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Abstract

In this paper we present a new method for estimating genetic parameters of an F,-
generation model. Using an iterative algorithm we derive explicit expressions for the Maxi-
mum Likelihood estimates of the additive and dominance effects. Finally we calculate the
variance covariance matrix of our Maximum Likelihood estimates, which enables us to de-

termine a confidence interval for the location of a quantitative trait locus.
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1. Introduction

The recent advent of molecular markers has created a great potential for the under-
standing of quantitative inheritance. Along with rapid developments in molecular marker
technologies, biometrical models have been constructed, refined and generalized for detect-



ing, mapping and estimating the effects of quantitative trait loci (QTLS). The aim of our sta-
tistical approach is to find Maximum Likelihood estimates of QTL locations and effects in-
cluding their estimated standard errors.

During the last 10 years, numerous authors developed a number of statistical models
for the so-called interval mapping methods in plant breeding. Lander and Botstein (1989) de-
veloped the method of simple interval mapping. This method was the basis of the disclosure
of later methods like the composite interval mapping (Zeng, 1994). In interval mapping meth-
ods, the parameter estimators for a model are calculated for all possible QTL positions of the
genome (e. g. in distances of 5 cM). Using likelihood ratio tests the likelihood ratio (or
equivalent the Lod-Score) profile can be calculated to screen the genome for putative QTLS.
Obviously, the number and size of the intervals should be considered in determining the
threshold value.

Problematic is that during each parameter estimation only a single putative QTL is
searched for. Jansen (1996) explains a Monte-Carlo expectation-maximization-algorithm for
fitting multiple QTLsto incomplete genetic data. Stephens and Fisch (1998) employ reversi-
ble jump Markov-chain Monte-Carlo-methodology to compute posterior densities for the pa-
rameters and the number of QTLs. Fisch et al (1996) also developed an approach for general-
izing mixture models for the progeny of a biparental cross of inbred lines. This approach al-
lows to use mixture models for the case that the genotypes of a sample of plants are obtained
in one generation and the phenotyping takes place in another generation with more individu-
alsto investigate.

Kao and Zeng (1997) presented formulas for deriving Maximum Likelihood estimates
using an ECM-Algorithm and explained away to calculate asymptotic variance-covariance
matrices for the estimates. The methods described by Kao and Zeng (1997) can be used for
the following design (using Mendel’s laws):

We consider experimental populations derived from a cross between two parenta in-
bred lines P; and P,, differing mainly in a quantitative trait of interest. This allows for investi-
gating the realizations of alleles of marker loci of a marker interval that contains a putative
QTL (quantitative trait locus). Two flanking markers for an interval, where a putative QTL is



being tested, have alleles . If the F; individuals are selfed or intermated, an F, —

population with nine observable marker genotypes is produced.



1.) Parental generation:

A1 Q1 Bl A2 QZ BZ
A1 Q1 B X Ao QZ B
2.) Fi-generation

A1 Q1 B4

Ao Q2 B,
3.) Fx-generation:
A1 Q1 B4 A1 Q1 B4 Ao Q2 B,
A1 Q1 B4 Az Q B, Az Q B,
Inrelationto 1 2 1

In addition to these genotypes of the F,-generation, a small number of recombinants

occur by crossing over in the meiosis.

Here, A; and A, are the possible realizations of the alleles of marker 1 and B, and B,
arethe realizations of the alleles of marker 2 in the interval. Obviously, the realizations of the
aleles of the putative QTL are not observable, but it is possible to give atable of conditional
probabilities of the QTL genotypes given marker genotypes. For a F,-Generation such atable

reads:



Table 1: Conditional probabilities of QTL genotypes given marker genotypes:

No Marker Expected QTL- Sample
genotypes  frequencies genotypes Size

_ Q/Q Q/Q2 Q/Q: n

1 A, Bi |[(@-r74 1 0 0 m

AL By

2 AL By [r(1-n)2 1-p p 0 Ny
Ay B>

3 [AL Bl [r4 1-p° [2p(1-p) p’ Ne

AL B

4 A, By [r(1-n)2 p 1-p 0 N

AL By

5 [A2 B [(1-N%2+ [cp(1-p) [1-2cp(1-p) [cp(l—p) |ns
A, By |2

6 |A2  Bj |r(1-n)/2 0 1-p p Ne
™ B>

7 |A. Bl |4 p° 2p(1—-p) 1-p* |ny

1A, By

8 |A2  Bj |r(1-n)/2 0 p 1-p Ng
A, B4

9 [A. B, [@-n74 |0 0 1 No
A, B>

Obviously, there are nine different types of marker combinations.

