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used tests.

1Correspondence Address: Prof. Dr. Joachim Hartung, Department of Statistics,

University of Dortmund, D-44221 Dortmund, Germany.

Research partly supported by the Germany Academic Exchange Programme (DAAD) and

the Germany Research Community (DFG).

1



1. Introduction

Combining results from di�erent experiments (or studies) has become common

in many �elds of scienti�c inquiry. One has, for example, balanced or unbal-

anced, homoscedastic or heteroscedastic samples to assess the overall treatment

e�ect. With treatment-by-centre interaction in such samples, we get a random

e�ects model, otherwise we have a �xed e�ects model.

The possibility of many false positives in meta-analysis due to the underes-

timate of the variance of the estimate of the overall treatment e�ect cannot

be overemphasized as indicated by Li et al. (1994) and Boeckenho�/Hartung

(1998). Suggested corrections for the �xed e�ects model with the resulting test

statistics being normally distributed do not extend naturally to the random

e�ects model.

By noting that the estimate of the overall treatment e�ect is dominated by a

positive semi-de�nite quadratic form and estimating its distribution by a �2-

distribution by equating its �rst two moments, we obtain tests of signi�cance

for the overall e�ect which are based on the t-distribution. Two related tests,

cf. section 2, for the �xed e�ects model are suggested and one test, cf. section

3, for the random e�ects model. Accompanying simulation results, cf. Tables I

and II, indicate that our suggested test statistics improve greatly the attained

type I error rates.

2. Fixed E�ects Model

For K � 2 independent experiments, let yij be the observation on the j-th

subject of the i-th experiment, i = 1 ; : : : ; Kand j = 1 ; : : : ; ni; such that

yij = � + eij ; i = 1 ; : : : ; K; j= 1 ; : : : ; ni; (1)
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where � is the common mean for all the K homogeneous experiments, eij are

error terms which are assumed to be mutually stochastically independent and

normally distributed, that is, eij � N(0; �2i ); i = 1 ; : : : ; K; j= 1 ; : : : ; ni: The

best estimate for � in each study (experiment) is the individual sample mean

�̂i =
Pni

j=1 yij=ni = �yi: with variance �2i =ni; i = 1 ; : : : ; K:This means that

we have a �xed e�ects combinations model such that �̂i � N(�; �2i =ni); i =

1; : : : ; K:

Our interest is in testing the hypothesis H0 : � = 0 against H1 : � 6= 0 at

some type I error rate, �:

Now, the best unbiased estimator of � which traces back to Cochran (1954)

(see also Whitehead and Whitehead, 1991) is:

~� =

PK
i=1

ni
�2
i

� �̂iPK
i=1 ni=�

2
i

(2)

with variance �2~� =
�PK

i=1 ni=�
2
i

��1
: Under H0 the statistic

T =
~�q
�2~�

� N(0; 1): (3)

In most practical situations, however, the individual error variances are un-

known and on estimating them by �̂2i , we obtain the estimate of the overall

mean to be

�̂ =

PK
i=1

ni
�̂2
i

� �̂iPK
i=1 ni=�̂

2
i

(4)

so that when � = 0 ;the test statistic

T1 =
�̂q
�̂2~�

approx
� N(0; 1) (5)

In our experience (cf: also Li et al., 1994 and Boeckenho�/Hartung, 1998) this

test attains type I error rates which are much greater than the nominal level,

�:

Consider now a positive discrete random variable d taking on realizations
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di = 1 =xi with probabilities !i; for i = 1 ; : : : ; K;and the convex function

g(d) = 1 =d;then Jensen's inequality

g(E(d)) =
1PK

i=1 !i � di
� E(g(d)) =

KX
i=1

!i �
1

di

provides us with the well known inequality between the harmonic and arith-

metic means.

Lemma1:

For xi > 0; !i � 0; i = 1 ; : : : ; K;
PK

i=1 !i = 1 ;there holds

�x!;h =
1PK

i=1 !i �
1
xi

�
KX
i=1

!i � xi = �x!;a:

Next, let

f�̂;h(s
2) = �̂2~� =

1PK
i=1 ni=s

2
i

=
1

N
�

1PK
i=1

ni=N
s2
i

; (6)

where s2i =
Pni

j=1(yij� �yi:)
2=(ni�1) is an unbiased estimate of �2i from the i-th

experiment. Using Lemma 1 above and setting !i = ni=N we get

f�̂;h(s
2) =

1

N
�

1PK
i=1 !i=s2i

�
1

N
�

KX
i=1

!i s
2
i =: f�̂;a(s

2) (7)

with xi = s2i : Clearly f�̂;a(s
2) is a positive semi-de�nite quadratic form in the

random variables, which dominates the function f�̂;h(s
2): Thus, the approxi-

mate distribution of f�̂;h(s2) can be obtained as follows:

