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Abstract

Here we give a technique for online prediction that uses di�erent model selection
principles (MSP's) at di�erent times. The central idea is that each MSP in a class
is associated with a collection of models for which it is best suited so that the the
data can be used to choose an MSP. Then, the MSP chosen is used with the data to
choose a model, and the parameters of the model are estimated so that predictions
can be made.

Depending on the degree of discrepancy between the predicted values and the
actual outcomes one may update the parameters within a model, reuse the MSP to
rechoose the model and estimate its parameters, or start all over again rechoosing
the MSP.

Our main formal result is a theorem which gives conditions under which our
technique performs better than always using the same MSP. We also discuss circum-
stances under which dropping data points may lead to better predictions.
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1. INTRODUCTION

Although there is a vast literature on how various model selection procedures, MSP's,
perform there is very little guidance about how to choose an MSP in the �rst place.
Many people seem to advocate a speci�c MSP for general usage, at least in certain
contexts, often for very good reasons. However, other people, with equally good reasons,
may advocate a di�erent MSP. They can't all be right. We argue that the seeming
discrepancy can be cleared up by recognizing that one MSP may be better for a given
class of models than another MSP is. Also, we suggest that one MSP may be better for
one purpose, say prediction, than another MSP is. This means, in particular, that the
di�erent physical meanings and statistical interpretations associated to di�erent MSP's
cannot be ignored. A consequence of this point of view is that if you are unclear about
which MSP to use, which class of models to search, or you are not sure about what the
ultimate use of a chosen model will be, then you should keep your options open. This
means that you want to search over various MSP's, and the classes of models associated
to them (on which they may be presumed to perform well), and to evaluate performance
by a criterion which will be generally good, independently of the purpose of the modeling.

Here, we give a technique, with justi�cation, for how to choose an MSP from a
class of MSP's for use in predicting the next outcome in a sequence. Our technique
permits the use of di�erent MSP's at di�erent time steps depending on how well earlier
outcomes were predicted. The main strength of our technique is that it makes very weak
assumptions on the data generating mechanism, satis�es a weak form of the prequential
principle, and performs no worse than using the `best' MSP would, in an asymptotic,
squared error sense.

To make this concrete consider two of the most popular MSP's: the Akaike Infor-
mation Criterion, AIC, and the Bayesian Information Criterion, BIC. The AIC, Akaike
(1977), chooses the member of a given class of parametric families having the largest
value of

AIC = log p(xnj�̂(xn))� d; (1:1)

where xn = ( x1; :::xn) is distributed according to a parametric family of the form p�(�) =
p(�j�) and �̂ = �̂(xn) is the maximum likelihood estimate (MLE) of the d dimensional
real parameter � = ( �1; :::; �d). By contrast, the BIC chooses the member of a given class
of parametric families having the largest value of

BIC = log p(xnj�̂)� d

2
logn: (1:2)

The di�erence between (1.1) and (1.2) is in the size of the penalty term. The BIC
penalizes models with more parameters more than the AIC does. Thus, generally, the
AIC will give models with more parameters.

What do these MSP's mean? Akaike (1977) said his criterion was motivated by
entropy considerations. Nevertheless, the AIC is essentially equivalent to Mallows' Cp
familiar from regression, see Shibata (1981), as well as to cross-validation and generalized-
cross-validation, see Li (1987). It is worth recalling that the AIC is inconsistent for
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model selection, see Woodroofe (1982) and Hannan (1980), but that Shibata (1981)
established a sense in which the AIC seems to be asymptotically optimal for choosing
the number of terms to include in a linear model when the dimension of the model is
permitted to increase. See Hannan and Quinn (1979) for a dependent case with a di�erent
modi�cation. Moreover, Haughton (1988) seems to agree with Geisser and Eddy (1979)
that the inconsistency may not a�ect the use of the AIC for prediction purposes. Indeed,
there is some evidence that AIC is optimal in certain predictive contexts.

The BIC arises from seeking the mode of a posterior density. Suppose we have a
prior � on a discrete class of models indexed by i. If each model is equipped with a prior
density w for its parameter then one can form the posterior density �(ijxn). The mode
of this density is a natural choice for a model. However, it is easier, and asymptotically
equivalent, to maximize

logm(xn)� d

2
log n (1:3)

where m(xn) =
R
w(�)p(xnj�)d�, and d is the dimension of �. In turn, (1.3) leads to

(1.2) by a Laplace expansion argument, which also reveals the penalty term (d=2) log n,
see Haughton (1988). Using a Bayes factor argument, Schwarz (1978) establishes the
optimality of the BIC for exponential families.

Thus, there is a sort of predictive optimality which one might heuristically associate
to the AIC and a sort of hypothesis testing optimality one might heuristically associate
to the BIC. Furthermore, one might expect that the AIC will perform better than the
BIC when the true model has many parameters and that the BIC will perform better
than the AIC when the true model has few parameters. The consequence is that the
AIC and the BIC have di�erent classes of parametric families associated to them on
which they may be expected to perform well. Nevertheless, the question remains: If
we know little about the class in which the true model lies should we use AIC or BIC?
Furthermore, what if we are unable even to determine whether the intuition behind the
AIC or the BIC is relevant to the problem under investigation?

For instance, one might believe that some kind of coding optimality is relevant, espe-
cially if one's goal is to estimate a density and wants high sensitivity to tail behavior. In
this minimum description length (MDL) context, Barron and Cover (1990), and Rissa-
nen (1996) the authors minimize a data driven analogue of coding redundancy to choose
a model. In this formulation one must explicitly specify the class of functions over which
the optimization will be done. The size of the penalty term and the asymptotic form
of the risk is determined largely by the class. The MDL approach, and its variants,
goes back to Barron (1985), and Rissanen (1978). See also Wallace and Freeman (1987).
In the fully parametric setting it has the same (d=2) log n penalty term as the BIC, as
well as analogous asymptotic properties, see Barron and Cover (1990). One can argue
that, when they are both de�ned, the MDL re�nes and extends the BIC by providing an
interpretation for the prior and for the objective function in terms of code length. The
MDL may perform slightly better than the BIC in some coding contexts because it uses
an optimal constant term to track the coding redundancy better. However, the coding
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argument justifying the MDL is at present unrelated to the optimality of the BIC due to
Schwarz (1978) and the entropy motivation of the AIC leads to a di�erent penalty term
from the BIC.

Given that these approaches (AIC, BIC, MDL,...) are only some of the possible
approaches to model selection that one might take, some authors have sought to contrast
MSP's by establishing general properties of various collections of MSP's. Often these
have been based on the nature of the penalty term.