It should be considered that e. g.

A, B
™ B4

is the same combination as

A, B4
A, B

, If no difference can be made

between the alleles inherited from the father and the alleles inherited from the mother plant.

Thisisthe case in (most) practical applications.

Here p is defined, asra/ r withra isthe (e g from earlier investigations known) recom-

bination fraction between the left marker 1 and the putative QTL and r is the (known) recom-

bination fraction between the left marker 1 and the right marker 2.

c=r?/[r*+(1-r)?.

Further assumptions are

-that the possibility of a double recombination event (i. e. crossing over) will be ignored and

-that single crossing over happens independently from one another.



n isthe number of plants in the sample F, generation and n,....,ny are the number of plants of
this generation bearing the combinations of markers 1 to 9.

The conditional probabilities of the QTL genotypes given marker genotypes of table 1
enable usto calculate a matrix P=(p;) (with dimension (nx3), j=1,2,...,n and i=1,2,3) for any

sample of n plants whose markers are genotyped. This matrix containsthe p;; in dependence

of the marker genotype of each plant of the sample.

2. The models and the likelihood function

It is now possible to define a deterministic genetic model for a F, population with the
above given QTL genotype frequencies (1/4, 1/2, 1/4). The genetic model for one QTL repre-

sents the relation between a’'genotypic value’ G and some genetic parameters 3,, aand d.
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Here, B, isajoint value of the genetic model and a and d are additive and dominance

effects of QTL inthe F, population. It is possible to calculate unique solutions of the genetic
parameters in dependence of the genotypic values and frequencies of genotypes Q1/Q1, Q1/Q2
and Q./Q- of the QTL.

D=(D1, D), with D1 represents the status of the additive parameter and D, represents
the status of the dominance effect.

For the following QTL mapping data

-y; (j=1,2,...,n) isthe investigated trait value of plant |

-Xj (=1,2,...,n) isavector which contains data for the genetic markers and other ex-
planatory variables,

and the following assumptions can be made:



-there is no interaction (that is no epistasis) between QTLS

-there is no interference in crossing over

-thereisonly one QTL in the testing interval

A statistical composite interval mapping model (CIM, Zeng 1994) can be constructed

on the basis of the genetic model:
y, =ax; +dz; +X B+e, (2)

Here,

y; isthe trait value of the plant j (j=1,2,...,n),

aand d are additive and dominance effects of the putative QTL,

Bisapartial regression coefficient vector of dimension k that contains the mean 3, of
the genetic model,

X; isasubset of X; that contains chosen marker and variable information

and €, ~ N(0,0%).

X, and z; are discrete random effects with

p! Q/Q
X, = 0D if theQTL is Q,/Q,
H—l Q,/Q,

., /2 if theQTL is
and zs% | Q. 'SQ./Q,
0 -1/2  otherwise

,J=1,2,...,n.

Of course, the realizations of the putative QTL in plant j are unknown. Thus only the
probability distribution of the realizations of the discrete random effects can be given in de-
pendence of the conditional probabilities of the QTL genotypes given marker genotypes for
plant j (called p;, with j=1,2,...,n, i=1,2,3):

Epjl if x;=1 and z, =-1/2
gj(x’},z’;):[pj2 if X, =0 and z, = 1/2
H, if X, =-1 and Z, =-1/2



This is the distribution of the QTL genotype specified by x; and z| .
Now, it is possible to give a Likelihood function for a sample of n individuals and for

the parameter vector 6 = (a, d,B, 02):

D
e|Y X &p“ yJ’uJH H

M :a_d/2+XjB
M2 :d/2+XjB
M =-a-d/2+X B

with

and f isthe normal density of y; with expectation value p;; (i=1,2,3 and j=1,2,..,n) and

variance o°.