Let

Q(f�̂;h) = � �
1

Ef�̂;h(s2)
� f�̂;h(s

2);

then Q(f�̂;h)
approx
� �2

�; where according to Patnaik (1949)

� = 2 �
(Ef�̂;h(s

2))
2

V arf�̂;h(s2)

By convexity arguments of Hartung (1976, sec. 1), cf: also Boeckenho�/Hartung

(1998), we have

E(f�̂;h(s
2)) � �2~�;
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and for the variance V arf�̂;h(s
2); we have the following upper estimates:

V arf�̂;h(s
2) � E

0B@ KX
i=1

ni
s2i

!�2
�

0@ KX
i=1

q
n2i � 1

ni � 3
�
ni
s2i

1A�21CA = E(V̂1) (8)

V arf�̂;h(s
2) �

 
KX
i=1

s
ni � 1

ni + 1
�
ni
�2i

!�2
�

 
KX
i=1

ni � 1

ni � 3
�
ni
�2i

!�2
= V2 (9)

For the estimated degrees of freedom, �; we will make use of V̂j ; j = 1 ;2; as

given in (8) and (9) above with the parameters �2i ; i = 1 ; : : : ; K;in V2 replaced

by their estimators to obtain V̂2: That is,

�̂j = 2 �
(f�̂;h(s

2))
2

V̂j
; j = 1 ;2:

In the following, however, we propose to introduce a "compensation factor"

to the numerator of �j ; j = 1 ;2; to avoid adverse underestimation. Let this

factor be given by �j = � �
q
V̂j ; j = 1 ;2; � > 0: Thus we have the modi�ed

operational �j ; j = 1 ;2; given by

�̂j(�) = 2 �
(f�̂;h(s

2) + �j)
2

V̂j
; j = 1 ;2:

So, we can summarise the above considerations to formulate the following

theorem.

Theorem1: The test statistics T
(t)
1 ; t = 1 ;2; under H0 : � = 0 ;are such that:

a)

T
(1)
1 =

�̂q
f�̂;h(s2)

approx
� t�̂1(�)

b)

T
(2)
1 =

�̂q
f�̂;h(s2)

approx
� t�̂2(�)

Note that T (1)
1 and T (2)

1 di�er only in the associated estimated degrees of free-

dom.

Using T
(1)
1 and T

(2)
1 with � = 0 :5 we now demonstrate through a simulation
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study that the two proposed tests attains type I error rates which are closer

to the nominal level than the commonly used test T1 which attains levels well

above the ideal level, �; especially for small sample sizes. For comparison,

we have also considered in our simulations T �
1 = �̂=(

PK
i=1 ni=�

2
i )
�1=2 with the

true �2i in the variance term of T1; and the critical values are taken from the

standard normal distribution, as for T1:

Table I: Actual type I error rates (10 000 runs) for K=3 and K=6 at

signi�cance level � = 5% using test statistics T �
1 ; T1; T

(1)
1 and T

(2)
1 for the

�xed e�ects model.

nominal level,�=5% Attained type I error rates, �̂%

Sample sizes Error variances K=3 K=6

(1 Replication of K=3)

(n1; n2; n3) ( �2
1 ; �

2
2 ; �

2
3) T �1 T1 T

(1)
1 T

(2)
1 T �1 T1 T

(1)
1 T

(2)
1

(5,5,5) (1,3,5) 9.2 18.2 8.0 10.1 11.7 23.4 10.8 13.6

(4,4,4) 8.3 18.6 8.2 10.5 11.4 23.6 10.9 13.7

(10,10,10) (1,3,5) 6.6 10.0 4.9 5.4 7.0 11.0 5.4 6.0

(4,4,4) 6.9 10.8 5.4 6.0 7.3 11.7 5.9 6.5

(20,20,20) (1,3,5) 5.7 7.0 4.4 4.5 6.0 7.5 4.7 4.9

(4,4,4) 5.9 7.2 4.5 4.8 6.0 7.5 4.6 4.8

(5,10,15) (1,3,5) 7.3 13.3 5.9 6.9 9.5 16.8 7.6 9.0

(4,4,4) 8.0 13.1 6.4 7.2 8.8 13.4 6.8 7.6

(5,3,1) 7.2 10.1 5.6 6.0 8.4 12.3 6.3 6.8

(10,20,30) (1,3,5) 6.5 9.3 4.8 5.2 6.5 9.4 5.0 5.4

(4,4,4) 6.2 7.6 4.8 5.0 6.2 8.1 4.8 5.0

(5,3,1) 5.9 6.9 4.7 4.8 6.0 7.2 4.9 5.0

We consider �rst K=3 with various constellations of sample sizes and error

variances (see Table I below). In order to see the e�ect of increasing the

number of experiments with all the other factors held constant, we make one
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independent replication of all the constellations of K=3 to obtain K=6. The