The AIC and BIC are members of a general class of MSP's studied by Bethel and
Shumway (1988) who established consistency for a large class of penalty terms. Consider

log p(xnj�̂)� dfm(n); (1:4)

where fm(n) is a function of the sample size n, for each model class m we entertain. We
assume that MSP's with su�ciently di�erent fm's are optimal in su�ciently di�erent
senses that the parametric families they are unlikely to choose the same parametric
family, when they are allowed to, at least for small and moderate sample sizes. For
instance, when fm is of the form o(n) and unbounded the results in Bethel and Shumway
(1988) give consistency.

More recently, Yang and Barron (1998) provided general results for MSP's of the
form

�
X

log p(xij�̂(k)) + �kdk + �Ck: (1:5)

The �rst term in (1.5) is minus the maximized log-likelihood. The middle term is the
product of dk the dimension of the parameter in the kth model and a constant �k which
is interpretable in some cases as a dimensionality constant of the model related to the
metric entropy. The third term is a description complexity penalty, and corresponds to
a Bayesian prior. One of the main results in Yang and Barron (1998) gives conditions
under which the expected squared Hellinger distance is bounded by a real factor times
an index of resolvability. This index is similar to the minimization of the expected value
of (1.5) over a class of parametric families. Yang and Barron (1998) also note that the
middle term in (1.5) can be related to the bias correction interpretation of the AIC, and
to the BIC, the di�erence being the size of the penalty on the number of parameters.

There are many other MSP's that have been examined. A partial list includes:
informational complexity, see Bozdogan et al. (1997), informational minimaxity, see
Barron and Xie (1996), minimally informative likelihoods, see Yuan and Clarke (1999).
However, our point here is not to investigate the optimality of a speci�c MSP, nor to
study classes of MSP. Our point is to present a general method which can combine these
techniques in a prequential context. Our method presumes knowledge of the approximate
optimality properties of an MSP and assumes that MSP's have already been grouped
into class which are represented by a canonical member. Our method does not assume
substantial knowledge of the data generating mechanism.

Essentially, we resolve the question of which MSP to use by letting the data decide {
or more precisely, introduce a statistic to decide which of a set of canonical representatives
for classes should be used. The key problem we address here is the optimality of this
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approach so as to establish that it is better to choose an MSP in a data driven way, and
given such a choice decide how long, in sequential settings, to continue using it, bailing
out when its predictions are too far wrong. We implicitly answer the question of what
classes of models to use by using classes de�ned from the MSP.

In brief, we assume we have a sequence of outcomes and given the �rst n of them we
try to predict the n+1 outcome. The prediction technique we develop here associates a
class of models to each of a collection of canonical MSP's and then and uses a statistic
to choose one of the MSP's. Then we use the MSP chosen to choose a model, estimating
the parameters in it and using that model to predict the next outcome. Upon receipt of
the next outcome, one may update the parameter estimates (if the prediction was good),
or reuse the MSP to choose a new model (if the prediction was not good) or rechoose
the MSP, thereby repeating the whole procedure (if the sequence of predictions has been
bad enough for long enough). The adequacy of prediction is measured by recent error
(the most recent squared di�erence between the predicted value and the actual value)
and by a cumulative error (the sum of squared di�erences between predicted values and
actual values from the �rst use of the current MSP to the present). A main part of the
speci�cation of the procedure will be identifying thresholds for rechoosing the model and
rechoosing the MSP. Clearly, this approach can be re�ned by physical modeling. Here,
however, we have relied on interpretations of the MSP's.

A heuristic version of this technique has been computationally implemented in de
Luna and Skouras (1999). Crediting Dawid (1992 p. 117) for the technique, de Luna
and Skouras (1999) uses the relative cumulative predictive loss to choose between the AIC
and BIC and establishes its consistency. The three computed examples they develop,
and the simulation study they perform, suggest the method is better than using either
the AIC or BIC alone. In fact, the technique used in de Luna and Skouras (1999) was
�rst described in Clarke (1997), and here we build on the extensive computational work
of de Luna and Skouras (1999) to clarify the sense in which combining MSP's does better
in general.

The setting of online prediction is essential for our approach because accurate pre-
diction is the main way that the adequacy of a model must be re
ected { regardless
of the goals of an analysis. Indeed, good prediction is a de�ning feature of empirical
science. Moreover, good prediction is a test of any subsidiary aim: If the goal of an
analysis is to estimate a parameter then any good estimate of a parameter should give
good predictions. If the goal of the analysis is model identi�cation then the best model
should give the best predictions. If the goal of the analysis is hypothesis testing, then
any rejected model should give worse predictions than any accepted model. Thus the
criterion of good prediction is central to the statistical enterprise.

Here, the prediction technique we develop is in the spirit of the predictive sequential
{ `prequential' { approach of A. P. Dawid and co-authors. This alternative approach
to prediction abandons the goal of selecting the true model and seeks only as small a
predictive error as possible. In practice, this often leads to consistency, indicating how
strong the criterion of good prediction is. The prequential approach has been developed
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in a series of papers by A. P. Dawid and co-authors, see for instance Dawid (1992, 1984),
Seillier-Moiseiwitsch and Dawid (1993) amongst many others. Most recently Skouras
and Dawid (1998) study the e�ciency of point prediction systems. A key point made by
Dawid in these works is that the performance of a method must be assessed independently
of the method to avoid con
ict of interest: One can anticipate that a method will be
biased in its own favor thereby making it harder to �nd other potentially better methods.

Making the prediction online simulates the scienti�c approach of re�ning models so
they become ever more accurate. One tries one MSP and then gets to try another if
the �rst one doesn't work well. However, one must distinguish between the adequacy of
the MSP and the adequacy of a model it chooses. If the MSP is good but the model
chosen does poorly then again one still must re�ne the choice in the light of more data.
Permitting occasional jumps from MSP to MSP may speed this process by permitting
the use of a new MSP and a new model at the same timestep.

The main bene�t of our method and the prequential setting is its generality. It is
intended for problems where we have little pre-experimental information, but can rely
on getting ever more data. We do not restrict the models or MSP's available for our use:
All we must do is specify them. Often this is reasonable: In some time series contexts,
for instance, we don't know what assumptions are valid and when they are valid, outside
of particular special cases. In addition to the generality, the method here reduces to
special cases as expected. We comment that one can imagine using di�erent statistics
to choose an MSP and thereby wanting to develop an MSP-selection principle. Such
hierarchies probably provide diminishing returns.

A speci�c bene�t from the generality is that the assumptions are so weak that
Bayesian and frequentist methods can be combined. Indeed, as a parallel to wave-
particle duality in physics we can go back and forth between them as the data indicate.
That is, the prequential approach permits one to use the Bayesian model for stochastic
variation at some times and the frequentist model for stochastic variations at others.
Here, we present our methods in a Bayesian context but this is not essential. In partic-
ular, in a linear models context, one can compare the predictive performance of random
e�ects models (an example of a hierarchical Bayes model) with a class of �xed e�ects
models (based on the frequentist paradigm). The hypothesis test of Dawid (1986) to
decide whether to use a random e�ects model or a �xed e�ects model would then be a
suitable way to choose an MSP. In this case, we treat the Bayes and frequentist mod-
els for statistical variation empirically, based on how they perform in the real world.
One can anticipate that in many cases the two approaches will give equivalent predic-
tions although conceptually distinct. (The classes of models associated to the Bayes and
frequentist approaches would be interesting to identify, but only resolve the divide for
speci�c loss function. Moreover, mixed models would be di�cult to interpret.)