3. Parameter Estimation

3.1 The EM-algorithm

The not observable QTL genotypes can be considered as missing values. Now it is
possible to define adata set Y mis=(Y(misj)), (With j=1,2,...,n) of "missing data’ for the QTL
genotypes, and adata set Y oos=(Y(obsj)) (With j=1,2,...,n) for the observed valuesy; and the
marker information (cofactor vectors Xj , j=1,2,...,n).

It is possible to contemplate a hypothetical complete-data set called Y com=(Y obs, Y mis)-
In such a situation the so-called EM-algorithms (or even the later explained ECM-algorithm)
for Maximum Likelihood estimation of the parameters of the statistical model can be used.
(see Dempster, Laird, Rubin (1971), Wu (1983) and Meng, Rubin (1993)).

Consider the random variable vector Y com Of the complete-data set with density func-
tion f(Ycom® ) and 60O OR®. If Y com contained only observed values, the objective way to
estimate the parameters would be to maximize the complete-data log-likelihood function of ©:

(O com ) O INF(Y com® ).



Unfortunately, Y com contains the not observable missing values Y s If we assume that

the missing datain Y s are missing at random, than the log-likelihood for 6 is:

lon( B0 o) DI [ (Y 8)dY

com

Now in most practical applications (including the here-described situation) it is very
complicated to maximize this log-likelihood-function.

The EM-algorithm solves this problem of maximizing lqps by iteratively maximizing
1(OCY o ) -

For each iteration, the EM-algorithm has two steps, the E-step and the M-step.

Using appropriate starting values for 8

-the (t+1) E-step finds the conditional expectation of the complete data log-likelihood
with respect to the conditional distribution of Y mis given Y ops and the parameter 6

Q00" = f1(6Y.un [V

Thisisafunction of 6 for fixed Y gs and fixed 6.

Y e 0 = em)dY

mis

-The (t+1) st M-step calculates a maximum 6 for Q(e‘e“)), o that

Qle“le®)= qlee®) oece

Under certain restrictions (Dempster, Laird, Rubin (1971), Wu (1983)), the sequence
of estimates of the iterations steps of the EM-algorithm converges against a (global or local)

maximum of lgps.

Obviously, depending on the chosen starting values (and the used restrictions) it is
possible that in some applications a stationary value of |y is found, but very often the EM-
algorithm is able to find a maximum.

Today, the EM-agorithm is widely used in different applications. Selinski and Urfer
(1998) and Selinski et al (1999) used this method for the estimation of toxicokinetic parame-
tersfor the risk assessment of potential harmful chemicals.

In the article of Kao and Zeng (1997), the ECM-algorithm as a subclass of generalized
EM-algorithms has been used for the estimation of parameters.

Before this method will be described, the EM-algorithm for the defined Model has to
be explained (Emrich (1999)).



For the F,-Generation situation and the models (1) and (2) it has to be said that the ob-
served data (Y(obsj)) given the missing data (y(miS i) are normally distributed with:

( Y (os.j) ‘9 XJ’ K J) N(an +dz’} +XJ.[3,02)
The conditional density of missing data given specified observations is the above de-

fined density of QTL genotypes gj( i J) In accordance with the formula of conditional

probability (P(AB)=P(A n B)/P(B)), the density of the complete data set (Y(com,j)) can be con-

sidered as the likelihood-function and is defined as:

e XJ’XJ’ZJ)g (XJ’ZJ)

L(e|y(com)) = ﬁ f (y(obSJ

=

Now the conditional expectation of the complete data log-likelihood with respect to

the conditional distribution of Y yis given Y ops and the parameter 8 isin the E-step of the
EM-algorithm calculated as:

(e\em) [in L(BY o (Y i Yo 0 = B0 Y .
=j'n§;| fvsm00%)0, . J)E(Ym.s

= i iln[f (yj;uji,oz)pji]”fit)

NCELE)

) = Spjif(yj:uﬁ”,ozm)
Z pjvf (yJ ; Hf\t,) , 0'2(1))

is the posterior probability of the QTL genotype.

