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Abstract: A common procedure when combining two multivariate unbiased esti-

mates (or forecasts) is the covariance adjustment technique (CAT). Here the optimal

combination weights depend on the covariance structure of the estimators. In prac-

tical applications, however, this covariance structure is hardly ever known and, thus,

has to be estimated. An e�ect of this drawback may be that the theoretically best

method is no longer the best. In a simulation study (using normally distributed data)

three di�erent variants of CAT are compared with respect to their accuracy. These

variants are di�erent in the portion of the covariance structure that is estimated.

We characterize which variant is appropriate in di�erent situations and quantify the

gains and losses that occur.
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1 Introduction

Let T1 and T2 be two unbiased estimators of a parameter vector � 2 IRk, i.e.

E(T1) = � = E( T2) ;

with covariance structure

Cov

 
T1

T2

!
=

 
�11 �12

�>
12

�22

!
=: � :

A problem frequently arising in statistics is to combine these two estimators in order

to obtain a better estimator of �. The idea behind combining is that each of the two

estimators uses some information on � that the other neglects.
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A common procedure to combine two multivariate unbiased estimators is the so

called covariance adjustment technique (CAT). In this report we will investigate

the performance of three variants of this technique in the case where the covariance

matrix � is unknown and, thus, has to be estimated.

Section 2 will introduce the three variants of CAT considered here. Sections 3 and 4

describe a simulation study carried out to compare these techniques. Random data

from a 4-variate normal distribution will be used here. Finally, Section 5 gives some

concluding remarks.

In a further technical report (Troschke (1999)) the application of covariance adjust-

ment techniques to empirical data, namely to German macro economic forecast data

is investigated, showing that CAT is also applicable for predictions.

2 Covariance Adjustment Methods

Let T1 and T2 be two unbiased estimators of a parameter vector � 2 IRk. The

common point in all three covariance adjustment methods described below is that

we are trying to �nd the optimal combination Tc of T1 and T2 in the sense of a

linear combination

Tc = L1T1 + L2T2 ;

where L1;L2 are k � k real matrices.

In order to make the combined estimator unbiased, the combination weights must

add to unity, i.e. L1+L2 = I, where I is the k� k identity matrix. This means that

we are looking for an optimal combination of the type

TL = ( I� L)T1 + LT2 ;

with L 2 IRk�k.

Following the concept of Rao (1966, 1967) L has to be chosen from IRk�k, the set of

all k � k real matrices, such that the covariance matrix of the combined estimator

TL is minimal with respect to the L�owner ordering. (For A;B 2 IRk�k we call A

lower than or equal to B with respect to the L�owner ordering ifB�A is nonnegative

de�nite, cf. L�owner (1934).) In this setting the optimal choice for L is

L0 = ( �11 ��12)(�11 +�22 ��12 ��>
12
)�1 :

Rao (1966) coined the notion Covariance Adjustment for this procedure. We are

going to refer to it as the Strong Covariance Adjustment Technique (SCAT) in the

following.
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The above method requires assignment of the full weight matrix L 2 IRk�k, i.e.

determining k2 parameters. The idea of Trenkler and Ihorst (1995) was to reduce this

number substantially and, thus, to provide a more feasible combination procedure.

They restricted L to be a multiple of the identity matrix, i.e. L = �I, � 2 IR.

Consequently we are looking for an optimal choice of � in

T� = (1� �)T1 + �T2 :

Restricting L in such a way, minimization with respect to the covariance matrix

causes di�culties, cf. Odell et al., p. 1632, (1989). Hence, Trenkler and Ihorst (1995)

chose the total variance as a minimization criterion. Thus, a scalar optimization

criterion has been selected for the scalar linearly combined model. The optimal

choice of � with respect to the total variance is

�0 = tr(�11 ��12)(tr(�11 +�22 � 2�12))
�1 :

Obviously, this method requires assignment of only one parameter. It will be referred

to as the weak covariance adjustment technique (WCAT).

An intermediate method between the two extremes would be to restrict L to the

set of diagonal matrices, i.e. to look for a k � k diagonal matrix D minimizing the

covariance matrix of

TD = ( I�D)T1 +DT2

with respect to the L�owner ordering. The choice of diagonal matrix weights e�ects

that each component of the forecasts is regarded separately. Hence, the univariate

problem has to be solved for each of the k components. Consequently, the diagonal of

the optimal matrix weight D0 consists of the respective optimal univariate choices,

i.e.

D0 = diag(�11 ��12)(diag(�11 +�22 � 2�12))
�1 ;

(compare e.g. Bates and Granger (1969)). Here k parameters have to be assigned and,

therefore, we will refer to this method as medium covariance adjustment technique

(MCAT).

Other variants of covariance adjustment could be thought of including estimation

of another portion of the covariance matrix, but the three methods considered here

are the most obvious.

Clearly, according to the sets from which the matrix weights are chosen, SCAT has

the best theoretical properties, followed by MCAT and then WCAT. Note that if

one estimator is better than another with respect to the covariance matrix criterion

3



then it is also better with respect to total variance criterion. Note further that the

covariance matrix criterion coincides with the matrix mean square error criterion

(MMSE) with respect to � and the total variance criterion coincides with the scalar

mean square error criterion (SMSE) with respect to �. The reason for this is that

T1 and T2 are unbiased and hence, by the choice of the combination weights, also

TL;TD and T� are unbiased for �.

In most practical applications the covariance structure � is not known, and therefore

the optimal weights for the covariance adjustment techniques are not known either.

Consequently, the optimal combination weights �0, D0 and L0 have to be estimated.

Hence, the ranking of the three procedures might change in empirical applications,

especially because the number of parameters linked to these weights is di�erent

(1; k; k2).