In the next section we give the details of our strategy, along with our heuristic
justi�cations. In Section 3, we give theoretical results: We give conditions under which
our method of combining di�erent MSP's provides better predictions than any of the
individual MSP's from which it is formed. Section 4 discusses the potential bene�ts
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from omitting some data points. Finally, in a concluding section we identify some of the
remaining gaps and questions to address the broader issues of modeling and prediction.

2. GENERAL DESCRIPTION OF THE TECHNIQUE

The technique we present here was �rst described heuristically in Clarke (1997).
Later, de Luna and Skouras (1999) computationally implemented a special, heuristic
case of the technique in a time series context. We begin by de�ning the technique from
Clarke (1997) rigorously. This rigor will permit establishment of an optimality result in
Section 3.

2.1 Formulation of the Method
Formally, suppose we have k techniques for model selection denoted MSPi(y

n) for
i = 1 ; :::k, where yn is the data stream y1; :::; yn. Here, an MSP is a rule by which
one associates to yn a parametric family to be used to model the data sequence. The
parametric family can then give a prediction for the next outcome Yn+1. We will assume
that each parametric family is equipped with a unique prior; the family may or may not
include explanatory variables. For now, we assume there are no explanatory variables
but we release this assumption in Section 3. We denote the collection of prior likelihood
pairs we are willing to consider by ~F with elements ~fi of the form w(�)q(yj�). (We use
the Bayesian framework for the convenience of working with m(yn+1jyn) rather than
q(yn+1j�̂(yn)). The predictive densities have also been identi�ed by Aitchison 1975 as
optimal under relative entropy which locally often behaves like squared error loss.)

Ideally, we want to choose ~F to be the collection of all smooth images of �nite dimen-
sional real hyperplanes in the collection of all probability distributions on a measurable
space (a set equipped with a sigma �eld), with a density. Since we cannot deal with
uncountably many parametric families well, we extract from ~F a �nite list of models
F = ff1; :::; fng from which we will choose.

We suppose that the members of F are representative in the sense that no member
of ~F is too far away from some member of F . For instance, in the case of IID data and
no covariates, one can imagine transmitting messages from ~F and seeking a family of
representatives F that achieves the rate distortion function lower bound, an optimality
criterion from data compression, see Berger (1971). Intuitively, small F 's give high com-
pression and distortion but low complexity whereas larger F 's will give less compression
and distortion but higher complexity. The parametrization in the true model will help
determine what representatives to choose.

If there are k MSP's, MSP1; :::;MSPk then we partition ~F into k subsets ~F1; :::; ~Fk .
This induces a partition F1; :::Fk of F . The partition of ~F into ~Fi's by the MSP's is
de�ned by choosing squared error loss and setting

~Fi = ~Fi;n = fw(�)q(yj�)jEm(Ei(Yn+1jY n)�Ewq(Yn+1jY n))2

� min
j
Em(Ei(Yn+1jY n)�Ewq(Yn+1jY n))2g (2:1)
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where Em denotes expectation with respect to

m(yn) =

Z
w(�)q(ynj�)d� (2:2)

for appropriate n, and

Ei(Yn+1jY n = yn) = EMSPi(yn)(Yn+1jY n = yn) =

Z
yn+1p(yn+1j�)w(�jyn)d�dyn+1;

(2:3)
in which p(yjj�) is the parametric family chosen by MSPi upon receipt of Y n = yn.
Here, w(�jyn) is the posterior for � given yn using the prior w(�) and the parametric
family p(yjj�) chosen by MSPi upon receipt of Y n = yn. Finally,

Ewq(Yn+1jY n) =

Z
yn+1q(yn+1j�)wt(�jY n)d�; (2:4)

in which q(yij�) is the true parametric family used in the true posterior wt as well as in
the likelihood for yn+1. Note that the data y

n are used to choose the MSP and to give
a prediction from the model chosen by the MSP.

It is seen that ~Fi is the set of models whose posterior means are best matched,
under squared error loss, by the posterior means from models chosen by MSPi. This is
reasonable because the posterior mean of the true model is the optimal predictor of Yn+1
using Y n under squared error loss. We have used squared error loss for its mathematical
convenience in illustrating the proposed technique.

Note that now we have associated to each MSP a collection of parametric families
for which it performs better than the other MSP's under consideration. The parametric
families associated to an MSP in this way will be called its catchment area, the members
of which it (the MSP) is most suited to choosing when one of them is true.

For instance, with independent data, the BIC satis�es an optimality property for
exponential families whereas the AIC is not even consistent. However, the AIC may be
more appropriate in prediction contexts where one wants to permit models with more
parameters. Thus, we have reason to believe that some MSP's are better at choosing
di�erent types of models, when they are true, than other MSP's are. In the AIC versus
BIC case this may be related to the di�erent penalties on the number of parameters:
The AIC will probably `�nd' a model with many parameters faster than the BIC will.
The BIC will probably `�nd' a model with few parameters faster than the AIC.

Admittedly, the parametrization of a model can nevertheless in
uence model selection
with any MSP and this will be largely arbitrary. Nevertheless, the complexity of the
model, in terms of number of parameters, may be regarded as an aspect of physical
modeling based on the number of in
uences on the response. As a generality, if we
choose a model with fewer parameters one would expect it to approximate the true
model poorly. If we choose a model with many parameters, its complexity will degrade
its predictive performance.

In expressions (2.1) and (2.4) we have used the notion of a true parametric family.
We take this to mean that the data generating mechanism is in one of a class of similar
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data generating mechanisms which, for physical modeling reasons, can be represented by
di�erent true parameter values in the conventional sense. Implicitly, we regard identify-
ing a parametric family to represent the class data generating mechanisms as the central
problem in model selection. The subsequent estimation of the parameters is dissociable
from model selection in this sense. In this way we avoid nonidenti�ability.

Now we have a collection of MSP's and an optimal catchment area for each. We also
have predictors whose arguments are the data, and the MSP. It remains to make the
choice of MSP into a function of the data. So, let T = T (Y n) take values from 1 to k to
identify one of the k MSP's for each Y n = yn. This T is intended to choose the MSP
which should be most e�ective at choosing a model for yn. We use T to improve the
prediction of Yn+1 by using Y n to select the best MSP �rst, using that MSP to get a
prediction. Thus, in parallel to a data sequence Y1,...,Yn we have a prediction sequence
Ŷ1,...,Ŷn in which Ŷn+1 predicts Yn+1. We set

Ŷn+1 = Ŷn+1;T (yn) = EMSPT (yn)(Yn+1jY n = yn): (2:5)

2.2 Evaluating How the Method Performs
Aside from specifying T , Section 2.1 provides a perfectly well de�ned procedure for

generating a prediction sequence. To obey the prequential principle we next want to
develop a way to evaluate its performance independently of its construction. Depending
on what the evaluation reveals there will be several options open to us.