P(A, nB) _ P(B|Ak)P(Ak)
P(E) ZP(B|AS)P(AS)

This follows by using the Bayes formula P(Ak|B)

on the conditional distribution of Y yis given Y gps:
y(misj))ﬂ(y(misj)) g (XJ, J)f(yj,lij, )
Y mispatix ) Y (misjpafix ) ijl yj;ujv’o

f(yos,'
Yito)): 0= e(t)) ! (obs,j)

Z (Y oty

f (y(mis,J)
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t

f isthe normal density of y; with expectation p;; (or p{) and variance o® (or o*®).

For the M-step of the EM-algorithm Q should be maximized:

A continuous, two times differentiable multidimensional function of a parameter vec-
tor © has amaximum on the point 6 =8, if
-the partial derivations of the function are zero on the point 6 =6 and

-the matrix of second derivations is negative definitein 6 =9 .

The Theorem of Hurwitz says that areal, symmetric Matrix S=(s;) is positive definite,

Ell”'slk H
det;p "-. : 0, fork=12,...,n.

%kl"'skkH

Thus the steps for calculating the maximum of Q are,

-to build the partial derivations and set them equal to zero

-and it would be advantageous, if the system of partial derivatives (=0) could be
brought in aform like

AB=b

because:

-then the zero point of the system of partial derivativesis
6'=A"b,

-for such a case the matrix of second derivatives could be calculated by differentiating
(b—AB (=0)), and it follows, that the matrix of second derivatives is (—A ) and this matrix is
negative definite, if A is positive definite.

11






The conditional expectation of the complete data log-likelihood with respect to the conditional distribution of Y s given Y ops and the parameter

8 can be brought to the form:

Q(G‘e(t)) Z > B—In(\/ﬁ)—ln(o)——%é+|n(p“)gg-[(t)

Using this transformation, it is easy to build the partial derivatives of Q for the parameters a, d, B,,...,3,_, and a® (for the (t+1) thiteration step of

the EM-agorithm), to equal them with zero and to transform the equations in a desirable form:

% — gt 4 ngﬂ) -X. B(Hl) E.H E/ + a3t + ngtﬂ) B(Hl)
aa o? Z

52700 Y mt)at 25 (i - nﬁ?)d“ﬂwg(ré?—rés)xjosom+...+Z(r¢;> Xt = 3 () -,

= 1= 1= 1=

n [ t+1) I+1) t+1) N
0Q :izz FO —at? 4 E@H -X B(t+1) Jt) + _XJB(Hl) jtz) -0y, +at + E@H _XJB(Hl) j;)DZO
0”& g D R0 g

od
le) 10 . a1 . L1 w19
200 25ty -+ z(rr§;>+n§2+n§2)d“> LS o2 -rgh st oo IS (ot =15 (ot -
=T =1 =1
aQ 1 < (t+1) ngﬂ) (t+1) t) ngﬂ) (t+1) t) (t+1) ngﬂ) (t+1) t) |
— -a'" + -XB X TR - -XB XLy taltt + -XB X [FO,M=12,...,k
aBm—l GzJZ (N j L0 j j277%] J R0 J IERA E
9 _00 (0 - mO)X,d + 2 (0 - KA+ SX X B ok 3X X B = X
B 1_ Zl i i3 A jm@ > i i1 i2 i3 Z i JmB Z ik JmB Zl imYi
m_ J: J: J:

Q_ & 1 1 o3 P !
% - _le ot + g ¥t 4 (y —Hj ) T[Ei =0

=1

g_g =00 o= . Ji [(yj - “Jlml) )2 Ty + (yj - szml) )2 Tty + (yj - Hjs(ﬁl) )2 T[EQ)J

n =
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Now, the equations of partial derivatives of a, d, 3,,...,,_, can be written asamatrix equation:

A =p,
With:

D emd) 53 (-

(] =1
53 -m) G et ent)
= E
[In n
Eg( ji) _T[%))le % (_T[f
=1 =1
0
0
D (i 53 (i end -mix,
D|=1 =1
B
> (-l E
£
. 0
LS (e -ty
0, 0
Sy
o i
a ]
[ xjkyj [
=1 ]
H

|

with g = (59, g gen 8

(-9 )X,

(t+1) )T
k-1 .