Reasoning whether one should rather use the strong or the weak CAT when � is

not known, Trenkler and Ihorst (1995, pp. 191{192) state: In such a case it seems

advantageous to apply the weak covariance adjustment technique, because instead of

estimating a matrix we need only estimate the scalar �. The number of parameters

in b� used for T� is thereby reduced substantially.

Keeping in mind that the overall best choice for the combination weight is L0, there

are also arguments against WCAT: Even if the estimator bL0 for the SCAT optimal

weight L0 is bad, that does not necessarily mean that b�0I is a better estimator, since

L0 need not be near to a diagonal matrix.

However, we can argue in favor of WCAT that neither of the estimated weights

will be optimal, but the e�ort for estimating the WCAT optimal � is much smaller.

Still, with WCAT we may hope for an improvement over the single estimators or

their arithmetic mean. Furthermore, there may be situations where the optimal L0

is close to a multiple of the identity matrix I, which might favor the use of WCAT.

If, e.g., �12 � 0, �11 � �2
1
I and �22 � �2

2
I then we have this situation with

L0 � �2
1
(�2

1
+ �2

2
)�1I.

Another reason why SCAT may not be so successful as could be hoped for is the

following: In the literature on combination of univariate forecasts it is a frequently

stated observation, that estimating the optimal combination weights neglecting co-

variances between the estimators often leads to better combined estimates than

calculation employing these covariances (see e.g. Makridakis and Winkler (1983)).

Therefore, it may well be the case that employing covariances between the di�er-

ent components of the estimators is not bene�cial as well. These covariances are

employed by SCAT but not by MCAT or WCAT.
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At �rst glance it may seem counterintuitive that other estimators could produce

better results in practice than SCAT which uses the full covariance structure. If the

true optimal combination weight is unknown and consequently has to be estimated,

however, the quality of the weight estimator plays an important role: This estimator

may or may not be unbiased and it may have a large or small variance. For the weak

covariance adjustment technique Trenkler and Ihorst (1995) show what amount of

accuracy is gained by the WCAT procedure and what portion of it is lost again by

the necessity to estimate the optimal combination parameter. If the SCAT optimal

combination weight cannot be estimated satisfactorily, other techniques like MCAT

or WCAT may work better, or it may be that weight estimation without covariances

has better properties than estimation employing covariances between the parameter

estimators.

The performance of the three covariance adjustment methods shall now be investi-

gated, when � has to be estimated. In order to do so a simulation study has been

carried out and is described in the following two sections. To the best knowledge

of the author this is the �rst numerical comparison of these methods. Not only will

it be interesting to see which variant performs best in various situations, but also

how much may be gained by using one technique instead of another. A comparison

of the covariance adjustment techniques using empirical data will be described in

Troschke (1999).

3 Simulation Study

The goal of the following study is to �nd out whether SCAT, which is the theoret-

ically best variant of CAT, is the best variant in practice. If so, it is interesting by

what margin SCAT outperforms the other variants. On the other hand we might

�nd evidence for the conjecture that WCAT and MCAT perform better, since the

number of parameters to be estimated is substantially smaller. Other interesting

issues will also be addressed, like the question whether it is pro�table to employ the

covariance between the individual estimators. Presumably, the results will depend

heavily on the chosen covariance structure and sample size.

This simulation study is based on a similar one, conducted by Ihorst (1993), Chap-

ter 8.3. Let X � N2(�;W11) and Y � N2(�;W22) be two bivariate normally

distributed random vectors with common mean �. Further, let X and Y be cor-

related with Cov(X;Y) = W12, such that altogether we have a 4-variate normal
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distribution (X>;Y>)> � N4((�
>;�>)>;W) with

W =

 
W11 W12

W>

12
W22

!
:

Given a random sample (X1;Y1); : : : ; (Xn;Yn) from (X;Y) we can calculate the

arithmetic means T1 = X and T2 = Y from the respective subsamples as estimators

for �. For these estimators we have

�=

 
�11 �12

�>
12

�22

!
=Cov

 
T1

T2

!
=Cov

 
X

Y

!
=
1

n

 
W11 W12

W>

12
W22

!
=
1

n
W :

Our objective is to make use of the correlation between T1 and T2 in order to

calculate linearly combined estimators employing the three covariance adjustment

methods. Then these combined estimators are compared to each other as well as to

the original estimators T1 and T2 and to the arithmetic mean TAM of T1 and T2.

We investigated several choices of the covariance matrix W of (X>;Y>)>. In order

to have some continuity with respect to previous work, we used the positive de�nite

matrices from Ihorst (1993), Chapter 8.3 (W1;W3;W4;W6;W7;W9;W10). These

were chosen from a set of randomly generated covariance matrices in such a way

that the corresponding �0 values (for WCAT optimal combination) cover the whole

range of interesting constellations: There are values close to 1=2, where you would

expect the arithmetic mean to also deliver good results, values not so close to 1=2

but still in the interval [0; 1], and extreme values even outside [0; 1] which indicate

that the two individual estimators are very di�erent in accuracy.

In order to provide an interesting range of optimal weight matrices L0 we have

supplemented these choices by three further covariance matrices: W2 stands for the

case where L0 is approximately diagonal, whereas W5 produces an exactly diagonal

L0. With W4 the optimal weight is almost of the form �I, whereas W8 has the

optimal weight exactly of this form. Another interesting point concerning W8 is the

following: The optimal weight is L0 = 0, meaning that we should only use the single

estimator T1 and neglect the information contained in T2. Of course this seems

to be suboptimal, but Dickinson (1988) demonstrated that in the present situation

no gain of accuracy (i.e. variance) can be achieved by a convex combination of

T1 and T2. Namely, the situation corresponds to the univariate case, where the

correlation coe�cient � = �12(�1�2)
�1 between the two estimators equals the ratio

of the respective standard deviations �1=�2, with �1 < �2.
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In the following we list the covariance matrices under study and the corresponding

optimal combination weights ordered by increasing j�0 � 1=2j:

W1 =

0BBBB@
3 �5 �1 �2

�5 13 0 �1

�1 0 6 4

�2 �1 4 6

1CCCCA W2 =

0BBBB@
7 6 �5 �8

6 37 �21 �8

�5 �21 14 5

�8 �8 5 12

1CCCCA
with tr(W>

1
W1) = 344 with tr(W>

2
W2) = 3068

�0 = 0 :5625 �0 = 0 :5938

D0 = diag(0:3636; 0:6667) D0 = diag(0:3871; 0:6923)

L0 =

 
0:3783 �0:1609

�0:5174 0:6913

!
L0 =

 
0:5301 �0:1108

�0:1084 0:7590

!
tr(L>

0
L0) = 0 :9146 tr(L>

0
L0) = 0 :8812

W3 =

0BBBB@
7 �6 3 �4

�6 18 �9 12

3 �9 25 �7

�4 12 �7 10

1CCCCA W4 =

0BBBB@
18 10 �6 �1

10 19 �5 �2

�6 �5 6 5

�1 �2 5 6

1CCCCA
with tr(W>

3
W3) = 1768 with tr(W>

4
W4) = 1139

�0 = 0 :3333 �0 = 0 :6923

D0 = diag(0:1538; 1:5000) D0 = diag(0:6667; 0:7241)

L0 =

 
0:1538 �0:5

0:1154 1:5

!
L0 =

 
0:7711 �0:1791

�0:0100 0:7313

!
tr(L>

0
L0) = 2 :537 tr(L>

0
L0) = 1 :1617

W5 =

0BBBB@
3 0 1 0

0 8 0 5

1 0 9 0

0 5 0 9

1CCCCA W6 =

0BBBB@
1 0 1 1

0 2 �2 0

1 �2 4 1

1 0 1 3

1CCCCA
with tr(W>

5
W5) = 287 with tr(W>

6
W6) = 44

�0 = 0 :2941 �0 = 0 :2500

D0 = diag(0:2000; 0:4286) D0 = diag(0:0000; 0:4000)

L0 =

 
0:2000 0:0000

0:0000 0:4286

!
L0 =

 
0:1818 �0:2727

0:5455 0:1818

!
tr(L>

0
L0) = 0 :2237 tr(L>

0
L0) = 0 :438
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W7 =

0BBBB@
21 7 17 16

7 19 24 18

17 24 35 25

16 18 25 26

1CCCCA W8 =

0BBBB@
4 0 4 0

0 4 0 4

4 0 7 0

0 4 0 7

1CCCCA
with tr(W>

7
W7) = 6941 with tr(W>

8
W8) = 194

�0 = 0 :1613 �0 = 0

D0 = diag(0:1818; 0:1111) D0 = diag(0:0000; 0:0000)

L0 =

 
�0:2687 �1:2388

�1:0821 �0:8507

!
L0 =

 
0:0000 0:0000

0:0000 0:0000

!
tr(L>

0
L0) = 3 :5015 tr(L>

0
L0) = 0

W9 =

0BBBB@
3 �1 6 �2

�1 1 �2 1

6 �2 15 2

�2 1 2 27

1CCCCA W10 =

0BBBB@
18 15 17 11

15 18 16 13

17 16 18 11

11 13 11 10

1CCCCA
with tr(W>

9
W9) = 1064 with tr(W>

10
W10) = 3434

�0 = �0:0938 �0 = 1 :5000

D0 = diag(�0:5000; 0:0000) D0 = diag(0:5000; 2:5000)

L0 =

 
�0:6336 0:1603

0:1985 �0:0382

!
L0 =

 
2:0000 3:0000

1:0000 3:0000

!
tr(L>

0
L0) = 0 :468 tr(L>

0
L0) = 23 :

Since the joint covariance matrix � of T1 and T2 is assumed to be unknown, it has

to be estimated in order to apply the covariance adjustment techniques. For each

of the choices for W we drew three random samples of di�erent sizes n from the

corresponding 4-variate normal distribution. Without loss of generality we chose � =

0, i.e. we drew samples (X>
1
;Y>

1
)>; : : : ; (X>

n
;Y>

n
)> from (X>;Y>)> � N4(0;W).

The respective sample sizes were n = 10, n = 25 and n = 50.

Using these random data we calculated the arithmetic means

T1 = X =
1

n

nX
i=1

Xi and T2 = Y =
1

n

nX
i=1

Yi

from the X- and Y-samples as estimates for � = 0.

To estimate � we employed the sample covariance matrix cW:

b� =

0@ b�11
b�12b�>

12
b�22

1A =
1

n

0@ cW11
cW12cW>

12
cW22

1A =
1

n
cW

=
1

n(n� 1)

nX
i=1

  
Xi

Yi

!
�

 
X

Y

!!  
Xi

Yi

!
�

 
X

Y

!!>
:
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Using this estimator we can calculate estimates for the combination weights of the

respective covariance adjustment techniques.dSCAT: Estimate L0 by

bL0 = ( b�11 � b�12)( b�11 + b�22 � b�12 � b�>
12
)�1 :

dMCAT: Estimate D0 by

cD0 = diag( b�11 � b�12)(diag( b�11 + b�22 � 2 b�12))
�1 :

dWCAT: Estimate �0 by

b�0 = tr( b�11 � b�12)(tr( b�11 + b�22 � 2 b�12))
�1 :

As already mentioned in Section 2 in practice we can observe that estimating the

optimal combination weights neglecting covariances between the estimators often

leads to better combined estimates than calculation employing these covariances (cf.

