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Abstract

In this paper business cycles are considered as a multivariate phe-
nomenon and not as a univariate one determined e.g. by the GNP.
The subject is to look for the number of phases of a business cycle,
which can be motivated by the number of clusters in a given dataset
of macro-economic variables. Di�erent approaches to distances in the
data are tried in a fuzzy cluster analysis to pursue this goal.
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1 Introduction

In the economic literature business cycles are often considered as a univari-
ate time series phenomenon. For example business cycle phases are de�ned
by an increase or decrease, resp., of the growth rate of the GNP. Instead, it
should be recognized as a multivariate problem, which is inuenced by the
interplay of di�erent economic variables. Diebold and Rudebusch (1996)
discuss two main aspects of the old de�nition of Burns and Mitchell (1946)
of the business cycle: the comovement of important economic variables and
the partition of the cycle in di�erent phases, which are assigned to di�er-
ent economic regimes. The proposal of a partition into di�erent economic
regimes leads to the idea that such regimes should be identi�able by some
clustering algorithm.

Another reason to use clustering in this framework, was that there are a
lot of di�erent proposals how many di�erent phases make up a business
cycle. Most commonly two phases called upswing and downswing are con-
sidered su�cient. But also three to eight di�erent phases are discussed in
the literature (cp. Tichy (1976)). Heilemann and M�unch (1996) discuss a
4{phase{scheme which consists of the phases upswing, upper turning point
phase, downswing and lower turning point phase. For convenience the turn-
ing point phases will be called only upper and lower turning points in the
rest of the paper. This classi�cation will be compared to our clustering
results.
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In the next chapter we will discuss general problems of clustering in sets
of economic data and present �rst results. We propose a new "distance"
to distinguish between directions of change but discard it because of its
asymmetry. Instead we normalize the data with the euclidean norm, which
is shown to be appropriate for our problem. After this we discuss briey why
the usual standardization is not appropriate in this framework. Then we
o�er a possible interpretation of the found clusters and answer the question
posed in the beginning: How many di�erent economic regimes can be found
by empirical means?

2 Problems with economic variables

The data set consists of 13 so called stylized facts for the german business
cycle listed in table 1 and 157 quarterly observations from 1955/4 to 1994/4
(price index base=1991, y=yearly growth rates).

Abbr. variable

Y GNP, real (y)
C Private consumption, real (y)
GD Government de�cit, percent of GNP
L Wage and salary earners (y)
X Net exports, percent of GNP
M1 Money supply M1 (y)
IE Investment in equipment, real (y)
IC Investment in construction, real (y)
LC Unit labour cost (y)
PY GNP price deator (y)
PC Consumer price index (y)
RS Short term interest rate, nominal
RL Long term interest rate, real

Table 1: The 13 Stylized Facts

These 13 variables have been selected by Heilemann and M�unch from a total
of 120 variables.

Figure 1 shows simultaneous boxplots for GNP (Y), Wage and Salary Earn-
ers (L), Investment in Equipment (IE) and GovernmentDe�cit (GD) divided
into the four phases. The �rst three of them are variables for which the val-
ues can be well divided into groups and these groups are related to business
cycle phases as will be seen in subsection 2. The last, GD, is very badly sep-
arated. "1" denotes upswing, "2" upper turning point, "3" downswing and
"4" lower turning point. It is not surprising, that upswing and upper turning
point have large overlaps as well as downswing and lower turning point. But
the complete overlap in the boxplots of downswing and upswing even in the
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"well-behaved" stylized facts implies that even those two phases might not
be well separated. So well separated groups should not be expected. How
di�erent the stylized facts behave with respect to the separation into phases
is discussed in greater detail in Theis, Vogtl�ander, Weihs (1999).
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Figure 1: Boxplots of Stylized Facts within phases, Y =̂ GNP, L =̂ Wage
and Salary Earners, IE =̂ Investment in Equipment and GD =̂ Goverment
De�cit

Thus, usual clustering algorithms such as k-means clustering will not lead to
appropriate clusters because they search for well separated groups. Instead,
we used a fuzzy version of k{means.

2.1 Fuzzy{Clustering

Fuzzy{Clustering does not divide the data into well{separated groups but
gives every point a probability (membership) to belong to a certain group.
Figure 2 shows on the left hand side which sort of sets k{means{clustering
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Figure 2: Di�erence between hard partition and fuzzy{partition

is looking for and on the right hand side a typical data set for the fuzzy
approach and the sort of groups constructed by it.

Points xi in overlapping regions get memberships uiv smaller than 1 to be-
long to a speci�c group v, whereas points lying in only one group get a
membership of 1 to belong to this group and 0 for all other groups. So it
is easily seen, that the fuzzy{partition coincides with the hard clustering if
there are well separated groups of data points.