results given are for testing H0 : � = 0 against a two-sided alternative H1 :

� 6= 0 :

We notice that the attained type I error rates in column 4 and 8 of Table I are

far much greater than the nominal level of 5.0 percent . For small sample sizes,

this liberality of T1 is relatively higher for balanced samples and increases with

the number of experiments (studies), that is, the attained levels are greater for

K=6 than for K=3. The proposed tests, T (1)
1 and T (2)

1 ; improve the attained

levels appreciably, despite showing some increase in the levels attained with

increase in the number of studies.

For balanced samples greater than 10, the proposed tests attain reasonable

stability with respect to increase in the number of experiments. This is also

conspicuous for unbalanced samples in cases where the smallest sample size is

equal to 10.

3 Random E�ects Model

For the one-way random e�ects model we add a random e�ect ai � N(0; �2a); i =

1; : : : ; K; to model (1), see section 2 above, to obtain

yij = � + ai + eij ; i = 1 ; : : : ; K; j= 1 ; : : : ; ni;

with a1; : : : ; aK ; e11; : : : ; eKnK being mutually stochastically independent, so

that �̂i � N(�; �2a + �2i =ni): Then the estimator of � equivalent to (4) is given

by

�̂ =

PK
i=1

1
vi
� �̂iPK

i=1 1=vi
; (10)

where vi = �̂2a+�̂
2
i =ni = �̂2a+�i; i = 1 ; : : : ; K:Therefore, we have the commonly

used test statistic

T1(r) =
�̂

(
PK

i=1 1=vi)
�1=2

approx
� N(0; 1) (11)

7



This test su�ers from the same weaknesses as its �xed e�ects counterpart, with

the situation here being compounded by the estimation of the variance of the

random e�ect, �2a:

Let � 2i = �2a+�
2
i =ni; and de�ne the quadratic formQ =

PK
i=1 hi(�̂i�

PK
j=1 bj �̂j)

2;

where hi > 0 and bi > 0 with
PK

i=1 bi = 1 ; i= 1 ; : : : ; K:By a somewhat lengthy

derivation, it can be shown that, Hartung (1999), (cf: also, e.g., Hartung, 1981,

Mathai/Provost, 1992):

E(Q) =
KX
i=1

hi(1 � 2bi)�
2
i + (

KX
i=1

hi)(
KX
i=1

b2i �
2
i ); (12)

V ar(Q) = 2 �

0@ KX
i=1

h2iD
2
i +

KX
i=1

KX
i6=j=1

hihjC
2
ij

1A ; (13)

where

Di = (1 � 2bi)�
2
i +

KX
k=1

b2k�
2
k ; (14)

Cij =
KX
k=1

b2k�
2
k � bi�

2
i � bj�

2
j ; i; j = 1 ; : : : ; K; (15)

which are also estimated by replacing parameters by their estimates, yielding

with special choices of

bi =
ni=�2iPK
i=1 ni=�

2
i

; hi =
bi

1 �
PK

i=1 b
2
i

the Cochran (1954) estimator (cf: also DerSimonian/Laird, 1986; White-

head/Whitehead, 1991)

~�2a =
KX
i=1

hi(�̂i �
KX
j=1

bj �̂j)
2 �

KX
i=1

ri �i; (16)

with ri = ( bi� b2i )=(1�
PK

i=1 b
2
i ); i = 1 ; : : : ; K;which is an unbiased estimator

of �2a; and we get for its variance

V ar(~�2a) = V ar(Q) +
KX
i=1

r2i � V ar(�i): (17)
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Also V ar(�i) = 2 � �4i =n
2
i (ni � 1) and its best invariant unbiased estimator is

given by dV ar(�i) = 2 � �2i =(ni + 1) ;Hartung/Voet (1986). Note that ~�2a has a

positive probability of taking negative values. For a realization the parameter

�2i =ni in bi is replaced by �i so that ~�
2
a becomes the estimator �̂

2
a:

Making use now Lemma 1 again, we have

1PK
i=1 1=vi

�
1

K
�

KX
i=1

1

K
� vi =

1

K2

KX
i=1

(�̂2a + �i); (18)

and therefore,
1PK

i=1 1=vi
= � � (�̂2a +

1

K

KX
i=1

�i);

where � is a positive random variable. Next,

�r �

 
E

 
1PK

i=1 1=vi

!!�1
�

1PK
i=1 1=vi

= �r �
� � (�̂2a +

1
K

PK
i=1 �i)

E
�
� � (�̂2a +

1
K

PK
i=1 �i)

�
� �r �

(�̂2a +
1
K

PK
i=1 �i)

E(�̂2a +
1
K

PK
i=1 �i))

approx
� �2

�r ;

where, if �̂2a > 0 and by the independence of Q and �i; i = 1 ; : : : ; K; �r is given

by

�r = 2 �

�
E
�
� � (�̂2a +

1
K

PK
i=1 �i)

��2
V ar

�
� � (�̂2a +

1
K

PK
i=1 �i)

�

� 2 �

�
E(�̂2a +

1
K

PK
i=1 �i)

�2
V ar

�
�̂2a +

1
K

PK
i=1 �i

�

= 2 �

�
E(�̂2a +

1
K

PK
i=1 �i)

�2
V ar(Q) + 2

K2

PK
i=1(riK � 1)2 � �4i =n

2
i

;

where �r is estimated by

�̂r = 2 �

�
�̂2a +

1
K

PK
i=1 �i)

�2
dV ar(Q) + 2

K2

PK
i=1(r̂iK � 1)2 �

�2
i

ni+1

: (19)

If �̂2a � 0; then

�̂r =

�PK
i=1 �i

�2
PK

i=1
�2
i

ni+1

: (20)
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So, for testing the hypothesisH0 : � = 0 against H1 : � 6= 0 ;we can summarise

the considerations above in the following theorem:

Theorem2: Under H0 there is

T1(r)(�̂r) =
�̂

(
PK

i=1 1=vi)
�1=2

(21)

distributed approximately as a central t-variable with �̂r degrees of freedom,

where �̂r is given in (19) for �̂2a > 0 (cf: equation (16)) and by (20) in the case

when �̂2a � 0:

Now the various test statistics are compared in a simulation study, cf: Table II.

The values reported there under T �
r ; for K=3 and 6, are obtained by using the

test statistic T �
r = �̂=(

PK
i=1 1=�

2
i )
�1=2 with the true values � 2i in the variance

term of T1(r) and the critical values are obtained from the standard normal

distribution, as for T1:

To obtain K=6 we independently replicated K=3 once , for �2a = 0 ;0:5; 5; 25.

For �2a = 0 :0, (see Table II), the proposed testT1(r)(�̂r) attains acceptable

type I error rates, despite being a bit more liberal for K=6 and small sample

sizes of 5 per experiment. Also for unbalanced samples, when relatively large

individual error variances are paired with relatively small sample sizes, the test

is conservative for K=3.

For values of �2a between 0.5 and 5, the proposed test attains levels far more

acceptable than those of the commonly used statistic T1(r) ; save for some small

traces of liberality especially for small sample size constellations.

For large values of �2a; the attained type I error rates stabilize for all sample

size and individual error variance combinations considered.
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Table II: Actual type I error rates (10 000 runs) for K=3 and 6 at

signi�cance level � = 5% using test statistics T �
r ; T1(r) and T1(r)(�̂r) for the

random e�ects model.

Nominal level, �=5% Attained type I error rates, �̂%

Sample sizes Error variances K=6

K=3 (1 Replication of K=3)

�2
a

(n1; n2; n3) ( �2
1 ; �

2
2; �

2
3) T �

r
T1(r) T1(r)(�̂r) T �

r
T1(r) T1(r)(�̂r)