Makridakis and Winkler (1983)). Therefore, we will also investigate variants of the

three covariance adjustment techniques neglecting covariances between estimators,

i.e. assuming them to be 0, in the calculation of the combination weights. These

variants will be referred to as gSCAT, gMCAT and gWCAT, respectively.gSCAT: Estimate L0 by

eL0 = b�11( b�11 + b�22)
�1 :

gMCAT: Estimate D0 by

fD0 = diag( b�11)(diag( b�11 + b�22))
�1 :

gWCAT: Estimate �0 by

e�0 = tr( b�11)(tr( b�11 + b�22))
�1 :

By plugging in these combination weight estimators we obtain the parameter esti-

mators Tb�0 , Te�0 , TbD0

, TeD0

, TbL0 and TeL0 , e.g. TbL0 = ( I� bL0)T1 + bL0T2.

The whole process of drawing random samples and calculating estimates is repeated

1 000 times. To judge the performance of an estimator T for � = 0 we calculate the

average of the sum of squared errors av (SSE(T;�)) over the 1 000 simulation

runs, where

SSE(T;�) = ( T� �)>(T� �) = T>T :

Thus, an estimator will be called better than another if it has a smaller average

SSE-value.
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As mentioned earlier the optimal SCAT-combination weight L0 is determined in

order to minimize the covariance matrix of the combined estimator in the sense of

the L�owner ordering. On the other hand the optimal WCAT-combination weight �0

is determined in order to minimize the total variance of the combined estimator.

Furthermore, if an estimator is better than another with respect to the covariance

matrix criterion it is also better with respect to the total variance criterion and

the total variance criterion coincides with the scalar mean square error for unbiased

estimators. Consequently, the average SSE-value is the natural choice for the per-

formance measure in this simulation study, since it is the empirical counterpart of

the SMSE:

SMSE(T;�) = E
�
(T� �)>(T� �)

�
:

Being a real number is a further advantage of the average SSE-value, since compar-

isons with respect to this measure are easily done. Moreover, we can determine by

what percentage one estimator outperforms another.

In the simulation study the covariance matrix W of (X>;Y>)> and, hence, the

optimal combination weights are given. Therefore, we can also calculate the CAT

estimators using the respective optimal combination weights L0, D0 and �0I. The

corresponding average SSE-values may serve as an indicator how good the CAT

estimators using the estimated combination weights may get.

Tables 1 and 2 report the average SSE-values of the respective estimates for the

parameter vector � = 0 relative to the average SSE-value that is obtained for the

theoretically best estimate TL0 , i.e. for any estimator T we report

av (SSE(T;�))

av (SSE(TL0 ;�))
=

av
�
T>T

�
av
�
T>
L0
TL0

� :

These values have been truncated after the second decimal. It should be remarked

that we will denote the relative SSE-values for those estimators which are exactly as

good as TL0 as '1', whereas we will denote '1.00' for those estimators which perform

equally good as TL0 within the tolerance of this table, i.e. which produce SSE-values

between 1.000 and 1.009.

The SSE-values of the combinations which depend on �xed weights (T1, T2, T�0 ,

TD0
, TL0 , TAM) could have been calculated theoretically, i.e. without simulation.

Whenever combination weights have to be estimated, however, direct calculation of

the errors is not possible and simulation techniques have to be used. For reasons

of the homogeneity of the reported values the tables present the simulation values

throughout.
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Furthermore, we can calculate the goodness of the estimated covariance matrix b�
with respect to the true covariance matrix �, and we can calculate the goodness of

the estimated combination weights with respect to the optimal weight matrix L0 as

well. Again this is done by the averages of the respective sums of squared errors, i.e.

by the averages of the squared Frobenius norms (cf. Horn and Johnson (1985)):

av
�
tr
�
( b���)>( b���)

��
;

av
�
tr
�
(bL0 � L0)

>(bL0 � L0)
��

; av
�
tr
�
(eL0 � L0)

>(eL0 � L0)
��

;

av
�
tr
�
(cD0 � L0)

>(cD0 � L0)
��

; av
�
tr
�
(fD0 � L0)

>(fD0 � L0)
��

and

av
�
tr
�
(b�0I� L0)

>(b�0I� L0)
��

; av
�
tr
�
(e�0I� L0)

>(e�0I� L0)
��

:

Table 3 gives the average SSE-values for the estimation of the covariance matrix �

and for the estimation of the combination weights, respectively. These SSE-values

have been divided by the respective sum of squares of the corresponding true or

optimal matrices, i.e. we list

av
�
tr
�
(cW �W)>(cW�W)

��
tr
�
W>W

�
0@= av

�
tr
�
( b���)>( b���)

��
tr
�
�>�

�
1A

in the second column and

av
�
tr
�
(M� L0)

>(M� L0)
��

tr
�
L>
0
L0

�
in the following six columns, where M denotes the respective estimate for the com-

bination weight. All these values have been rounded to the fourth decimal. As an

exception, with covariance matrix W8 we could not divide by the sum of squares of

L0, since L0 = 0. Here, in columns 3 through 8 we report the average SSE-values

av
�
tr
�
(M� L0)

>(M� L0)
��

without normation by tr
�
L>
0
L0

�
instead. This is in-

dicated by a '� � � ' in the corresponding section of Table 3.
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Table 1: Estimation of parameter vector � = 0: Sum of squared errors (average from