Our evaluation rests on two indices of predictive performance. First we will de�ne
a current error, CURE, and a current threshold CUT that we hope is greater than
CURE. Then we will de�ne a cumulative sum of squared errors for an MSP, CSE, and
a conditional variance for the cumulative sum of squared errors, CV CSE. We will want
the CSE to be less than a mean plus a function of the the CV CSE.

When wq = w(�)q(yj�) is true, we assess how well Ŷn+1;i (where MSP (yn) = i) has
predicted Yn+1 by evaluating the conditional expectation of the current squared error

CURE = ( Yn+1 �EMSPT (yn)(Yn+1jyn))2: (2:6)

holding yn and w(�)q(yj�) �xed. This gives

E(Yn+1jyn);wq(Yn+1 �EMSPT (yn)(Yn+1jyn))2

=

Z
(yn+1 �EMSPT (yn)(Yn+1jyn))2m(yn+1jyn)dyn+1; (2:7)

in which

m(yn+1jyn) =
Z
q(yn+1j�) w(�)q(ynj�)R

w(�0)q(ynj�0)d�0 d�: (2:8)

We also want the conditional variance of the current squared error (2.6). This is

V ar(Yn+1jyn);wq((Yn+1 �EMSPT (yn)(Yn+1jyn))2): (2:9)
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In practice, however, wq is not known so we cannot take expectations with respect to it.
Note that (2.7), (2.8) and (2.9) depend on the true but unknown model wq. It is

tempting to replace wq by the model chosen by the MSP. However, this would violate the
prequential principle. Arguably, this violation is minor, but for the sake of intellectual
rigor we get around this problem by replacing the conditional density (2.8) based on
wq by the mean of the k conditional densities for (yn+1jyn) obtained from the k prior
likelihood pairs chosen by the k MSP 's. This choice is independent of T , gives the
bene�ts of averaging, and partially addresses model uncertainty since the models chosen
by the di�erent MSP 's come from disjoint sets. This is indicated by changing the
subscript from wq to avg. (A more involved averaging would be over all elements of F .)
Thus we have

E(Yn+1jyn);avg(Yn+1 �EMSPT (yn)(Yn+1jyn))2

=
1

k

kX
l=1

Z
�l

Z
X
(yn+1 �EMSPT (yn)(Yn+1jyn))2pl(yn+1j�l)wl(�ljyn)dyn+1d�l (2:10)

in which pl(yj j�l) is chosen by MSPl. We de�ne the variance similarly and denote it

V ar(Yn+1jyn);avg((Yn+1 �EMSPT (yn)(Yn+1jyn))2) (2 :11)

Note that once the k MSP 's and sets Fi have been chosen, and a data sequence y
n given,

the expressions (2.10) and (2.11) are fully de�ned.
Since we are using Ŷn+1 = Ŷn+1(y

n) to predict Yn+1, we calculate (yn+1� ŷn+1)2 and
compare it to thresholds of the form `mean plus or minus a factor times the standard
error'. In particular, we compare the current error

CURE = ( yn+1 � ŷn+1)
2 (2:12)

to the current threshold
CUT = (2 :10) + 3K

q
(2:11) (2:13)

in which K is a factor to be chosen later. Now, we want CURE � CUT for good
prediction. The reverse event CURE > CUT means that the model we have used gave
a prediction too far from the actual data point yn+1. When this occurs, we may excuse it
as a random 
uctuation or we may want to take remedial action. For instance, we might
want the option of using a di�erent model for our next prediction. We can rechoose the
model using the same MSP or rechoose the MSP and use it to rechoose the model. It
is possible that we end up with the same MSP choosing the same old model, however,
we have required that choice to compete against the alternatives.

To distinguish these two cases { rechoose the model with the same MSP and rechoose
both the MSP and the model { we note that before using a di�erentMSP we want to be
sure that our current model class is really inadequate. Thus, we �nd the cumulative error
that has arisen from the use of the MSP . Note that since expectations have so far been
over Yn+1 with respect to the models chosen by k MSP 's we have neglected somewhat
the e�ect of T , even though we used T to choose theMSP from which to get a model for
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predictions. This gap can be partially addressed by the choice of terms included in the
cumulative error sum. Obvious possibilities are 1) One can use the cumulative errors of
only the most recent uses of the MSP chosen by T , 2) One can use the cumulative errors
of all uses of the MSP, or 3) One can use the cumulative sum of all prediction errors that
one would have made had one used that MSP all the time. The form of the cumulative
error one uses will depend on the assumptions one makes: For IID data it makes sense
to use to use 3). For stationary dependent data or independent but non-stationary data
we would suggest 2) and for truly inchoate data sequences 1) might be the best choice.
We return to the issue of data retention/deletion later.

The cumulative sum of errors for an MSP that we consider is

CSE =
1

n

nX
i=1

(yi � ŷi;T )
2; (2:14)

in which it is understood that the sum is over some well speci�ed collection of uses of
the MSP, actual or hypothetical. Generically, we have denoted the number of such uses
by n. For instance, we might have predicted y1; :::; yn by use of MSPi chosen because
T (y1) = ::: = T (yn) = i. If T (yn+1) 6= i then we might change the MSP and possibly
wish to reset n to 1. How often we evaluate T { at each timestep as in this instance or
only for selected timesteps { will have implications for how often we permit ourselves to
change the MSP.

We compare the CSE for an MSP to a threshold analogous to (2.13). Thus we require
a mean and variance for (2.14). We de�ne

CECSE(wq) =
1

n

nX
i=1

Ewq((Yi �EMSPT (yi�1)(Yijyi�1))2jT (yi�1) = t) (2 :15)

to be the conditional expectation of the CSE. We have written (2.15) as if T had chosen
the same MSP for n timesteps in a row and we have deleted the data predating the
last change of MSP. As with the form of the expression (2.14), one can imagine several
non-equivalent ways to form the sum in (2.15). Similarly, the conditional variance of the
cumulative sum of errors is

CV CSE(wq) =
1

n

nX
i=1

V arwq((Yi �EMSP
T (yi�1)

(Yijyi�1))2jT (yi�1) = t) (2 :16)

Note that in (2.15) and (2.16) the conditioning changes from term to term to re
ect
the accumulation of data; neither (2.15) nor (2.16) is the actual expectation or variance
of the CSE over the whole sample space. In addition, the sum in (2.15) presumes the
predictions are independent; this is typically false. We can, and do, correct for this by
the inclusion in (2.17) of a sample size dependent constant K = K(n) which increases
slowly with n. This is reasonable because if one assumes independence when in fact the
data are dependent one usually gets an unjusti�ably small standard error. We regard the
constant K as a correction for this. An alternative is to model the sequential dependence
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structure carefully. However, the motivation for the technique in this paper is, in part,
to address cases where such modeling is not possible. We hope (2.14) and (2.15) are
practical surrogates for the actual quantities.

