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Abstract

In this paper, control variates are proposed to speed up Monte Carlo Sim-
ulations to estimate expected error rates in multivariate classification.

KEY WORDS: classification, control variates, error rate, Monte Carlo
Simulation, variance reduction

1 Introduction

The aim of this paper is to speed up Monte Carlo Simulations applied to multivariate
classification. The most interesting performance measure in classification is the
misclassification error.

In the case of given group densities, there are two possibilities to calculate the error
rate: either by numerical integration or by Monte Carlo Simulation which is the only
feasible method in higher dimensions. In this paper, we focus on the Monte Carlo
error estimate. This approach suffers from the variability of the error rates, because
the error rate is a random variable by now. Therefore, every principle to reduce
this variance is welcome. In the literature various variance reduction techniques are
proposed, among those antithetic variables and control variates (see, e.g., [1]). Here,
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we will concentrate on control variates and demonstrate their variance reduction
potential in our special problem.

The paper is organized as follows: In section 2 we will give a brief introduction to
multivariate classification. In section 3, we will propose two different control variates
which will be studied and compared in section 4 by means of some examples. The
paper closes with a conclusion in section 5.

2 Multivariate Classification

Classification deals with the allocation of objects to g predetermined groups 1, 2, ... ,
g, say. The aim is to minimize the misclassification error (rate) over all possible
future allocations, given the group densities p;(z) (i= 1 2,...,g). The minimal
error rate is the so—called Bayes error.

We measure d features (variables) of the objects we consider important for discrim-
ination between the objects. These can be continuous features (GNP, consumption
etc.) or discrete (number of firms, number of inhabitants etc.).

Once the group densities are specified, in order to minimize the error rate we allocate
an object with feature vector x to group ¢, if

pi(x) > pj(x) ( #1). (1)

Classification methods often assume the group densities p;(z) to be normal. Then
there are at least two modelling possibilities (see, e.g., [2]):

e Estimate the same covariance matrix for all groups (LDA, linear discriminant
analysis) or

e estimate a different covariance matrix for each group (QDA, quadratic dis-
criminant analysis).

Of course, both methods also estimate different mean vectors for each group. In this
paper we take QDA as the adequate, and thus standard classification procedure.

Often we additionally want to reduce the dimension from d to d’ = 1 or 2 to enhance
human perception (dimension reduction). The construction of a d'-space with min-
imal error rate, given the group densities p;(x) in d-space, can be done by modern
optimization techniques, for example Simulated Annealing [3]. In each optimization
step, a projection space is proposed. Then we determine the group densities (either
estimated by means of the projected data or directly derived from the projected
densities of the original space) [4], and calculate the error rate in the projection
space.
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In this paper, we suppose that the projection space is fixed, so that we already have
the group densities available. Of course, the following approach can be also applied
during optimization at each optimization step.

3 Variance Reduction by Control Variates

3.1 General Ideas

What we have to calculate is the error rate given the group densities. In one dimen-
sion, this can easily be done by numerical integration, because we only have to find
the intersection points of the different group densities (determined by p;(z) = p;(x))
and then calculate integrals like

/bpi(:r) dr a,beR, (2)

where p;(x) denotes an arbitrary known group density.

But in two or more dimensions, the borderlines between the group densities do not
have that simple shapes, even when we assume equal group covariance matrices.
Therefore, integration can only be done by means of a grid in two or more dimen-
sions.

Another possibility to calculate the error rate is Monte Carlo Simulation. We gen-
erate random realizations from the group densities and allocate them according to
our classification rule (1). This approach suffers from the variability of the error
rates, because the error rate is a random variable by now.