1000 simulation runs) relative to sum of squared errors of TL0 (average from 1000

simulation runs)

single estimators arithmetic mean WCAT estimators

Wi T1 T2 TAM T�0 Tb�0 Te�0 n

W1 8.73 6.71 3.29 3.23 3.59 3.65 10

10.00 6.87 3.58 3.46 3.57 3.60 25

9.00 6.51 3.36 3.27 3.28 3.30 50

W2 5.73 3.31 1.42 1.30 1.33 1.35 10

5.67 3.30 1.43 1.32 1.33 1.34 25

(L0 � diag) 5.81 3.54 1.34 1.25 1.26 1.28 50

W3 1.71 2.57 1.60 1.52 1.58 1.55 10

1.74 2.33 1.56 1.51 1.53 1.53 25

1.85 2.44 1.62 1.58 1.60 1.59 50

W4 6.58 2.14 1.55 1.11 1.19 1.25 10

7.47 2.29 1.64 1.12 1.16 1.21 25

(L0 � �I2) 7.92 2.29 1.71 1.13 1.15 1.18 50

W5 1.18 1.92 1.09 1.02 1.06 1.04 10

1.13 2.06 1.12 1.01 1.03 1.04 25

(L0 = diag) 1.20 1.90 1.08 1.01 1.03 1.03 50

W6 2.46 5.97 2.48 2.04 2.12 2.10 10

2.36 5.37 2.29 1.93 1.98 1.96 25

2.25 5.16 2.22 1.87 1.88 1.88 50

W7 3.37 5.34 3.70 3.33 3.54 3.54 10

3.19 4.89 3.41 3.13 3.22 3.28 25

3.12 4.87 3.38 3.07 3.11 3.23 50

W8 1 1.80 1.20 1 1.06 1.11 10

1 1.70 1.16 1 1.02 1.09 25

(L0 = �I2) 1 1.73 1.19 1 1.00 1.10 50

W9 2.44 25.92 9.30 2.24 2.40 2.96 10

2.26 24.56 8.67 2.12 2.14 2.72 25

2.28 25.48 8.90 2.14 2.17 2.72 50

W10 4.45 3.52 3.85 3.44 3.66 3.80 10

4.57 3.49 3.90 3.33 3.40 3.84 25

4.55 3.52 3.91 3.38 3.41 3.85 50
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Table 2: Estimation of parameter vector � = 0: Sum of squared errors (average from

1000 simulation runs) relative to sum of squared errors of TL0 (average from 1000

simulation runs) (continued)

MCAT estimators SCAT estimators

Wi TD0
TbD0

TeD0

TL0 TbL0 TeL0 n

W1 2.86 3.35 3.33 1 1.40 1.46 10

3.03 3.17 3.19 1 1.09 1.25 25

2.92 2.91 2.94 1 1.02 1.16 50

W2 1.01 1.17 1.19 1 1.28 1.22 10

1.03 1.06 1.10 1 1.07 1.09 25

(L0 � diag) 1.02 1.05 1.12 1 1.04 1.06 50

W3 1.09 1.24 1.31 1 1.29 1.25 10

1.10 1.13 1.30 1 1.07 1.23 25

1.11 1.14 1.36 1 1.04 1.28 50

W4 1.10 1.24 1.28 1 1.32 1.39 10

1.11 1.16 1.21 1 1.08 1.20 25

(L0 � �I2) 1.12 1.15 1.19 1 1.05 1.18 50

W5 1 1.11 1.02 1 1.32 1.06 10

1 1.04 1.02 1 1.09 1.03 25

(L0 = diag) 1 1.03 1.01 1 1.03 1.00 50

W6 1.76 2.10 2.08 1 1.38 2.22 10

1.66 1.76 1.83 1 1.11 1.92 25

1.65 1.69 1.76 1 1.04 1.84 50

W7 3.34 3.84 3.57 1 1.45 3.42 10

3.13 3.30 3.29 1 1.10 3.09 25

3.07 3.14 3.23 1 1.04 3.01 50

W8 1 1.16 1.12 1 1.36 1.13 10

1 1.04 1.09 1 1.09 1.09 25

(L0 = �I2) 1 1.01 1.10 1 1.03 1.10 50

W9 1.44 1.63 3.24 1 1.33 3.48 10

1.43 1.49 2.95 1 1.09 3.08 25

1.40 1.44 3.01 1 1.03 3.11 50

W10 2.88 3.34 3.72 1 1.38 3.34 10

2.90 3.08 3.77 1 1.08 3.43 25

2.90 2.96 3.77 1 1.05 3.43 50
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Table 3: Estimation of covariance matrix and combination weights: Sum of squared