As with CURE, wq in (2.16) is unknown. Rather than replacing wq with an average
of models, we want to examine the variation in the error due to the MSP directly. Since
all we want is a threshold, we take a supremum. Thus, we say the MSP T (yn) = i as
inadequate when

CSE > SCCT = sup
wq2Fi

(CECSE(wq) +K
q
CV CSE(wq)) (2:17)

where Fi is the catchment area of MSPi and SCCT is the supremal cumulative condi-
tional threshold, SCCT = SCCT (i; n).

We argue that (2.13) and (2.17) satisfy a weak form of the prequential principle.
These performance assessments are not entirely independent of the procedure generating
the predictions. However, they are dependent only on the aggregate properties of the
catchment areas. (The K in 2.17 depends only on classes also.)

Now, if we begin at timestep 0 and choose MSPi to predict y1 at timestep 1, and
then continue using MSPi { whether out of modeling arguments or because T (y2) =
:::T (yn�1) = i, then at time step n there are 4 possible actions we might take to predict
yn+1. They can be recorded as follows:

1. We might get
CURE � CUT;CSE � SCCT;

indicating good prediction in the present and a history of good prediction. In this case,
we use the current data point to update the parameter estimates of the model currently
in use. We continue to use this model to generate a prediction for time n+ 1.

2. We might get
CURE � CUT;CSE � SCCT;

indicating a bad prediction in the present but a history of good prediction. This leads
us to hope that the problem is with the lowest element of the prediction, the choice
of model. The problem may be more serious in the sense that we have a higher level
problem, namely a bad MSP, but having a good history suggests that the MSP is still
adequate. In this case, we re-use the MSP to rechoose the model. Then we estimate the
parameters in the new model, using all data up to the present and get a prediction from
it for the next time step.

3. We might get
CURE � CUT;CSE � SCCT

indicating a bad prediction in the present, and a history of bad enough predictions that
the cumulative error is in
ated. Together, these bad predictions suggest the higher level
problem that the catchment area of the MSP is just not capturing the the phenomenon.
In this case, we rechoose the MSP and then use the new MSP to choose a new model.
We use this newly chosen model from the newly chosen MSP to get a prediction for the
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next time step. We implicitly assume that we rechoose the MSP using the run of data
from the last change of MSP to the present.

4. The �nal possibility is that we get

CURE � CUT;CSE � SCCT:

This indicates the unusual case that we got a good prediction from a bad MSP. In
practice we choose the thresholds so that this will be mathematically impossible, or its
probability will be is very small. We return to this point in Section 3.

We comment that setting SCCT = 0 puts us automatically in cases 3 or 4; this
corresponds to rechoosing the MSP at each timestep which is in e�ect what de Luna and
Skouras (1999) did. At the cost of more frequent and larger evaluations this eliminates
the use of (2.14), (2.15), (2.16). By contrast, setting CUT = 1 puts us automatically
in cases 1 or 4. Since 4 is heuristically ruled out, we are left with case 1: We never
rechoose the MSP. This provides a sense in which the present procedure generalizes
existing methods to a sequential procedure.

3. THEORETICAL RESULTS

As we have seen it is often possible to associate to an MSP a physical interpretation
which motivates its use and a catchment area on which its use is both natural and
optimal. Consequently, MSP's that have similar interpretations, or have nearly the same
sets of models associated to themmay perform similarly. Some of these equivalences (AIC
- Cp for instance) have already been noted.

Here, we abstract from this setting to consider a set of MSP's, each with a set of
models on which to use it, the sets assumed disjoint. Our main result is that in a mean
squared error sense, the procedure in Section 2 is asymptotically no worse than using any
�xed MSP. That is, changing from MSP to MSP by use of a sensible T can only decrease
the asymptotic mean squared error. This means that an adaptive strategy outperforms
any �xed strategy which is one of its ingredients.

3.1 Optimality of the Method over Individual MSP's
For ease of exposition, suppose k = 2, that is, we have MSP1 and MSP2, with

catchment areas F1;n and F2;n, respectively, de�ned as in (2.1) by the loss function, so
that T (Y n) = 1 or 2. The case k � 3 is similar. Our result, informally, is that if T
can be used to identify the right catchment area asymptotically then using T to choose
an MSP as in Section 2 gives a smaller asymptotic expected squared error than the
constant use of either of the MSP's from which T chooses. More formally, we have the
following.

De�nition: The function T (Y n) choosing one of k MSP's is consistent for the
sequence of catchment areas Fi;n of the MSP's if and only if for any i and any sequence
wqn in Fi;n, the indicator function �T (Y n)=i converges to 1 in wqn probability.

That is, the consistency of T means that T chooses the right MSP, or set Fi, re-
gardless of which element in Fi is true. Note that we have dropped the subscript on the
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catchment area: We do this for brevity and to re
ect the implicit assumption that when
implementing this technique the catchment areas for n+ 1 must be chosen so that they
are broadly compatible with the catchment areas at time n.

Theorem 3.1: Let T be any consistent choice for MSP's for the catchment areas of
the MSP's de�ned by squared error loss and suppose we recalculate T at each timestep
using all accumulated data to choose an MSP. Suppose all the prior-likelihood pairs in
the sets F1 and F2 have uniformly bounded second moments, that is, there is an M > 0
so that for all densities wq and all times i, EwqY

2
i < M . Then, for any wq 2 F ,

lim inf
n!1

[EY n+1(Yn+1 �EMSPi(Yn+1jY n))2

�EY n+1(Yn+1 �EMSPT (Y n)
(Yn+1jY n))2] � 0; (3:1)

in which the expectation is taken with respect to the mixture distribution of Y n+1, i.e.,
w.r.t.

R
w(�)q(yn+1j�)d� .

Remark 1: There are many consistent choices for T . One, used in de Luna and
Skouras (1999), is the relative cumulative predictive loss. Indeed, de Luna and Skouras
(1999) establishes consistency for the catchment areas they use, using all past predictions.
Alternatively, one can de�ne T to be the choice of catchment area closest to the empirical
distribution function. One can also use statistics from hypothesis tests to choose a
catchment area provided that the probability of type one and type two errors goes to
zero. These techniques generalize to 3 or more MSP's.

Remark 2: The assumption that the argument of T is the entire data string up to
the time of prediction can be relaxed. It is enough that T be consistent. Consequently,
it will usually be enough to take the argument of T to be all those outcomes yi for which
in the past MSPi was actually used.