(i i -mO, o 5 3 (o -
2

i
n
=1
n
XX ik Z XX ik
=1
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-The partial derivative for o is dependent from the other parameters a, d, Bo,...,Bk-1, but
the other partial derivatives ( =0) do not contain o°.
-Now it is possible to calculate the parameter estimator of the first (k+1) parameter by

solving AG" ™ = Db and to use these estimators for calculating a®*? with
02 = Z[ R R (TR St VAT Rl

Now the parameter estimator vector of the (t+1)-th iteration step of the EM-algorithm

(t+1)_ (t+1) (t+1) t+1) t+1) (t+1)
U =(al gt gUY | gy G )

3.2 The ECM-algorithm

In the article of Kao and Zeng (1997) a generalization of the EM-algorithm, called the
ECM (Expectation/ Conditional Maximization) has been used for parameter estimation
(Meng, Rubin, (1993)). The ECM-algorithm should be preferred when the complete-data
Maximum Likelihood estimation is complicated. For this case, the calculation of parameter
estimators using the ECM-algorithm is slightly easier than with the EM-algorithm. For more
complicated models the ECM-algorithm could more considerably simplify the calculation of
parameter estimators. On the other hand, the ECM-algorithm needs further restrictions to
converge against a Maximum Likelihood estimator.

The ECM-algorithm replaces the original M-step of the EM-algorithm by a number of
S conditional maximization (CM-) steps. These CM-steps are computationally simpler to cal-
culate because each maximization is conditional on a function gs (s=1,...,S). Therefore, in
each CM-step a maximization of Q(8*%¥) takes place.

The (t+1) th iteration step is analogous to the E-step of the EM-Algorithm. Therefore,
the calculation of the conditional expectation of the complete data log-likelihood with respect

to the conditional distribution of Y s given Y o»s and the parameter 8¢ computes as:
Q) = Z 5 In(+/2m) - In(o) —_@L““é +In(p, )EDT“)
o & o

13



Then four CM-steps are calculated:
-The first CM-step is the maximization of Q under the condition that
d=d®, p=pY ando = ¢ arefixed values, which were calculated in the (t)-th step of the

ECM-algorithm. So the partial derivative 0Q/0a = Ois calculated and can be solved to:

o Sl - x)y rhe]
S+ i) |

-The second CM-step contains the maximization of Q under the condition of fixed pa-
rameter estimator values of earlier steps, i. e. a"?,B® and 0“ are fixed values and the partial
derivative 0Q/dd = 0 can be transformed to:

oo = ST 2 -y - xp0)- (g -l
130 e i)

I

-The third CM-step uses the fixed parameter estimators of the last two earlier CM-
steps, o that a**?, d*? and 0 are fixed:
B(t+l) - (X’X)_lXT I_Y _ I—I (t) DE(t+l)J

Here, D=(D,,D,) isthedesign matrix of the genetic model,

Y = (Y y,) s IO = (10), ECY = (@, d ) and X = (X,,..., X, ).

-The fourth CM-step now uses the calculated parameter estimators of the last three
CM-steps as fixed values.

0_2(t+l) :% [(Y _ XB(Hl) )T (Y _ XB(Hl) ) _ 2(Y _ XB(Hl) )T no pety .

The parameter estimator vector of the (t+1)-th iteration step of the ECM-agorithm can

be written as

(t+1) — [A(t+]) q(t+]) p(t+l) (t+1) (t+1) \T
U =(al) gt gUY | gD G )

Each iteration step of the ECM-algorithm computes a conditional maximum rather
than the (unconditioned) maximum of the EM-algorithm, that isto say the ECM-algorithm
needs additional conditions in order to converge against a Maximum Likelihood estimator.

An important condition is that the set of constraint functions is space filling.

14



Moreover it is of interest to discuss the cases where both the algorithms converge
against the identical Maximum Likelihood estimators. Further discussion of this point is

planned in later work.

4. The Asymptotic Variance-Covariance Matrix

Kao and Zeng (1997) described a method to calculate an asymptotic variance-
covariance matrix for the specified model. The result of the iterative algorithm to estimate the

parameters of the model is 6 = (p, a,d,0%,By,e.s Bk_l)T . The parameter p is set as earlier esti-
mated (or "known", e. g. from alod score analysis). The posteriori-probabilities 1t; of the

parameter estimation are known from the EM-algorithm as well.