In order to reduce the Monte Carlo variance of the error rate we introduce control
variates (cv). The object of interest is the error rate error. We write this in a more
complicated but helpful way as

error = errorey, + (error— errory,) (3)

with a new random variable error.,. We want to compute the expectation of these
error rates

E(error) = E( error,) + E( error— errore,). (4)

The idea behind control variates is to choose a random variable error,, so that we
can calculate E(error,,) exactly (no variance) and error and error., are positively
correlated. So a sensible way of estimating E(error) would be

~ ~

E (error) = E( errog,) + E(error — error.,), (5)



3.2 Two Specific Control Variates 4

where the first term on the right hand side has no variance and the second term is
computed as the sample mean of Monte-Carlo replicates. Then the variance of the
right hand side of (4) is

Var(error — error.,)/N, (6)
where N is the sample size to determine error and error,.,, and

Var(error — error.,) = Var( erron + Var( errorn,)

— 2 Cov( error, errory,). (7)

Now it becomes clear that a large positive correlation between error and error,,
can reduce the variance compared to the ”naive” estimator Eyc(error), i.e. the
sample mean of Monte Carlo replicates of error with variance Var(Ey¢(error)) =
Var(error)/N. We can even do better. We can use the equation

E(error) = aE(errory,) + E( error— aerror,) (8)

to select that parameter « that minimizes the variance

Var(error — aerrore,), 9)
leading to
o Cov(error, errore,) (10)
Var(errore,)

which is almost equal to the correlation coefficient o when Var(error) ~Var(error,)
holds. The final result is then

min Var(error — aerrory,) = (1 — o*)Var(error), (11)

i.e. there can always be a gain when p # 0.

Considering the above arguments, what we look for as a control variate procedure
is any classification method which gives results as much as possible correlated with
QDA, and for which the exact expected error rate is easily computable. Moreover,
one should avoid control variates for which the additional computational effort is
that high that overall computation time is increased even in the case of variance
reduction.

3.2 Two Specific Control Variates

What is, then, a suitable control variate in our context? We will discuss two possi-
bilities. In both cases the control variate procedure assumes a somewhat simplified
problem situation to be true in order to simplify the Monte Carlo procedure. In
the first procedure the covariance matrices of the different groups are assumed to
be identical. In the second procedure the possibly high dimensional problem is
optimally projected to one dimension. Note that we assumed to study problems
with normal group densities with individual covariance matrices. Thus, QDA was
assumed to be the standard classification method.
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. The first idea is to utilize the error rate computed by LDA as error,, based

on the assumption of equal covariance matrices for all the groups. The error
rate error is calculated by QDA from N random realizations drawn from
the group densities. To get Eyc(error) we generate W such error rates and
average. Therefore we used N x W random vectors. Now we take the same
random vectors and apply LDA with the same, so-called pooled, covariance
matrix for all groups to calculate error rates error.,. If ¥; is the assumed
covariance matrix for group 7, then (327 | (N; — 1)%;)/(N — g) is the pooled
covariance matrix, where /N; is the number of realizations in group z. The
differences of the W corresponding estimates error and error., are used to
calculate E(error — errorey). At last we calculate E(errore,) in an exact
manner (so that we have no variance) by numerical integration based on the
densities with pooled covariance matrices. We now have all the ingredients we
need for an efficiency comparison with the naive Monte Carlo estimator. The
variance of the naive estimator is calculated by the sample of size W of the
estimated error rates error and the variance of the control variate estimator
by the sample of size W of (error — error.,). This approach has the drawback
that we have to calculate an exact integral in a projection space which might
be two dimensional or of even higher dimension with rather ugly borderlines.

. A second possibility to determine the error rate error is to use another con-

trol variate: the error rate of an ”optimal” one dimensional projection. This
can be obtained by the largest eigenvalue and the corresponding eigenvector
of QDA in the original space or by direct minimization of the error rate. We
do the same as in 1 to obtain Ey¢(error). But then we project the random
vectors onto the optimally discriminating direction taking into account the
different covariance structures and build the differences of corresponding er-
ror estimates to compute E(error — errory,). Now, the exact calculation of
E(errore,) is simply a one dimensional integration with clearcut intersection
points. This speeds up the procedure compared to 1. To construct the opti-
mally discriminating one dimensional projection we follow an idea in [5] where
it was proposed to project on the first eigenvector v; of M MY, where

M:(l@_Hla-"HUZ_Mlazg_zla'“:EQ_El) (12)
where the p; are the group means and the ¥; are (again) the group covariance
matrices, i =1, ..., g. The projected means, variances and feature vectors then

c ok — T _ T _ T
have the form: u = vy p;, 0y = v; X3 and =¥ = v @ .