Proof: Let

D(k; T; wq) = ( Ewq(Yn+1jY n)�EMSPk(Yn+1jY n))2

�(Ewq(Yn+1jY n)�EMSPT (Yn + 1 jYn))2; (3:2)

and let � denote the di�erence within the liminf of (3.1). That is, set

� = EY n+1(Yn+1 �EMSPk(Yn+1jY n))2 �EY n+1(Yn+1 �EMSPT (Yn+1jY n))2: (3:3)

Then, by adding and subtracting Ewq(Yn+1jY n), it is seen that

� = EY nD(k; T; wq): (3:4)

(The two squared terms cancel each other, and both rectangular terms are zero.)
For consistent T we have, under assumption 1, that

EY n (D(k; T; wq)�D(k; i; wq)) ! 0; (3:5)
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when wq 2 Fi. So, adding and subtracting EY nD(k; i; wq) in (3.4) means it is enough
to examine the asymptotics of EY nD(k; i; wq). This, however, is nearly trivial: To see
that (3.1) holds it is enough to note that for �xed i, MSPk satis�es

EY nD(i; i; wq) � EY nD(k; i; wq);

because (2.1) guarantees MSPi is the best MSP to use when an element of Fi is true. 2

Thus, we have that using a consistent T improves the squared error performance of
predictors. This is partially because we are enlarging the collection of models from which
we can choose by associating them with MSP's, but also because we are only using any
given MSP for the models where it beats out the other MSP's we are willing to consider.

In Section 2 we indicated that K(n) in (2.17) should be chosen so that the fourth
possibility (that we could get CURE � CUT while CSE � SCCT ) is ruled out. Our
next result shows one sense in which this is possible. We write SCCT (i) to emphasize
the dependence on MSPi.

Theorem 3.2. Suppose a Central Limit Theorem holds for the sequence of cumulative
sums CSE in (2.14) with rate �(n)=

p
n, where �(n) is increasing, when wq 2 Fi. Let

 (n) be a non-decreasing sequence. Then, forK(n) =  (n)�(n) we have that for wq 2 Fi
Pwq(CSE � SCCT (i))! 0:

Remark 1: It is seen that Theorem 3.1 does not depend on the detailed structure of
the procedure T we have de�ned in Section 2; Theorem 3.1 only requires consistency.
By contrast, Theorem 3.2 uses the detailed structure of the procedure as can be seen
in the proof. Indeed, Theorem 3.2 gives that for wq 2 Fi, Pwq(CURE � CUT;CSE �
SCCT (i)) � Pwq(CSE � SCCT (i)), so that the present result really only uses the
procedure of Section 2 for SCCT . The initial level of the structure based on CU is
analogously based on the CLT, and is used primarily to identify the optimal conditional
expectation. Thus, the three levels of parameter estimation, model choice by an MSP,
and choice of MSP are dissociable.

Remark 2: The choice of �(n) depends on the rate in the CLT for the catchment area.
If the data is independent and one models with a catchment area of independent models
then �(n) = 1 is a sensible choice and  (n) can be constant (or increasing very slowly)
to give a probability from a normal percentile (or zero). If the data are dependent then
�(n) will typically be increasing and the choice of  may be more problematic. Clearly,
di�erent catchment areas may have di�erent �'s but one may still use the same  .

Proof: For wq 2 Fi, and SCCT (i) as in (2.17), we can remove the supremum to get

Pwq(CSE > sup
wq

(CECSE(wq) +K(n)
q
CV CSE(wq)))

� Pwq(CSE > (CECSE(wq) +
 (n)�(n)p

n

q
nCV CSE(wq))): (3:6)
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By the CLT, �(n)=
p
n
p
nCV CSE(wq) converges to a constant. By the LLN, the

CECSE converges to a constant also. Thus, since CECSE is positive, the slow in-
crease in  (n) forces (3.6) to go to zero. 2

We observe that

T (Y n) = �CSEn�SCCTnT (Y
n�1) + �CSEn>SCCTnT (Y

n) (3 :7)

and that CSE > SCCT means we rechoose the MSP, whereas the complement CSE �
SCCT means T (Y n) = T (Y n+1) That is, (3.7) is a sort of recurrence relation for an
MSP, showing when we use the same MSP repeatedly.

3.2 Inclusion of Finitely Many Explanatory Variables
In our new setting, suppose we have up to l explanatory variables. That is, we believe

Yi is distributed as f(x1;i; :::; xl;i; �) and it is understood that the �rst l entries in the
parameter � are coe�cients of Xi = ( X1;i:::Xl;i). Our task will be to predict Yn+1 using
y1; :::; yn and X1; :::;Xn+1. Note that we use Xn+1 as well as X

n = ( X1; :::;Xn) and Y
n

to predict Yn+1. We do not rule out the case that one of the Xi's is a lagged version of
Yn.

Now, the optimal predictor under squared error loss is

Ŷn+1 = EMSPT (Y n;Xn)
(Yn+1jY n = yn;Xn+1)

=

Z
yn+1p(yn+1j�;Xn+1)w(�jyn;Xn))d�dyn+1 (3:8)

which is a parallel to (2.3). In (3.8), the parametric family p(yjj�;Xj) is chosen by
MSPT (Y n;Xn) upon receipt of Y n = yn and Xn. Likewise, w(�jyn;Xn) is the posterior
for � given yn and Xn using the prior w(�) and the parametric family p(yjj�;Xj) chosen
by MSPT (Y n;Xn) upon receipt of Y n = yn and Xn.

Here we are assuming that a nonstochastic countably in�nite sequence of design
points X1..., Xn,... at which measurements will be made, has been �xed before the data
Y1; :::Yn are collected. This is unrealistic in that design points can be chosen adaptively,
however, we ignore this rather than approximating it by putting a distribution on the
Xi's.

Now, analogous to (2.6), and (2.7) to assess Ŷn+1 we examine the conditional variance
holding yn, Xn and w(�)q(yj�;X) �xed. This is

E(Yn+1jyn;Xn+1);wq(Yn+1 � Ŷn+1)
2

=

Z
(yn+1 �EMSPT (yn;Xn)

(Yn+1jyn;Xn+1))2m(yn+1jyn;Xn+1)dyn+1; (3:9)

where

m(yn+1jyn;Xn+1) =

Z
q(yn+1j�;Xn+1)

w(�)q(ynj�;Xn)R
w(�0)q(ynj�0;Xn)d�0

d�: (3:10))
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Replacing wq in (3.9) by an average as in (2.10) gives a form for the conditional mean.
The analogue to (2.9) is

V ar(Yn+1jyn;Xn+1);T ((Yn+1 �EMSPT (yn;Xn)
(Yn+1jyn;Xn+1))2); (3:11)

in which again wq can be replace by the average.
The forms of CURE, CUT, and CSE are otherwise unchanged, however, SCCT is

now based on the conditional expectation of the cumulative sum of errors

CECSE(wq) =
1

n

nX
i=1

Ewq((Yi �EMSPT (yi�1;Xi�1)(Yijyi�1;Xi�1))2jT (yi�1;Xi�1) = t)

(3:12)
and the conditional variance of the cumulative sum of errors

CV CSE(wq) =
1

n

nX
i=1

V arwq((Yi �EMSP
T (yi�1;Xi�1)

(Yijyi�1;Xi))2jT (yi�1;Xi�1) = t):

(3:13)
At each time n we have the same four possible actions as before. We show that again
choosing an MSP adaptively by the use of a consistent T performs better than any one
of the MSP's and the fourth possibility has asymptotic probability zero of being chosen.