The memberships of the n data points in a data set are summarized in a
so{called membership matrix, where k denotes a given number of clusters:

U := (uiv)i=1;:::;n;v=1;:::;k :

We use fuzzy-k-mean clustering as implemented in the R/S{function FANNY
(Kaufman, Rousseeuw (1992)). This function minimizes the following term:

kX
v=1

Pn

i;j=1
u2ivu

2
jvd

2(xi; xj)

2
Pn

i=1
u2iv

;

here d(x; y) denotes a distance measure.

To evaluate a fuzzy{partition, a measure for the goodness of "separation"
into groups is needed. Such a measure is the Dunn-coe�cient

Fk(U) :=
kX

v=1

nX
i=1

u2iv
n

:

It lies between
1

k
for no partition (total fuzziness) and 1 for a hard partition.

By normalizing to [0; 1] one gets

~Fk(U) =
kFk(U)� 1

k � 1
:

For the rating of the results we use this last coe�cient.
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2.2 First Results

Applying FANNY directly to the whole data set and assuming two clusters
results in total fuzzyness as can be seen in table 2. But from the study of
parallel boxplots we know that some of the Stylized Facts have completely
overlapping ranges in the di�erent phases. So we constructed a greedy search
algorithm to �nd the best combination of Stylized Facts to separate between
groups. This algorithm deletes each variable once and applies FANNY to the
new data set. The variable for which the Dunn{coe�cient is increased the
most in this step, is deleted from the data set for the rest of the algorithm
and the search is applied to the resulting data set. Doing so we get the
results listed in table 2.

Stylized Facts ~FD(U)
All 4.6629367e-15
without IC 2.597922e-14
without IC, M1 7.2164497e-14
L,IE,PY,PC 0.23714597
L, IE 0.3265420

Table 2: Normalized Dunn-Coe�cient for di�erent sets of unmanipulated
Stylized Facts

The best separation is possible with Wage and Salary Earners (L) and In-
vestment in Equipment (IE).

That this partition has something to do with business phases can be seen
in �gure 3 (the line represents the classi�cation into the 4{phase{scheme,
representing upswing with 0.6, upper turning point at 0.5, downswing at 0.4
and lower turning point at 0.3). The memberships in the �rst group found
by FANNY resembles upswing combined with upper turning point.

But that the Dunn-coe�cient is only 0.33 and that 1

10
of the data has mem-

berships around 0:5 indicate strongly that the data is not very well separated.
This led to the idea to look for a more appropriate distance to describe the
di�erence between business cycle phases.

Because the phases describe directions of development in the economy, a
measure which reects especially the idea of turning points is searched for.
Since "turning points" should describe a change in direction from one time
point to the next, we de�ne the measure as outlined in the next section.
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3 A new Distance

To distinguish between directions of development of an economy we propose
the following "Distance":

De�nition 1 Let (Xt)t2N a multivariate time series in Rd and (xt)t2N the
corresponding realizations. Then de�ne

� : R
d�Rd �! R

(xt; xi) 7!
1

2
kxt � xt�1kkxi � xt�1k �

sin

�
arccos

�
< xi � xt�1; xt � xt�1 >

kxi � xt�1kkxt � xt�1k

��
; i 6= t

The complicated term on the right hand side is the area of the triangle
de�ned by the points xt; xt�1; xi. It is a multivariate formulation of the

usual formula
a � b � sin�

2
for calculating the area of a triangle. Here the

length of the basis a is kxt�xt�1k and b is the length of another edge of the
triangle, e.g. kxi � xt�1k. The arccos-term is the angle � between xt � xt�1

and xi � xt�1 because for the scalar product holds

< x; y > = cos� ; with kxk = 1 = kyk :
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Figure 4: Calculation of the area of a triangle

The area gets smaller if xt and xi lie in the same direction relative to xt�1.
So � measures how similar the direction of change from xt�1 to xt is to the
change of the economy from xt�1 to xi. Figure 5 illustrates this idea.
Applied to some part of a time series of length m (here m = 8) the distances
�(i; j) build a matrix of dimensions m and m� 1 of the following form:
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Figure 5: Illustration of the triangle-distance

2 3 4 5 6 7 8

1 0 7.93294 22.8509 13.4588 25.4090 17.0766 13.1911
2 0 0 25.0411 11.756 21.9319 18.0507 14.9415
3 7.93294 0 0 8.7315 15.0215 8.09695 5.56038
4 10.1469 25.0411 0 0 6.57221 8.41444 12.0736
5 12.2092 23.7597 8.7315 0 0 5.85778 9.0408
6 15.9978 18.5606 20.6145 6.57221 0 0 3.59261
7 15.0567 9.32700 20.4663 8.87859 5.85778 0 0
8 12.7051 5.14122 14.1319 7.70673 10.9967 3.5926 0

So no usual clustering can be performed on this matrix because the algo-
rithms use only the upper or lower half of distance matrices which are | due
to the de�nition of metrics | symmetric. Symmetrization leads to the loss
of the main characteristics. Thus, the "distance" measure � was discarded.
The next section describes our alternative. Instead of manipulating the
distance, we manipulate the data with the aim to reveal the direction of
development.

