 0(
rt
�̂n

)�  0(
rt
�0
)]j �

j
1

�̂n
�

1

�0
jk 00k1

1

n

nX
t=1

jf 0(xt; �̂n)f
0(xt; �0)

T jjrtj
P
�!

j
1

�̂n
�

1

�0
j k 00k1 f

0(xt; �0)f
0(xt; �0)

T Ejrj �! 0: (16)

The right-hand side also converges to 0 because of the assumed consistency of �̂n

and �̂n and because ofthe �niteness of the other terms. It was also assumed that

�0 > 0.

To prove the second assertion let Q : IR! IR be a function de�ned as follows:

Q(�) :=
�

�̂n
: (17)
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This function has Hermite rank 1 (see Taqqu(1975)). De�ne J (Q)(1) as in (6).

In view of the limit theorem 5.1 from Taqqu(1975) we see that

n�HL
�

1

2

V ar(n)J (Q)(1)
�1

nX
i=1

 (Q(ei(n)))f
0(xt; �̂n)

is a normal random variable. To compute the mean and the covariance of this

variable we get from  odd and rt Gaussian:

E (
rt
�0
) = �E (�

rt
�0
)

= �E (
rt
�0
): (18)

Hence

E (
rt
�0
) = 0 (19)

and consequently

E( (
rt
�0
)f 0(xt; �0)) = 0: (20)

Therefore we have

Cov( (
rt
�0
)f 0(xt; �0)) = E�( 

2(
rt
�0
))f 0(xt; �0)f

0(xt; �0)
T : (21)

Altogether we obtain from (13):

n1�HL
�

1

2

V ar(n)J (Q)(1)
�1(�̂n��0)

d
�! N(0; �20

E� 
2

(E� 0)2
[f 0(xt; �0)f

0(xt; �0)
T ]�1);(22)

which is the assertion of the theorem. }
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The theorem above establishes the asymptotic normality of S-estimators in the

nonlinear regression model, when the error terms have long-memory. It should be

mentioned that these results do not only hold in the case of Gaussian disturban-

ces but also in the case of transformed Gaussian errors where the transformation

has Hermite rank 1. By using the theory of Appel polynomials instead of Hermite

polynomials the result can even be generalized to all symmetric error distributi-

ons. In this paper we con�ned ourselves to the case of Gaussian disturbances to

simplify the proof and to illustrate the idea behind it.

We can also establish a similar result for S-estimators in the short-memory case,

that is when 0 < H < 1=2.

Corollary 1 Under the same conditions as in the above theorem and 0 < H <

1=2, that is
P
1

k=1R(k) <1, and  is nonlinear the following holds

n�HL
�1=2
V ar (�̂n � �0)

d
�! N(0; �20

E� 
2

(E� 0)2
[f 0(xt; �0)f

0(xt; �0)
T ]�1):

Proof This result follows in the same way as in Theorem 1. But instead of using

the limit theorem of Taqqu(1975) this result follows from a limit theorem of

Breuer/Major(1983). }

REFERENCES

Beran, J. (1994). Statistics for long-memory processes. Chapman & Hall, New

York.

Box, G.E.P., Jenkins, G.M. (1970). Time Series Analysis: Forecasting and Con-

trol. Holden-Day, San Francisco.

10



Breuer, P., Major, P. (1983) Central limit theorems for nonlinear functionals of

Gaussian �elds. J. Multiv. Anal. 13 425 - 441.

Davies, P. L. (1990). The asymptotic of S-estimators in the linear regression

model. Ann. Statist. 18 1651 - 1675.

Granger, C., Joyeux, R. (1980). An introduction to long-range time series models

and fractional di�erencing. Journal of Time Series Analysis 1, 15 - 30.

Hampel, F. R. (1971). General qualitative de�nition of robustness. Ann. Math.

Statist. 42 1887 - 1896.

Hosking, J. R. M. (1981). Fractional di�erencing. Biometrika 68, 165 - 176.

Mandelbrot, B., van Ness, J. (1968). Fractional brownian motions, fractional

noises and applications. SIAM Reviews 10 422 - 437.

Rousseeuw, P., Leroy, A. (1987). Robust regression and outlier detection. Wiley,

New York.

Rousseeuw, P., Yohai, V. J. (1984). Robust regression by means of S-estimators.

In Robust and nonlinear time series regression. Springer Lecture Notes in

Statist. 26 256 - 272, Springer, New York.

Sakata, S., White, H. (1998). S-estimation of nonlinear regression models with

dependent and heterogenous observations. Preprint University of Califor-

nia, San Diego

Sibbertsen, Ph. (1999a). Robuste Parameterschaetzung im linearen Regressions-

modell bei Fehlertermen mit langem Gedaechtnis. Verlag fuer Wissenschaft

und Forschung, Berlin (in German).

Sibbertsen, Ph. (1999b). S-estimators in the linear regression model with long-

memory error terms. J. Time Ser. Anal. to appear.

11



Taqqu, M. S. (1975). Weak convergence to fractional Brownian Motion and to

the Rosenblatt Process. Probab. Th. Rel. Fields 31 287 - 302.

12