For cases where the EM-algorithm is used, Louis (1982) derived a method to acquire
the asymptotic variance-covariance matrix. The obtaining of the asymptotic variance-
covariance matrix is equivalent to extracting the observed information of the incomplete
problem.

The likelihood function of the (hypothetically) complete data set can be found by
making the following considerations:

-The complete data problem can be regarded as atwo stage hierarchical model.

-The QTL genotypes are the realizations of atwo dimensional random variable

(x’JT , zJ) (j=1,2,...,n), which are randomized from atrinomial experiment.

-Each realization of the random variable is assigned to one of the QTL genotypes
Q/Q1,Q,/Q, 0rQ,/Q,.

-The observations are normally distributed with a mean depends on the realization of

the QTL genotype.
Then the likelihood function of the (hypothetical) complete data set is:

o0 —lx}+ Ez]—}E X) + Ez]+15 lx}— Ez]—EED
AV p,ad,cz,B)=|'J%ojlf(yj:ujl,oz) 2ty 02 ) Sy g, 02 ) g
i=
with

15



—l(xf +1)(zf _1) _ [1for aQTL genotyp of Q,/Q,
2 I 2 Epotherwme

+

%xf 135 * L 15 [AforaQTL genotyp of Q,/Q,
J %ZJ Epothermse

1%; _135 * 15 [1foraQTL genotyp of Q,/Q,

20 %ZJ' 27 %)otherwme

Now, for afixed sample the log-likelihood-function can be described as:

ZZ Inp, ~In 2T[)—In(o)__%g}

For independent observations the information matrices can be calculated as:

obs (e| Yobs) -1 mis
n [ az|n)\( o) | ©) 0
JZEEr 302 A y(obs,J)’ea
i E:Bm)\(y(com )|6)DDBIn)\(y(com )|e) E
;E$ 6 T o0 J D\ “’““’GEB

o BInA(y o |6 éhiﬁln)\ywm 0 df

+ ZE ( ( )| ‘y(ObSI)’e E ( J)| ‘y(Obs'j)’eD N

1#] @

And the asymptotic variance covariance matrix is calculated as the inverse of the ob-

served information matrix:

Cov(8) = (Igs) .

Obviously, to calculate these information matrices the first and second derivatives of

In(A) have to be calculated. On the following page the tables 2 and 3 show the first and sec-
ond derivatives of conditional probabilities of QTL genotypes given marker genotypes p;
(=1,2,...,n and i=1,2,3) for the possible marker genotypes of table 1. These matrices enable us
to calculate matrices of first and second derivatives PY = (p®) and P = (p? ) in depend-

ence of the marker genotypes of a sample of n plants (equivalent to matrix P in chapter 1).

Then the information matrices | ., and | ;,can be calculated using the tables 4 and 5. There-

fore 1, and the desired asymptotic variance-covariance matrix can be calculated.

16



Table 2 : First derivatives of the conditional probabilities of QTL genotypes given

marker genotypes:

no. of genotype of the | Q1/Q: Q/Q2 Q/Q2
marker
1 0 0 0
2 -1 1
1-p p
3 2 1-2p 2
1-p pd-p) p
4 1 S 0
p 1-p
5 1-2p —-2c(1-2p) 1-2p
p(L-p) 1-2cp(1-p) p(L-p)
6 0 N 1
1-p p
7 2 1-2p _ 2
p pd-p) 1-p
8 0 1 1
p 1-p
9 0 0 0

Table 3: Second derivatives of the conditional probabilitiesof QTL genotypesgiven

marker genotypes.

no. of genotype of | Q1/Q: Q/Q: Qa2/ Q2
the marker
1 0 0 0
2 1 1 0
(1-p)’ p?
3 __ 2 —2p*+2p-1 _2
(L-p)’ p’(1-p)° p*
4 1 1 0
p’ (1-p)°
5 -2p*+2p-1 4cl+c(—2p2+2p—1) -2p*+2p-1
p*(L-p)° [1- 2cp(1-p)]? p*(1-p)°
6 0 1 _i
(1-p)’ p?
! _2 -2p*+2p-1 2
p* p*(L-p)° (L-p)?
8 0 1 1
p’ (1-p)°
9 0 0 0