0.0 (5,5,5) (1,3,5) 8.1 8.8 5.8 9.4 9.7 7.5

(4,4,4) 6.2 10.0 6.2 7.2 10.5 8.0

(20,20,20) (1,3,5) 7.5 5.0 3.8 6.7 5.0 4.2

(4,4,4) 5.4 4.9 3.6 5.5 4.9 3.7

(5,10,15) (1,3,5) 5.9 7.8 5.6 6.7 8.0 6.4

(4,4,4) 6.7 6.7 4.1 7.3 7.2 5.1

(5,3,1) 11.5 5.2 2.9 10.8 5.3 3.7

(10,20,30) (1,3,5) 5.6 5.2 4.1 5.7 5.5 4.3

(4,4,4) 6.7 5.2 3.7 6.0 4.9 3.7

(5,3,1) 10.1 4.0 2.9 8.5 4.5 3.5

0.5 (5,5,5) (1,3,5) 6.9 16.9 10.6 6.1 12.4 9.0

(4,4,4) 6.2 13.5 8.1 6.2 11.1 7.9

(20,20,20) (1,3,5) 5.8 18.4 10.0 5.1 11.5 6.6

(4,4,4) 5.2 14.2 7.7 4.9 10.1 5.3

(5,10,15) (1,3,5) 5.3 14.2 8.1 5.2 10.7 6.5

(4,4,4) 5.6 13.5 8.1 5.2 10.4 6.8

(5,3,1) 6.4 20.0 13.3 5.8 13.3 9.4

(10,20,30) (1,3,5) 5.4 16.2 7.9 5.5 10.9 5.5

(4,4,4) 4.9 14.6 8.3 5.1 10.8 6.4

(5,3,1) 5.7 20.7 13.7 5.3 13.8 9.2

1.0 (5,5,5) (1,3,5) 5.7 18.4 11.1 5.5 12.6 8.9

(4,4,4) 5.5 15.2 8.5 5.4 11.6 7.6

(20,20,20) (1,3,5) 5.0 18.5 8.4 5.3 11.6 5.7

(4,4,4) 5.2 16.3 7.1 5.4 11.1 5.7
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Table II: Cont.

Nominal level, �=5% Attained type I error rates, �̂%

Sample sizes Error variances K=6

K=3 (1 Replication of K=3)

�2
a

(n1; n2; n3) ( �2
1 ; �

2
2 ; �

2
3) T �

r
T1(r) T1(r)(�̂r) T �

r
T1(r) T1(r)(�̂r)

1.0 (5,10,15) (1,3,5) 5.3 16.7 8.4 5.0 10.9 6.0

(4,4,4) 5.7 15.8 8.4 5.5 10.9 6.7

(5,3,1) 5.4 21.0 13.4 5.6 13.5 9.2

(10,20,30) (1,3,5) 5.1 17.3 7.0 4.6 11.1 5.3

(4,4,4) 4.9 16.9 8.3 5.0 10.9 6.0

(5,3,1) 4.9 21.2 12.3 5.2 13.3 7.5

5.0 (5,5,5) (1,3,5) 5.1 20.6 9.3 5.1 12.2 5.5

(4,4,4) 5.4 18.2 7.7 5.1 11.6 5.7

(20,20,20) (1,3,5) 5.3 20.3 5.8 5.1 12.2 4.2

(4,4,4) 5.0 19.2 6.1 4.6 11.0 4.9

(5,10,15) (1,3,5) 5.0 19.4 6.4 4.8 11.4 4.8

(4,4,4) 4.9 19.5 7.1 4.8 10.9 4.9

(5,3,1) 5.0 20.6 9.1 5.2 13.0 5.4

(10,20,30) (1,3,5) 5.3 19.1 5.7 4.8 11.3 4.8

(4,4,4) 5.2 19.2 6.3 4.4 10.6 4.6

(5,3,1) 4.8 20.4 7.2 5.0 13.5 4.7

25 (5,5,5) (1,3,5) 4.7 19.3 5.4 5.1 13.2 4.2

(4,4,4) 4.9 20.0 5.9 5.0 11.4 4.2

(20,20,20) (1,3,5) 4.8 19.5 4.5 4.7 12.0 4.0

(4,4,4) 4.7 19.5 4.8 5.3 10.9 5.0

(5,10,15) (1,3,5) 4.7 18.9 4.4 5.0 11.8 4.4

(4,4,4) 4.8 19.4 5.3 5.0 11.7 4.3

(5,3,1) 5.1 20.8 5.7 4.8 13.6 4.1

(10,20,30) (1,3,5) 4.8 18.6 4.8 4.7 11.2 4.4

(4,4,4) 5.1 20.0 4.7 4.9 11.6 5.0

(5,3,1) 5.0 20.2 4.7 4.7 13.4 4.4
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4. Conclusion

The problem of frequent liberal decisions is very common in meta-analysis.

With our proposed tests, we see a great improvement in the attained type I

error rates for both the �xed and random e�ects ANOVA models. We would

recommend the use of these tests in place of the commonly used method to

minimise the danger of registering too many signi�cant results.
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