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Estimation of genetic parameters using molecular

     markers and EM-algorithms

           by

          K. Emrich and W. Urfer

Abstract

In this paper we present a new method for estimating genetic parameters of an F2-

generation model. Using an iterative algorithm we derive explicit expressions for the Maxi-

mum Likelihood estimates of the additive and dominance effects. Finally we calculate the

variance covariance matrix of our Maximum Likelihood estimates, which enables us to de-

termine a confidence interval for the location of a quantitative trait locus.

Keywords: molecular genetics, Maximum Likelihood estimation, EM and ECM-

algorithms, variance-and covariance matrix of Maximum Likelihood estimates, confidence

intervals for genetic parameters

1. Introduction

The recent advent of molecular markers has created a great potential for the under-

standing of quantitative inheritance. Along with rapid developments in molecular marker

technologies, biometrical models have been constructed, refined and generalized for detect-
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ing, mapping and estimating the effects of quantitative trait loci (QTLs). The aim of our sta-

tistical approach is to find Maximum Likelihood estimates of QTL locations and effects in-

cluding their estimated standard errors.

During the last 10 years, numerous authors developed a number of statistical models

for the so-called interval mapping methods in plant breeding. Lander and Botstein (1989) de-

veloped the method of simple interval mapping. This method was the basis of the disclosure

of later methods like the composite interval mapping (Zeng, 1994). In interval mapping meth-

ods, the parameter estimators for a model are calculated for all possible QTL positions of the

genome (e. g. in distances of 5 cM). Using likelihood ratio tests the likelihood ratio (or

equivalent the Lod-Score) profile can be calculated to screen the genome for putative QTLs.

Obviously, the number and size of the intervals should be considered in determining the

threshold value.

Problematic is that during each parameter estimation only a single putative QTL is

searched for. Jansen (1996) explains a Monte-Carlo expectation-maximization-algorithm for

fitting multiple QTLs to incomplete genetic data. Stephens and Fisch (1998) employ reversi-

ble jump Markov-chain Monte-Carlo-methodology to compute posterior densities for the pa-

rameters and the number of QTLs. Fisch et al (1996) also developed an approach for general-

izing mixture models for the progeny of a biparental cross of inbred lines. This approach al-

lows to use mixture models for the case that the genotypes of a sample of plants are obtained

in one generation and the phenotyping takes place in another generation with more individu-

als to investigate.

Kao and Zeng (1997) presented formulas for deriving Maximum Likelihood estimates

using an ECM-Algorithm and explained a way to calculate asymptotic variance-covariance

matrices for the estimates. The methods described by Kao and Zeng (1997) can be used for

the following design (using Mendel’s laws):

We consider experimental populations derived from a cross between two parental in-

bred lines P1 and P2, differing mainly in a quantitative trait of interest. This allows for investi-

gating the realizations of alleles of marker loci of a marker interval that contains a putative

QTL (quantitative trait locus). Two flanking markers for an interval, where a putative QTL is
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being tested, have alleles . If the F1 individuals are selfed or intermated, an F2 –

population with nine observable marker genotypes is produced.



4

1.) Parental generation:

A1 Q1 B1 A2 Q2 B2

A1 Q1 B1 × A2 Q2 B2

2.) F1-generation

A1 Q1 B1

A2 Q2 B2

3.) F2-generation:

A1 Q1 B1 A1 Q1 B1 A2 Q2 B2

A1 Q1 B1 A2 Q2 B2 A2 Q2 B2

In relation to     1 : 2 : 1

In addition to these genotypes of the F2-generation, a small number  of recombinants

occur by crossing over in the meiosis.

Here, A1 and A2 are the possible realizations of the alleles of marker 1 and B1 and B2

are the realizations of the alleles of marker 2 in the interval. Obviously, the realizations of the

alleles of the putative QTL are not observable, but it is possible to give a table of conditional

probabilities of the QTL genotypes given marker genotypes. For a F2-Generation such a table

reads:
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Table 1: Conditional probabilities of QTL genotypes given marker genotypes:

No Marker
genotypes

Expected
frequencies

QTL-
genotypes

Sample
size

Q1/Q1 Q1/Q2 Q2/Q2 n
1 A1 B1

A1 B1

(1 – r)2/4 1 0 0 n1

2 A1 B1

A1 B2

r(1 – r)/2 1 – p p 0 n2

3 A1 B2

A1 B2

r2/4 (1 – p)2 2p(1 – p) p2 n3

4 A2 B1

A1 B1

r(1 – r)/2 p 1 – p 0 n4

5 A2 B2

A1 B1

(1 – r)2/2 +
r2/2

cp(1 – p) 1 – 2cp(1 – p) cp(1 – p) n5

6 A2 B2

A1 B2

r(1 – r)/2 0 1 – p p n6

7 A2 B1

A2 B1

r2/4 p2 2p(1 – p) (1 – p)2 n7

8 A2 B2

A2 B1

r(1 – r)/2 0 p 1 – p n8

9 A2 B2

A2 B2

(1 – r)2/4 0 0 1 n9

Obviously, there are nine different types of marker combinations.

It should be considered that e. g.

A2 B2         A2 B1

A1 B1 is the same combination as A1 B2 , if no difference can be made

between the alleles inherited from the father and the alleles inherited from the mother plant.

This is the case in (most) practical applications.