With c=ra?/(ra*+(1-ra%))
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0 0 0% INA(Y eom|8) O

Table4: | ZE 56,96, E\Nlthes,etD9=(p,a,d,02,Bo ..... B,..)
:%{table}
es,et p a g 82 go gm—l
n 0 .
p _0.2; Z pEIZ)T[JI
0 n n n —=U. i n n
a 2 T, + T, JZ%(_ L +T[j3) G_J'ZJZE(E/(JyJ ﬁJ;)j:J)lnﬁH JZ(T[H _T[j3)x i JZ(T[J']__T[J'?,)XJI(
0 i%(_njl-'-nﬁ) % n g&yj :ujl))n” E %J“ (_T[jl TG, T[J3)XJ1 % ( T, + T, — T
IE 262 2 Y M TN, J
@(yj _HJ3)HJ3E
o ° AN @(ryj ok (yj ””)n” d = LS5l -mxm, _ZZ ’
GZJZ v, _p‘J'3)T[J3E 202 Z a1, O 20° o’ JZZ SR P
ﬁ‘ ”13 T[Jsﬁ
n n 3 n 3 n
o 10 JZ(T[jl_ﬂjs)le % ) (— T, + 10, = T[JE,))XJk 0_12; 2 (yj _p-jl)lenji ;;lele JZXJ-kXJ-l
o = s S = =
P Z (T[jl _T[j3)xjk % (_ T, + T, = T[j3)xjk 0_122 Z (yj _P-jl)xjknji ijlxjk Jijkxjk
= = =T = = =
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n INALY (com.1)|€) D INALY (com. i 6)0 n INALY (com.1)|© INALY com.i) | 1
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5. Discussion and outlook

In this work we have described two methods for the estimation of genetic parameters
and away to calculate an asymptotic variance-covariance matrix. In aforthcoming paper ex-
amples will be published showing that the EM-algorithm and the ECM-algorithm as described
by Kao and Zeng may or may not converge against different maxima. In other cases the
ECM-algorithm converges against stationary values that are not maxima, while the EM-
algorithm converges against a maximum.

The calculation of the asymptotic variance-covariance-matrix is similar for both pa-
rameter estimation methods and enables us to calculate confidence intervals. Today, arange
of widely applicable software programs for QTL-analysis exists. PLABQTL (Utz and
Melchinger (1996)) used a multiple regression approach with flanking markers according to
the procedure described by Haley and Knott (1992). Basten et a (1999) have implemented the
ECM-algorithm as described by Kao and Zeng (1997) for QTL-analysis.

Melchinger et al. (1998) evaluated testcross progenies of 344 F; lines in combination
with two unrelated testers plus additional testcross progenies from an independent but smaller
sample of 107 F; lines from the same cross in combination with the same two testers for grain
yield and four other important agronomic traits. For amore detailed statistical analysis of this
data set A.E. Melchinger and H.F. Utz from the Institute of Plant Breeding, Seed Science and
Population Genetics, University of Hohenheim, provided plant height measurements of an F,
—population of maize, which were genotyped for atotal of 89 marker loci. Thisdata set is
(like other practical applications) based on so called adjusted means. Urfer et a (1999) pre-
sented several ways to calculate adjusted means in o -designs.

The aim of our further statistical approach isto find Maximum Likelihood estimates
for QTL locations and effects including their estimated standard errors using the described
and further methods. Recently, Kao, Zeng and Teasdale (1999) presented a new statistical
approach for interval mapping, called multiple marker interval mapping (MIM). It uses multi-
ple marker intervals simultaneously to fit multiple putative QTLs directly in the model for
mapping QTLs. Here the ECM-algorithm is used as well. To integrate our estimation proce-
dure in this approach seems to be a promising field for further statistical research.

Another area of challenging statistical problems is the mapping of QTLs for cellular
defects in glucose and fatty acid metabolism. Al-Magjali et al (1999) constructed aradiation
hybrid map of the proximal region of rat chromosome 4. This map will facilitate identification
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of genes underlying cardiovascular and metabolic QTLs and also provides an interesting

comparison of synteny relationships between the rats, mouse and human genomes.
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