In order to represent adequate control variates the additional computation time of
procedures 1 and 2 have to be small relative to the computation time of naive Monte
Carlo. That this is the case not considering the computation of the exact expected
error rates should be clear by the following arguments.

e Naive Monte Carlo estimates the means and the covariance matrices of the

groups, and evaluates the corresponding estimated group densities for each
observation.



3.3 Exact expected error rates 6

e Procedure 1 additionally needs to compute the mean of the estimated covari-
ance matrices of the groups, and to evaluate group densities for each observa-
tion corresponding to the pooled covariance matrix in each group.

e Procedure 2 additionally computes the ’difference matrix’ M, its first eigenvec-
tor vy, and the corresponding projections of the group means and covariance
matrices, and evaluates the corresponding 1D normal densities in each pro-
jected observation.

Therefore, in procedures 1 and 2 the ’preparation’ of the density evaluation does
not depend on the number of observations, resulting in a much smaller additional
'preparation time’ than the preparation time for naive Monte Carlo for big numbers
of observations. Moreover, in procedure 2 also the additional density evaluations
are much quicker than the density evaluations in naive Monte Carlo, since they are
in 1D.

In procedure 1 the exact expected error rates have to be calculated numerically, in
general. For the exact expected error rates in procedure 2, however, an analytic
formula can be derived, even. This will be done in the next subsection. In section 4
we will demonstrate the differences between procedures 1 and 2 by some examples.

3.3 Exact expected error rates

In procedure 2 exact expected error rates have to be calculated for univariate normal
projected distributions. In this case a general formula for the exact expected error
rate could be given depending on the intersection points of the univariate normal
densities corresponding to the projected group means and variances. In order to
illustrate the idea, let us discuss the 2 and 3 groups cases. Moreover, let us assume
equal a-priori probabilities 1/g for all g groups for simplicity. In the simulations in
the following sections, we also will discuss these cases only.

In the case of 2 groups let the intersection point of the two normal densities be 5.
Then, obviously, the exact expected error rate corresponding to these densities is
(cp. figure 1)

E(BTT‘OTCU) = ((1 — @1(1’12) + @2(1’12))/2) (13)

where ®; is the normal distribution with mean to the left of x5, and ®, the distri-
bution with mean to the right.

In the case of 3 groups let the distribution indices again be chosen so that a lower
index indicates a lower mean. We are now interested in the relative location of
the intersection points of the 3 densities. The error rate of the leftmost group 1 is
determined by the first intersection on the right hand side with one of the densities
of the other groups. For the rightmost group 3 the same is true for the densities
on the left. The error rate of the middle group 2 is, correspondingly, determined by
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Figure 1: The error rate of the left group is gray shaded.

the first intersections points of its density with the other densities on the left and
on the right. For simplicity let us now assume that the relevant intersection points
are xpo, determining the error of group 1 and the ’left part’ of the error of group 2,
and x93, determining the error of group 3 and the ’right part’ of the error of group
2. This then leads to the following formula for the exact error rate corresponding
to the 3 groups:

E(errore,) = (1 = @1 (212)) + (Pa(w12) + (1 — Po(wa3)) + Ps(wa3))/3) (14)

As an example consider 3 groups with group means pu; = —3, uy = —2, and p3 =
0, and with standard deviations o; = 2 .037,0o = 0 .9406, andog3 = 1. These
parameters lead to intersection points x5 = —3.17 and x53 = —1, as well as an

exact error rate E(error.,) = 31 .45%.

For procedure 1 we only succeeded to find a general analytic formula for the exact
expected error rate in the case of 2 groups. Procedure 1 assumes equal covariance
matrices for all groups. This covariance matrix is estimated by the pooled covariance
matrix ¥ = (X; + ¥)/2 , where %; is the estimated covariance matrix of group i,
¢t = 1 2. For normal group distributions with means j; and ps and a common
covariance matrix ¥ one can show (see [6], p. 12) that the exact error rate is

E(errore,) = ®( —0.5d2) where 9§19 = \/(N2 — p) T8 (2 — ) (15)

and @ is the distribution function of the standard normal.