Theorem 3.3: Optimality: Assume the hypotheses of Theorem 3.1, and that the
ranges of the explanatory variables are compact.

Then, for any wq 2 F ,

lim inf
n!1

[EY n+1(Yn+1 �EMSPi(Yn+1jY n;Xn))2

�EY n+1(Yn+1 �EMSPT (Y n;Xn)
(Yn+1jY n;Xn))2] � 0; (3:14)

in which the expectation is taken with respect to the mixture distribution of Y n+1, i.e.,
w.r.t.

R
w(�)q(yn+1j�;Xn+1)d� .

Compatibility: Assume the hypotheses of Theorem 3.2 and that the ranges of the
explanatory variables are compact. Then, for any wq 2 Fi,

Pwq(CSE � SCCT (i))! 0:

Proof: The proofs of Theorems 3.1 and 3.2 transfer to this new setting with the
changes in de�nition described from (3.8) to (3.13). 2

We comment that there is nothing sacred about squared error loss. It is seen that one
can replace squared error loss in (2.1) by any other loss function to get a di�erent partition
fF1; :::; Fkg. Likewise, the optimal predictor changes from the conditional mean. Then,
one would use the new loss function to assess the di�erence between the predictor and
the next outcome, analogously to (2.6). Continuing in this fashion it is seen that the
technique carries over to a large class of loss functions. We suggest that the results here
also extend.
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4. DATA RETENTION AND MODEL MIS-SPECIFICATION

It has generally been axiomatic in statistics that one wants to retain as much data
as possible. In fact, this intuition is not entirely correct. For instance, the amount of
data one should retain has been observed to be dependent on the goals of the analysis.
A concrete example is given by Fearn (1992) in a calibration setting. Consider the
regression of Y on X: One gets a smaller MSE for predictions if one spreads the X's
over the entire domain rather than letting them pile up in the centre. Thus, if we have a
lot of data and it tends to accumulate centrally, we may get a better MSE performance
for predictions if we throw out some of the data. A lot of data in this context means that
even after we have thrown out a signi�cant fraction of the data there is so much left that
we can estimate the regression coe�cients with good precision. In e�ect, throwing out
some of the naturally occurring data moves our results closer to what we would have got
with a designed experiment that spread the X's uniformly over the interval or, ideally,
put all of them at the endpoints. On the other hand, if one really wanted to estimate
the parameters one would of course retain all the data possible.

Looking closer at Fearn (1992) one sees that the gain in MSE performance is chie
y
for predictions made relatively far (more than 2 �) from the mean. It can be shown, see
Fearn (1992), that in this case (concern with MSE far from the mean) regressing Y on
X after discarding data gives predictions that are better than what one would get from
regressing X on Y and inverting. In other cases, one would insist on regressing Y on X
for physical reasons { it just may not make sense to regress the other way. The issue
here is that the extra data in the centre, while representative of the population for which
one wants to predict, is `misleading' because it is too representative: The improvement
in central performance (which is good in the most commonly occurring setting) is at the
expense of how well we handle atypical incoming data points.

Thus we have a situation in which throwing out data in response to model mis-
speci�cation (or the concern about it) gives better predictive performance. This suggests
a general principle: One wants to retain all the data only when model-misspeci�cation
is negligible.

Why does this make sense? Consider the case where one model, say P , is true and
we unwisely use a parametric family P� which does not contain P . It is well known that
P
�̂
will converge to the member of the parametric family, P�� closest to P in relative

entropy distance. However, the issue is to compare the distance between P and P�� and
the distance between P�� and P

�̂
. If it is possible to throw out data to make P

�̂
closer

to P rather than closer to P�� it would be helpful. Of course, P is unknown, but the
principle remains because of Fearn (1992) { without knowing the true model, we still
know how to allocate the X's optimally.

By contrast, de Luna and Skouras (1999) is a time series setting in which model mis-
speci�cation is assumed not to exist and they rechoose the MSP at each time step using
all the accumulated data. In e�ect, they set both SCCT's to zero. This is sensible if we
are certain we have identi�ed a class of distributions which contains the true distribution,
and all the data is representative of the same identi�able member of the family, and we
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can uncover it rapidly as data accumulate. (Rapidly means we don't get trapped in a
local optimum.) This is the same as the setting of Theorem 3.1. In e�ect, we uncover
the true model so fast that the estimated model gives useful predictions, i.e., prediction
is a function of good model selection.

The procedure developed in Section 2 is intended to be useful even when model mis-
speci�cation is a problem, and it is suboptimal to retain all data when one changes from
one MSP to another, or reuses the same MSP for many time steps. This assumes all
models are wrong but may be useful, so one cannot assume away model mis-speci�cation
by su�ciently detailed modeling (which may not be feasible).

Consider an example which is at the opposite extreme of de Luna and Skouras (1999)
and Theorem 3.1: Suppose the data stream one is trying to predict is a sequence of strings
of �nite length. Suppose the length of the strings is variable but as a practical matter it is
impossible (or worthless) to model the lengths. Also, assume that the data from di�erent
strings are unrelated, with unrelated distributions, possibly in di�erent catchment areas.
Within a string, the data follows a distribution known to be in a relatively small class.
Now, it would be natural to suspect that a change in MSP is associated with the arrival of
a new string. Although, the reverse need not be true. (Not every new string necessarily
forces a change in the MSP: Two successive strings may have distributions in the same
catchment area and therefore both are best found by the same MSP.)

In this example, we have independence and nonidenticality from string to string so
it makes sense to throw out all data preceding the most recent change in MSP. Con-
sequently, earlier data cannot help make predictions. Our technique can accommodate
this: Once the MSP has been rejected, one can use only the most recent data that led
to the rejection of the MSP (the data where CURE exceeded CUT so often that CSE
ended up exceeding SCCT ) to rechoose an MSP by recalculating T . Then one uses this
MSP until it's rejection is forced by too many errors of too great a magnitude.