4 Normalizing the data

4.1 Idea

Normalizing the data points with the euclidean norm reduces the information
in the data points to the direction in p dimensional space and therefore
the direction relative to the origin is compared by the euclidean distance
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d(i; j). So we now consider the distance d(i; j) :=

 xi

kxik
�

xj

kxjk

 . Figure

6 illustrates this idea.

d(i,j)

Figure 6: Illustration of distances of normalized data

4.2 Results

Table 3 lists the normalized Dunn{coe�cient for the normalized data. As
in the case of unnormalized data (cp. table 2) using all variables and two
groups leads to a Dunn{coe�cient near 0. So again a greedy search for the
best subset of variables is performed where at each step the new data set is
normed. Again Wage and Salary earners (L) and Investment in Equipment
(IE) are the best Stylized Facts for the clustering. But here the Dunn-
coe�cient is more than twice as high as in the unnormalized case. Note
that the set of the best seven variables leads to a higher ~FD(U) than four
variables in the unnormalized case.

Stylized Facts ~FD(U)
All 4.440892e-16

without X 2.420286e-14
Best 8 0.20720696
Best 7 0.2571714

Y, C, L, IE 0.460536
Y, L, IE 0.549997
L, IE 0.71484

Table 3: Normalized Dunn{coe�cients with nomalized Data

Figure 7 shows fuzzy{memberships in the �rst group for normalized data
vs. the classi�cation of Heilemann, M�unch as in �gure 3 (upswing =̂ 0.6,
downswing =̂ 0.4). The superiority of the normalized clustering can be seen,
compared to �gure 3. The memberships are much more often nearly 1 and
stay high during upswing and upper turning point.
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In �gure 7 a di�culty can be spotted around 1971 with memberships around
0.5 in group 1. This will be discussed in section 6.

Figure 7 suggests that high membership in the �rst group indicates upswing
or upper turning point. The bar{chart in �gure 8 strengthens this impres-
sion. On the other hand neither downswing nor lower turning point are
entirely in group 2. But if one looks at �gure 7 it is easy to see that most
of the errors are made in the beginning of our time period, when the boom
after World War II still lasted. So these "errors" are due to small di�erences
between the main phases in this time.

1 2 3 4

0
1
0

2
0

3
0

4
0

5
0

Figure 8: Bar-Chart of Membership to 4-phase-classi�cation (Group 1 =̂
dark)

5 Why not Standardization?

The reason not to use standardization of variables instead of normalization
of observations is that standardizing by mean and standarddeviation does
not support the idea to look for directions in space because it changes the
components of the vectors di�erently according to the overall behaviour of
the corresponding variables. This destroys the original directions and �gure
9 shows that this leads to a clustering less related to business cycle phases
than the clustering of the original data.

In our case all standarddeviations are greater than 1 (sd=(2.974, 2.756,
2.697, 1.689, 2.143, 4.512, 8.865, 7.481, 3.318, 1.674, 1.802, 2.483, 1.457))
so that the standardization leads to a concentration of the data around the
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origin. Due to the concentration around the origin, the di�erences between
the datapoints decrease further which is another reason that the clustering
gets even worse compared to clustering of the original data as can be seen
by the normalized Dunn{coe�cients in table 4.

Stylized Facts ~FD(U)
All 0.0

without X 1.776357e-15
LC, PY,PC,RS 0.1312714

LC, PY 0.2397149

Table 4: FANNY with standardized Data

6 Are there more than two groups?

The aim of using cluster analysis was to determine how many di�erent eco-
nomic regimes could be found empirically. Up to now only two groups were
found. Testing di�erent numbers of clusters showed that more than three
groups can not be separated in our data set. Using four or more groups
only leads to a split in the memberships in one of the larger groups and the
normalized Dunn{coe�cient decreases signi�cantly with each new group.

The clustering into three groups however reveals an interesting third group.
Groups no. 1 and 3 are essentially the two groups from �gure 7 but group
no. 2 contains the di�cult time period around 1971 | known to be a time
of exceptional economic behaviour caused by the �rst oil{crisis (see �gure
10).
Table 5 reports the normalized Dunn{coe�cients and selected variables in
the case of clustering into three groups. Notice, that the best two variables
are again Wage and Salary Earners (L) and Investment in Equipment (IE),
in the selection of the best four variables GNP (Y) and Private Consumption
(C) are replaced by their respective price index.

Stylized Facts ~FD(U)
All 1.04639e-14

L, IE, PY, PC 0.26673257
L, IE, PC 0.39876288
L, IE 0.63404132

Table 5: Normalized Dunn{coe�cients with nomalized Data
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7 Conclusions

Using data vectors normalized by the euclidean norm and clustering there-
after has proved to be capable of �nding di�erent economic behaviour in
the data. Especially the identi�cation of exceptional economic conditions
is very promising. It shows that with this method it is possible to detect
unusual economic behaviour in the search for di�erent economic regimes
corresponding to business cycle phases.
The need for a reduction to a proper set of variables is a sign that some of
the theoretically important variables produce too much noise and eliminate
thereby the existing discernable groups.
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