errors (average from 1000 simulation runs) relative to the Frobenius norms of W

and L0, respectively

error vs.W errors vs. L0

Wi Ŵ b�0I2 e�0I2 bD0
eD0

bL0 eL0 n

W1 0.3766 0.4160 0.4219 0.3751 0.3734 0.0429 0.0585 10

0.1408 0.3894 0.3929 0.3379 0.3401 0.0130 0.0296 25

0.0647 0.3825 0.3851 0.3290 0.3312 0.0059 0.0225 50

W2 0.3311 0.0710 0.0685 0.0852 0.1038 0.3149 0.1776 10

0.1135 0.0654 0.0611 0.0630 0.0800 0.0973 0.1164 25

(L0 � diag) 0.0520 0.0641 0.0594 0.0591 0.0751 0.0486 0.0994 50

W3 0.3173 0.6721 0.6026 0.2425 0.4050 0.2574 0.3269 10

0.1348 0.6541 0.5945 0.1520 0.3984 0.0793 0.3161 25

0.0618 0.6572 0.5961 0.1249 0.3967 0.0345 0.3146 50

W4 0.3481 0.0475 0.0442 0.0612 0.0528 0.0855 0.0862 10

0.1278 0.0395 0.0344 0.0446 0.0371 0.0218 0.0379 25

(L0 � �I2) 0.0620 0.0364 0.0312 0.0404 0.0326 0.0107 0.0288 50

W5 0.4493 0.4185 0.2560 0.7680 0.1947 1.6921 0.3396 10

0.1674 0.2216 0.1898 0.2474 0.0808 0.4837 0.1313 25

(L0 = diag) 0.0804 0.1683 0.1736 0.1165 0.0493 0.2161 0.0706 50

W6 0.3869 0.9224 0.9416 1.2176 1.0518 0.3229 1.2786 10

0.1393 0.8919 0.9277 1.0963 0.9989 0.1051 1.1881 25

0.0681 0.8792 0.9179 1.0567 0.9719 0.0473 1.1667 50

W7 0.2695 1.1430 1.3550 1.2338 1.3663 0.1534 1.2968 10

0.0999 1.1215 1.3480 1.1293 1.3577 0.0394 1.2763 25

0.0481 1.1183 1.3446 1.1120 1.3557 0.0173 1.2747 50

W8 0.3848 0.1557 0.2754 0.3483 0.2919 0.8472 0.3178 10

� � � 0.1473 0.0608 0.2707 0.1200 0.2766 0.2522 0.2832 25

(L0 = �I2) 0.0682 0.0278 0.2639 0.0556 0.2663 0.1139 0.2690 50

W9 0.3304 0.7768 1.2979 0.2638 1.5461 0.1469 1.7344 10

0.1232 0.7630 1.2882 0.2077 1.5246 0.0420 1.6424 25

0.0575 0.7699 1.2872 0.1924 1.5234 0.0193 1.6306 50

W10 0.1947 0.5655 0.7831 0.6122 0.7750 0.0809 0.7289 10

0.0944 0.5507 0.7832 0.5695 0.7745 0.0226 0.7264 25

0.0458 0.5448 0.7828 0.5522 0.7742 0.0101 0.7272 50
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4 Results

What is the best choice? The best technique for every combination of covariance

matrix W and sample size n is SCAT employing the optimal weight. This justi�es

our decision to present all the SSE-values relative to the SSE-value of TL0 .

Optimal vs. estimated combination weights: As could be expected the co-

variance adjustment techniques using the optimal combination weights, T�0 ;TD0

and TL0 , almost always outperform the respective variants where the combination

weights are estimated. In empirical situations, however, the true covariance structure

is unknown, so that the CAT variants using the optimal weights are not feasible.

Consequently, the interesting CAT variants are these, where the combination weights

have to be estimated, and we will regard only them from now on.

A rough overall judgement: In general the dSCAT variant, i.e. TbL0 , is the best

estimation procedure by far. It almost always outperforms both of the original esti-

mators T1 and T2 (exceptions (W5, n = 10) and (W8, all n)). This could have been

hoped for, since it is a combined estimator using much more information than the

original estimators. Whenever the optimal weight L0 is equal to or close to a diag-

onal matrix, other combined estimators may exhibit a slight advantage (see later),

but otherwise TbL0 outperforms all of the other combined estimators, CAT variants

as well as the arithmetic mean. Very often the improvement gained by using dSCAT
is enormous, with relative SSE-values which are better than those of the alterna-

tives up to 200%. Sometimes the gain is even larger. And if any of the alternatives

outperforms TbL0 it is only by a small margin. Hence, use of this SCAT variant is

strictly recommended.

For MCAT and WCAT the b -variant and the e-variant perform almost equally well

(exceptions W9 and W10, where the e-variants are clearly worse). MCAT performs

slightly better thanWCAT in general with the exception of those covariance matrices

W generating an L0 close to a multiple of the identity matrix. WCAT in turn

performs slightly better than the arithmetic mean. (Exception: For W9, where the

individual estimators T1 and T2 are very di�erent in quality, the arithmetic mean

is much worse than the other combined estimators.) All the combined estimators

could outperform both individual estimators, with some exceptions for extreme �0-

values, where especially the e -variants and the arithmetic mean ranked between the

individual estimators. Any combination technique outperformed at least one of the

original estimators.

Special optimal weight matrices L0:We will now consider the covariance matri-

ces W which produce a special structure of the optimal weight matrix L0, namely:
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W2 with L0 � diag, W5 with L0 = diag, W4 with L0 � �I, W8 with L0 = �I.

ForW2
dMCAT gives very good results throughout. gSCAT performs comparably good

for all considered n, and so does dSCAT for n = 25 and n = 50. For W5
gMCAT is a

very good choice, gSCAT and both WCAT variants are good alternatives; for n = 25dMCAT and for n = 50 dMCAT and dSCAT join this good group. For (W4, n = 10) dWCAT
is the best choice, but for n = 25 and n = 50 dSCAT is. For W8

dWCAT always holds

the top position, for n = 25 dMCAT and for n = 50 dMCAT and dSCAT are comparable.

In general we can observe that the larger the sample size n the more we can trust

on the dSCAT combination technique. In the case of smaller sample sizes we �nd

evidence for the conjecture, that MCAT variants perform especially well when L0 is

equal or close to diagonal, and that WCAT variants are very good when L0 is equal

or close to a multiple of the identity matrix. Here we can state an advantage for the

techniques employing the covariances between the parameter estimators, i.e. for theb -techniques.
Other optimal weight matrices: The remaining choices of W (W1, W3, W6,

W7, W9 and W10) imply no special structure of L0. Presumably this will be the

more relevant case for practical purposes. Here we can make a clear statement in

favor of dSCAT: It is the best combination technique, far ahead of the other techniques
in most of the considered settings. Only for the less extreme values of �0 and n = 10gSCAT can compete.b -variants vs. e -variants: We can state that dSCAT performs better than gSCAT in

general. But for some choices of W (especially those producing an almost diagonal

L0) we can often observe the pattern that the e-variant is better by a small margin

for n = 10 and the b-variant is better by a small margin from n = 25 on. For most of

the more extreme �0-values (W6,W7,W9 andW10) the e -variant exhibits very bad
results. For WCAT and MCAT the b - and e -variants are about equal throughout
with slight advantages for the b -variant, especially for the larger n-values and for

the very extreme �0-values (W9 and W10).

We sometimes �nd that gMCAT is slightly better than dMCAT for n = 10. Since MCAT

is equivalent to the univariate treatment of the components of the parameter esti-

mators, this fact to a certain extent supports the �ndings of Makridakis and Win-

kler (1983), that covariances between forecasts should be neglected. Makridakis and

Winkler (1983) frequently used only small sample sizes.