4 Simulations

4.1 Known densities

In this subsection we assume that the group densities are fully known so that pa-
rameter estimation is superfluous. This means in particular that QDA as well as
LDA is carried out with the correct densities. In this way the outcome does not
depend on the goodness of parameter estimation. In the next subsection, we will
discuss the case when density parameters have to be estimated.

In all examples sample size N = 100 is used for each group. Also, W = 100 is
used. In order to be independent of the drawn random vectors, this experiment was
repeated V = 100 times and the means of the mean error rates and the corresponding
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standard deviations as well as the correlation coefficients will be reported in what
follows.

First Simulation:
First we compare procedures 1 and 2 using two groups with the following parameters
of normal distributions:

= (0 ) and 21:<(1) ?) (16)

as well as
1 0 \5
pr =(20) and 3, = <0‘5 ] ) . (17)

The true expected error is approximately 14.97% calculated by exact integration to
be able to judge the following results.

By means of the naive Monte Carlo estimator we obtain

Enc(error) = (15.00 £ 2.53)% (18)

where 2.53% is the estimated standard deviation of Ej¢(error). Obviously, the
bias is negligible.

With procedure 2 one obtains

~

E(error — errory,) = ( —0.92+ 1.65)% (19)

and E(errore,) equals 15.87% (exact integration). Summing up for the right hand
side of equation (5) we arrive at (14.95 £ 1.65)%. This expression shows a distinctly
lower variance than (18).The mean estimated correlation coefficient ist o = 0 .79. The
lowest standard deviation we can get by (8) is therefore 1.55%. This corresponds to
a variance reduction of more than 60% in relation to the naive Monte Carlo.

Moreover, with procedure 1 one obtains

~

E(error — errory,) = ( —0.02+£ 0.61)% (20)

and E(errore,) equals 15.08% (exact integration). Summing up for the right hand
side of equation (5) we arrive at (15.06+£0.61)%. This expression shows an even much
lower variance than with procedure 2. This indicates that LDA is a very adequate
method for this example. Indeed, the mean estimated correlation coefficient is p =
0.97.

Second Simulation:

Now we compare procedures 1 and 2 by an example with three different groups
which do not separate that nicely as in the previous simulation. In addition to the
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Sim | naiveMC | procl | proc2 | varl | var2 | corl | cor2 | minl | min2 | mvarl | mvar2
1 2.53 0.61 1.65 | 94% | 57% | 0.97 | 0.79 | 0.61 | 1.55 | 94% 62%
2 2.55 2.31 1.96 | 18% | 41% | 0.59 | 0.70 | 2.06 | 1.82 35% 49%
3 2.55 1.93 245 | 43% | 8% | 0.74 | 043 | 1.72 | 2.30 | 55% 9%

Table 1: Monte Carlo standard deviations, variance reductions, and correlations for
known densities

two groups in the first simulation we use a third group with the following parameters
of a normal distribution:

2 =03
M3 = (3 ,0), and 23 = (_03 9 l (21)

The true expected error rate is approximately 28.44%.

The results of naive Monte Carlo and the two control variate procedures are sum-
marized in Table 1. Note that ’Sim’ indicates the simulation number, 'naiveMC’ the
estimated mean standard deviation of the naive Monte Carlo, ’procl’ and ’'proc2’
the corresponding standard deviations of the control variate procedures, 'varl’ and
'var2’ the corresponding percentages of variance reduction, ’corl’ and ’cor2’ the mean
correlation coefficients, 'minl’ and 'min2’ the corresponding minimal standard devi-
ations of the control variate procedures, and 'mvarl’ and 'mvar2’ the corresponding
maximum percentages of variance reduction.

Analysing Table 1 note particularly that for simulation 2 procedure 2 leads to a big-
ger variance reduction than procedure 1, but that the maximum variance reduction
is nevertheless smaller than for simulation 1 since the univariate projected constel-
lation of the groups is more complicated in this example. The bad performance of
procedure 1 indicates that in this example the covariance matrices of the different
groups can not be assumed to be approximately equal.

Third Simulation:

Up to now, the examples were mainly one dimensional in that the groups were shifted
in the first component only. Since this might lead to an overoptimistic judgement
of procedure 2, the third example is the same as the second, but with

M3 = (1 71), (22)
i.e. with a mean shifted in both directions.