Consider a variant on the sequence-of-strings example. Suppose, that within a string
the data are dependent and the degree of dependence assumed by the models in the
catchment areas mistakenly underrepresents it. That is, the data is more dependent
than you think. Then if one has k data points it will be heuristically equivalent to k0

data points where k0 < k in terms of a model which has less dependence. (This can be
formalized in some cases, see Clarke 1996.) Otherwise put, you will believe you know
more than you do as a consequence of mis-specifying the dependence structure. In this
case, to get standard errors for prediction that are closer to the ones one would get from
using the true model were it known one would have to throw out some data { and this
is within a string! In short, this is a case in which using all the data in a wrong model
does worse than using less data in the same wrong model. By contrast, in the rare case
that the data is more independent than you think then you will have been conservative.
This is suboptimal, but will not lead you astray so badly.

Now, a key question in a predictive context is how much data to retain, as well as
what to do with it. In the present procedure, there are three places that data are used:
Choosing an MSP by use of T , making a prediction (use the MSP to choose a model, then
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estimate the parameters), and evaluating the thresholds to assess performance. There
are several settings in which di�erent strategies for the use of data may be optimal, and in
many cases it will be unclear which to use because the optimal strategies are dependent
on the unknown model class. All that we can say is that in model mis-speci�cation often
it will be good to throw out data, but how to do this is unclear.

As a generality, when using T to choose an MSP, we suggest it is better to retain
more recent data, or functions of data that are most tied to recent data e.g., the last few
residuals in a regression setting. Also, as a generality, it may be better to use thresholds
and form predictions from all previous uses of the MSP chosen, i.e., if a di�erent MSP
had been used at a timestep in the past do not use the data point from that timestep
when calculating the CSE and SCCT or for making the next prediction. That is, it is
probably best to use the same data for both predictions and thresholds. Note that in
this proposal, one does not in general rechoose the MSP at each timestep as in de Luna
and Skouras (1999). Instead, one uses a chosen MSP until its use leads to a CSE that
is larger than its SCCT , rechoosing the MSP only when it failed. This is intermediate
between using full data retention to rechoose at every timestep and throwing out all
data from past MSP's as in the �rst sequence of strings example. This is intended to
approximate the most typically optimal procedure and be not too bad in other cases.

With Fearn (1992) in mind, we suggest re�ning the procedure for making predictions
and setting thresholds by not retaining all data from the previous uses of the MSP.
That is, above a threshold on sample size to ensure the precision of estimates, we should
throw out central data between changes of MSP particularly as it recedes into the past,
especially in a regression context. This is similar to throwing out outliers, except that
the central values are the outliers relative to detecting when to change the method of
prediction. This makes sense because we want our predictions to be good when the X's
are far from their mean value: Those are the cases mostly likely to make us want to
change models or MSP's. Indeed, one expects to �nd lack of �t as one extrapolates
outside the domain of the explanatory variables. The error structure { not changing
MSP's until CSE exceeds SCCT { means that before changing models we are sure our
current model and MSP really are inadequate.

An additional problem with rechoosing the MSP at every timestep is that the varia-
tion introduced by the use of T is unexamined: Possibly we end up over�tting the data
because we have allowed so many parametric families. This is the same argument as is
used for not performing too many hypothesis tests, or estimating too many parameters
from a �xed sample.

Thus, we are arguing that there are circumstances in which it is better not to use all
the data all the time and in such cases our algorithm here (which uses the same MSP
until an error criterion is met, but records which MSP was used at each timestep) is
better than rechoosing the MSP at every timestep, the other extreme. The improvement
will be in computational complexity also, but our argument is based on better prediction
in settings where model mis-speci�cation is unavoidable.
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5. DISCUSSION
This paper has three main points. The �rst is to present a general form of a technique

for online prediction that combines the use of several model selection principles (MSP's),
and partial retention of data in response to model mis-speci�cation. The second point
was to establish that the the use of several MSP's gives better squared error predictive
performance than restriction to a single model MSP. The third point was to argue that
model mis-speci�cation may imply the desirability of not using all the data all the time.
Indeed, we argue that throwing out data points may be useful in predictive context.

There are several issues that impinge on this that deserve comment. First, the present
method should interact well with Bayesian model averaging. One can, for instance choose
a neighborhood around the model chosen by our procedure, and average over it to get
predictions. Alternatively, one can choose a neighborhood around each of the models
chosen by each MSP, average within each of those neighborhoods and then average over
the local averages. The bene�ts of Bayesian model averaging are probably dissociable
from the bene�ts of the present method.

A natural way to de�ne neighborhoods in the predictive context is by using Shan-
non's Mutual Information to topologize the collection of all models. One would hope
that models that are close in information are also close physically, that is they do not
represent strikingly di�erent physical assumptions. Then, averaging over a collection
of neighborhoods centered at models chosen by distinct MSP's would represent greater
averaging than merely averaging over the neighborhood around a model chosen by the
best MSP. In short, we would have a collections of Occam's windows around the mod-
els chosen by our MSP's and any two models being averaged would be either in the
same neighborhood (hence physically compatible) or in two disjoint neighborhoods cen-
tred on physically incompatible models. We suggest that local averaging for physical
compatibility will be enough in a prequential context.

Second, there are technical issues that require further work. Is there a clear example
showing that the catchment area of one MSP (say BIC with models having few param-
eters) is meaningfully di�erent from the catchment area of another MSP (say AIC with
models having many parameters)? Is it reasonable to do as we have done in terms of
regarding Fn;i as being Fi? This assumption permitted us to imagine using the natural
extensions of representatives of the catchment area for all n. We anticipate there are
cases in which Fi;n will be stable as n increases or at least can be characterized as a
function of n as n increases; this was done implicitly by de Luna and Skouras (1999).
Moreover, it is not clear how many MSP's one should use. One answer is as many as
have catchment areas that are physically relevant. However, too few or two many will
lead to di�erent problems in some cases.

Third, the details of applications in many speci�c cases beyond de Luna and Skouras
(1999) remain to be worked out. How much past data to use, which of the past data to
use, and how to use it remain unexplored outside several examples and heuristics. The
full generality of the method remains to be tested. We have not formally explored the
optimal frequency of reselecting the MSP. We suggest that reselecting the MSP at every
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time step will be suboptimal in many cases. Moreover, if there is model mis-speci�cation
we may want to throw out data. However, we probably want to retain as much as possible
of the data accumulated forcing us to change MSP's, and preferentially retain noncentral
data that led us to the use of the new MSP in earlier stages when recalculating error
thresholds and predicting the next outcome. Clearly, the more often we re-choose our
MSP the more the information in our data will be used to choose a catchment area
and there will be less information to permit use of the MSP and parameter estimation.
Ultimately, this may weaken our predictions by in
ating their variance. This is a sense
in which the variation in T remains to be examined and indicates that re-choosing the
MSP too often may be sub-optimal.

Finally, the central principle might be that the more frequently we wish to use T to
rechoose the MSP, the more data we must retain, and so the less model mis-speci�cation
we can tolerate. Equivalently, the less frequently we re-use T , the less data we need to
retain, and the more model mis-speci�cation we can tolerate while still getting predictions
that are no worse.
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