How much is lost by the necessity to estimate? If we replace the SCAT

optimal combination weight L0 by its estimate bL0 employing covariances between

the parameter estimators, we observe the following pattern for all choices of W:

For sample size n = 10 the estimator TbL0 is about 30{40% worse than TL0 , for
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n = 25 we only lose about 10% and for n = 50 only about 4%, showing that TbL0 is
a good choice and that it tends to reproduce the results of the optimal method for

large sample size n. The almost �xed losses of the dSCAT variant with respect to the

optimal TL0 are a further advantage of dSCAT, since the risk of using this technique

can be estimated in advance.

When replacing L0 by its estimate eL0 neglecting covariances between the parame-

ter estimators the results are not so uniform. Since covariances are neglected, the

weight estimate converges to a wrong value, and hence the corresponding parameter

estimate TeL0 may exhibit a loss of up to 250% especially when j�0 � 1=2j is large.

When j�0 � 1=2j is small, however, the loss is also small and for n = 10 the loss of

the e -variant may even be smaller than that of the b -variant.
Taking TbD0

instead of TD0
results in losses of about 10{20%, 5% and 3% for n = 10,

n = 25 and n = 50, respectively. The losses with respect to TL0 di�er widely for

the various choices of the covariance matrix W as could be seen above (cf. the

paragraphs on special / other optimal weight matrices). The losses for TeD0

are of

about the same size except for the very extreme �0-values (W9 and W10), where

they are greater.

Using Tb�0 instead of T�0 results in losses of about 4{10%, 1{3% and 1% for n = 10,

n = 25 and n = 50, respectively. Again the losses with respect to TL0 di�er widely

for the various choices of W. The losses for Te�0 are of about the same size, again

except for W9 and W10, where they are greater.

What is the e�ect of the sample size n? The general observation that the

quality of parameter estimation improves with increasing sample size and that it

approaches the optimal TL0 can only be stated for dSCAT. For all other techniques
the estimated combination weight appears to converge (cf. Table 3), but not to the

optimal L0. Hence, parameter estimation remains suboptimal. Only for those choices

of W with L0 = D0 (L0 = �0I2) MCAT (MCAT and WCAT) will approach the

optimum with increasing n. What can be achieved in general can be seen from the

columns for T�0 ;TD0
and TL0 .

For n = 50 dSCAT produced very good results close to the optimal TL0 , thus rank-

ing �rst among the combination techniques. For n = 25 this dominance is slightly

shattered (W2, W5, W8) and for n = 10 it is valid only for the covariance matrices

e�ecting an optimal weight L0 not close to a diagonal matrix.

It should be pointed out that n = 10 is a very important choice for practical pur-

poses: When applying the combination techniques to forecasts, the combination

weights are frequently estimated by small samples like n = 10. This is done because

in this context the relative quality of the forecasts is assumed to vary with time.
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The combination weights represent the relative quality, and in order to keep them

up to date, only the most recent observations are employed for weight estimation.

Does the extremity of �0 in
uence the performance of the combination

techniques? The answer is in the a�rmative, if we neglect the covariance ma-

trices W generating a close-to-diagonal optimal weight L0. These matrices have

been already dealt with. For the other choices we can state the tendency that the

dominance of dSCAT over all other combination techniques is distinct if j�0 � 1=2j

is large. For the very extreme �0-values (W9 and W10) the b -variants of WCAT,

MCAT and SCAT perform much better than the e -variants. For the more moderate

�0-values (W1; : : : ;W6) all combined estimators outperform both individual esti-

mators, whereas only one individual estimator is outperformed by the arithmetic

mean and the e -variants for the more extreme �0-values (W7; : : : ;W10).

Does good estimation of the optimal weight L0 imply good parameter

estimation? From comparing Table 3 to Tables 1 and 2 it may be concluded that

the quality of weight estimation can only serve as a rough indicator for the quality of

parameter estimation: If two methods have errors with respect to L0 which are very

di�erent, then these methods will perform di�erently for parameter estimation as

well. But if the di�erences in weight estimation are relatively small one cannot say

which method will be better for parameter estimation. Frequently, from considering

the weight errors we would expect one technique to be much better than another,

but considering the parameter errors reveals only a small di�erence. Or it may even

happen that weight errors and parameter errors result in a completely di�erent

ranking of combination techniques. This is the case for (W2, n = 10) where e�0I2 is

the best estimator for L0 but Te�0 is the worst parameter estimator.

What else can be said about weight estimation? In the last paragraph we

stated a rough relationship between the quality of weight estimators and the quality

of parameter estimators. Consequently, for weight estimation we can observe similar

e�ects as have been listed above for parameter estimation, e.g. concerning the results

for the b - and e -variants, etc.
Does the quality of estimating W in
uence the quality of estimating L0?

The goodness of estimatingW improves with increasing sample size n. The same is

true for the estimation of L0 by bL0. The estimation of L0 by any of b�0I2, e�0I2, cD0,fD0 or eL0 does not necessarily improve as well, since these estimates may converge

to wrong combination weights (cf. the paragraph on the sample size n).

Can some covariance matrices W be better estimated than others? It can

be observed that the two best results in the estimation ofW occur forW10 andW7.

These are the only covariance matrices with positive entries only. The corresponding
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dSCAT combined estimators TbL0 , however, do not show extraordinarily good results.

5 Conclusions

All covariance adjustment techniques performed well in the above simulation study.

In general they outperformed the arithmetic mean TAM and, thus, they should be

preferable. Some comments on the usefulness of the arithmetic mean as a combina-

tion method in practical applications follow later in this section.