The corresponding Monte Carlo results can also be found in Table 1. Note in partic-
ular that now again procedure 1 is very adequate, but procedure 2, unfortunately,
does not lead to a substantial variance reduction, and might thus even cause an
increase in computer time. The problems of procedure 2 also become clear noting
that the exact expected error rate is 45% for this procedure in contrast to a true
expected error rate of around 33%.
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As a preliminary conclusion this indicates that procedure 2 is useful probably only
if a 1-dimensional projection does not alter the problem too much. Naturally, a
similar statement is true for procedure 1, but the assumption of equal, or at least
similar, covariance structures is, most of the time, not that much problematic. That
the amount of variance reduction depends on the ’similarity’ of the control variate
to the true error rate could have already been deduced from equation (11). On the
other hand, for procedure 1 the exact expected error rate is not easily computable,
in general, and procedure 2 is much quicker.

4.2 Estimated densities

Since in practice the distributions of the grouped observations are not known, the
implementation of the control variate procedures has somewhat to be adapted. For
the purpose of this paper we nevertheless assume normal distributions for conve-
nience so that only the corresponding distribution parameters have to be estimated.

Moreover, since the densities have to be estimated from the observations, the true
expected misclassification rate has to be estimated by means of a resampling method
in order to avoid overoptimism. As the resampling method we use leave-one-out cross
validation. l.e. we preliminarily eliminate one observation, estimate the densities
from the remaining observations, and predict the class of the eliminated observation
by means of these estimated densities. This is done for each observation.

This causes two problems. First, the extra loop for resampling leads to such a
big computational effort that the number of replicates of the whole Monte Carlo
experiment is reduced to V = 10 for simulation 1 and to V = 5 otherwise. Sec-
ond, the exact expectations in procedures 1 and 2 should not have to be computed
for each resampled sample. Thus, we propose to compute the exact expectation
from the "observed” sample only, and use this value for all resampled samples also.
Moreover, for the purpose of the simulations for this paper we decided to use the
exact expectations from the densities used to generate the observations in order
to reduce computational effort. Finally, we used the same example densities as in
the preceding section to be able to judge the extra variance caused by parameter
estimation.

The results of the Monte Carlo simulations can be found in Table 2. Note the
increase of variance and the very small correlation o with procedure 2 in the third
simulation. The optimal standard deviation reachable by (8) in this case would thus
be 2.53, which is only very slightly lower than 2.57 with the naive Monte Carlo.
Since, nevertheless, the results are very similar to the results of the simulations with
known densities, the conclusions from the last subsection appear to be valid also in
the case of density parameters to be estimated.



5 Conclusion 11
Sim | naiveMC | procl | proc2 | varl | var2 | corl | cor2 | minl | min2 | mvarl | mvar2
1 2.60 0.88 1.66 | 89% | 59% | 0.94 | 0.87 | 0.88 | 1.28 | 89% 76%
2 2.53 2.38 207 | 12% | 33% | 0.59 | 0.68 | 2.04 | 1.86 | 35% 54%
3 2.57 2.00 | 3.29 | 39% - 0.73 1 0.17 | 1.76 | 2.53 | 4% 3%

Table 2: Monte Carlo standard deviations, variance reductions, and correlations for
estimated densities

5 Conclusion

In this paper it was shown that the variance of the misclassification error rate esti-
mated by Monte Carlo Simulation can be substantially reduced by means of control
variates. The amount of variance reduction depends on the ’similarity’ of the con-
trol variate to the true error rate. What one, thus, has to look for to construct an
adequate control variate is a classification method with two properties: an error rate
highly correlated to the true error rate, and an exact expected error rate which can
be calculated easily. In other words, the method should be simple enough to be able
to calculate the exact expected error rate easily, but also sophisticated enough to
mimic the dependence of the true error rate on the data structure.

The main result of this paper can be stated as follows: Since it is relatively easy to
compute its exact error rate, the error rate of normal group density approximations
in the optimal 1D projection might be recommended as a control variate as long as
the 1D projection sufficiently represents the high dimensional problem. This should
be tested on the basis of the whole dataset.
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