As a consequence of our results we suggest the following pre-estimate combination

method:

� Estimate the covariance matrix W

� Calculate the estimated optimal weight bL0

� If bL0 � �I then combine via dWCAT
� Otherwise, if bL0 � diag then combine via dMCAT
� Otherwise combine via dSCAT

At least for small sample sizes like n = 10 gWCAT or gMCAT may be considered as

an alternative for dWCAT or dMCAT, respectively. If the estimate b�0 of the WCAT

optimal combination parameter is near to 1=2 and n is small we may consider gSCAT
as an alternative for dSCAT. If the sample size is as large as n = 50 we should employdSCAT throughout.

The results from the simulation study suggest that employing the pre-estimate com-

bination method should be leading to more accurate estimates than using any �xed

covariance adjustment technique, the arithmetic mean or an individual estimator.

For the general case where L0 is not close to a diagonal matrix the possible pro�t of

employing dSCAT is enormous, whereas the possible loss is only small. Furthermore

only dSCAT will produce asymptotically optimal results (for large n). The conjec-

tured advantage of the medium and weak variants, based on the fact that fewer

parameters have to be estimated, could not be con�rmed unless L0 is approximately

diagonal. Regarding this dominance of dSCAT in the general case leads us to the

recommendation that additional variables should be used whenever possible. If esti-

mators for a set of parameters are to be combined all parameters should be treated

simultaneously by dSCAT instead of treating all the parameters separately.
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Based on the �ndings of Makridakis and Winkler (1983), we conjectured that the use

of covariances between the parameter estimators may not be bene�cial. This con-

jecture could not be con�rmed in general. Especially for SCAT the b -variant (using
the covariances) performed much better than the e -variant (neglecting the covari-

ances). For MCAT, however, which treats all the components like in the univariate

case, and small sample size n we found some evidence that neglecting covariances

may be a good alternative. It is worthwhile noting that this con�rms the �ndings of

Makridakis and Winkler (1983) since they are using univariate forecasts and their

samples for estimating the combination weights are mostly small. But as already

stated we would rather search for appropriate additional variables than following

univariate strategies, if possible.

A relationship between the quality of combination weight estimation and the quality

of parameter estimation was observed, but it was not so close as might have been

assumed.

Recall that these results have been obtained using a simulation study with random

data from multivariate normal distributions. It seems advisable to analyze how far

the good performance of the CA techniques with estimated weights depends on

normality. The losses with respect to the CA techniques with optimal combination

weights may vary with the chosen distribution, and so may the gains with respect to

the arithmetic mean where no weight estimation is necessary. Hence, the covariance

adjustment techniques should be investigated under di�erent multivariate distribu-

tions including skew distributions where the data are not distributed symmetrically

about their expectation.

Furthermore the parameters of the normal distributions are held constant, i.e. the

data used to estimate the combination weights are not subject to any structural

change. In empirical applications, however, structural change is present frequently.

Consequently, the e�ects of structural change should be investigated as well. Often

this phenomenon is treated by using only the latest observations to estimate the

combination weights. Thus, small sample sizes are important in this context.

The parameter estimators used in the present study are unbiased. An interesting

question is how biased estimators should be dealt with. Related to this is the follow-

ing: By the choice of the combination weights it is obvious that the above covari-

ance adjustment techniques are designed for unbiased parameter estimators. Then it

would be important to judge the e�ect of using CAT if this assumption of unbiased-

ness is violated.

While our results (obtained under the somewhat ideal conditions of the simulation

study) suggest that the arithmetic mean is 'out' as a method to combine unbiased
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estimators of a parameter vector under normality, the situation may be di�erent

in case of practical applications, like the combination of forecasts. Here the objec-

tive of the forecasts is the realization of a random variable, no information on the

distributions of the single forecasts is available and even the relative quality of the

forecasters will change with time (structural change). Hence, we have to face many

of the above mentioned problems at a time. Consequently, the comparison of com-

bining methods may be less favorable for the covariance adjustment techniques and

more favorable for the arithmetic mean. Many empirical studies on the univariate

combination of forecasts (e.g. Makridakis and Winkler (1983)), including recent re-

sults by Klapper (1998) dealing with forecasts for German macro economic variables,

indicate that the arithmetic mean is quite a good choice under such circumstances.

Whether the extra information included by employing the multivariate covariance

adjustment techniques will lead to an improvement over the arithmetic mean is not

clear and may depend on the data under consideration. A further technical report

(Troschke (1999)) will investigate this question for the above mentioned data set of

forecasts for German macro economic variables.

There are some further questions connected with the topic of this report that leave

room for investigations: In the �rst place, it would be interesting if the results are

similar for higher dimensions k of the parameter vector �. On the one hand there

are additional covariances which may be exploited by the CA techniques, but on

the other hand the discrepancy with respect to the number of parameters that have

to be estimated for the various CA techniques (1; k; k2) would be much larger than

here (1; 2; 4).

Another point of interest is the e�ect of the number of estimates used for the CA

techniques. It could be conjectured that there is a certain e�ect of saturation, i.e.

the performance could improve with every additional estimator, but once a certain

number of estimators is reached the e�ect of adding more estimators becomes very

small. Naturally, this will also depend on whether the additional estimators bring

in new information on �.

Finally, the e�ect of outliers for the covariance adjustment techniques could be

investigated. It might be bene�cial then to replace the sample covariance matrix

as estimator for W by some robust estimator, like the minimum volume ellipsoid

estimator or an S-estimator (cf. Rousseeuw (1985)). Preliminary analysis in this di-

rection showed that the use of robust estimators could not improve the results in

the study described above. This could be expected, since the multivariate normal

distribution does not tend to produce outliers. But even when the random data

from the N4(0;W)-distribution were contaminated with data from the N4(0; 2W)-
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distribution (the contamination rate was about 10%), in general the covariance ad-

justment techniques performed better employing the sample covariance matrix than

employing its robust alternatives. On the other hand this setting tends to produce

only so-called radial outliers and the portion of outliers is quite small.
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