Here p is defined, as rA/ r with rA is the (e g from earlier investigations known) recom-

bination fraction between the left marker 1 and the putative QTL and r is the (known) recom-

bination fraction between the left marker 1 and the right marker 2.

c=r2/[r2+(1-r)2].

Further assumptions are

-that the possibility of a double recombination event (i. e. crossing over) will be ignored and

-that single crossing over happens independently from one another.
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n is the number of plants in the sample F2 generation and n1,....,n9 are the number of plants of

this generation bearing the combinations of markers 1 to 9.

The conditional probabilities of the QTL genotypes given marker genotypes of table 1

enable us to calculate a matrix P=(pji) (with dimension (n×3), j=1,2,...,n and i=1,2,3) for any

sample of n plants whose markers are genotyped. This matrix contains the jip  in dependence

of the marker genotype of each plant of the sample.

2. The models and the likelihood function

It is now possible to define a deterministic genetic model for a F2 population with the

above given QTL genotype frequencies (1/4, 1/2, 1/4). The genetic model for one QTL repre-

sents the relation between a ’genotypic value’ G and some genetic parameters 0β , a and d.

DE1 +β=
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Here, 0β  is a joint value of the genetic model and a and d are additive and dominance

effects of QTL in the F2 population. It is possible to calculate unique solutions of the genetic

parameters in dependence of the genotypic values and frequencies of genotypes Q1/Q1, Q1/Q2

and Q2/Q2 of the QTL.

D=(D1, D2), with D1 represents the status of the additive parameter and D2 represents

the status of the dominance effect.

For the following QTL mapping data

-yj (j=1,2,...,n) is the investigated trait value of plant j

-Xj (j=1,2,...,n) is a vector which contains data for the genetic markers and other ex-

planatory variables,

and the following assumptions can be made:
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-there is no interaction (that is no epistasis) between QTLs

-there is no interference in crossing over

-there is only one QTL in the testing interval

A statistical composite interval mapping model (CIM, Zeng 1994) can be constructed

on the basis of the genetic model:

jj
*
j

*
jj Xdzaxy ε+β++= (2)

Here,

yj is the trait value of the plant j (j=1,2,...,n),

a and d are additive and dominance effects of the putative QTL,

β is a partial regression coefficient vector of dimension k that contains the mean 0β  of

the genetic model,

Xj is a subset of Xj that contains chosen marker and variable information

and ),0(N~ 2
j σε .
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j

*
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Of course, the realizations of the putative QTL in plant j are unknown. Thus only the

probability distribution of the realizations of the discrete random effects can be given in de-

pendence of the conditional probabilities of the QTL genotypes given marker genotypes for

plant j (called pji, with j=1,2,...,n, i=1,2,3):
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This is the distribution of the QTL genotype specified by *
j

*
j z and x .

Now, it is possible to give a Likelihood function for a sample of n individuals and for

the parameter vector ( )2,,d,a σβ=θ :

( ) ( )∏ ∑
= =





 σµ=θ

n

1j

3

1i

2
jijji ,;yfp,YL X

with

β+−−=µ

β+=µ

β+−=µ

j3j

j2j

j1j

X2da

X2d

X2da

and f is the normal density of yj with expectation value jiµ   (i=1,2,3 and j=1,2,..,n) and

variance 2σ .

3. Parameter Estimation

3.1 The EM-algorithm

The not observable QTL genotypes can be considered as missing values. Now it is

possible to define a data set Ymis=(y(mis,j)), (with j=1,2,...,n) of "missing data" for the QTL

genotypes, and a data set Yobs=(y(obs,j)) (with j=1,2,...,n) for the observed values yj and the

marker information (cofactor vectors Xj , j=1,2,...,n).

It is possible to contemplate a hypothetical complete-data set called Ycom=(Yobs, Ymis).

In such a situation the so-called EM-algorithms (or even the later explained ECM-algorithm)

for Maximum Likelihood estimation of the parameters of the statistical model can be used.

(see Dempster, Laird, Rubin (1971), Wu (1983) and Meng, Rubin (1993)).

Consider the random variable vector Ycom of the complete-data set with density func-

tion f(Ycomθ ) and ⊆Θ∈θ 3
d . If Ycom contained only observed values, the objective way to

estimate the parameters would be to maximize the complete-data log-likelihood function of θ:

l(θ Ycom ) ∝ ln f(Ycomθ ).
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Unfortunately, Ycom contains the not observable missing values Ymis. If we assume that

the missing data in Ymis are missing at random, than the log-likelihood for θ is:

lobs(θ Yobs) ∝ ln ∫ θ miscom dY)Y(f

Now in most practical applications (including the here-described situation) it is very

complicated to maximize this log-likelihood-function.

The EM-algorithm solves this problem of maximizing lobs by iteratively maximizing

l(θ Ycom ) .

For each iteration, the EM-algorithm has two steps, the E-step and the M-step.

Using appropriate starting values for )0(θ ,

-the (t+1) E-step finds the conditional expectation of the complete data log-likelihood

with respect to the conditional distribution of Ymis given Yobs and the parameter )t(θ :

( ) ( ) ( )∫ θ=θθ=θθ mis
)t(

obsmiscom
)t( dY,YYfYlQ

This is a function of θ  for fixed Yobs and fixed )t(θ .

-The (t+1) st M-step calculates a maximum )1t( +θ  for ( ))t(Q θθ , so that

( ) ( ) Θ∈θ∀θθ≥θθ +    ,QQ )t()t()1t(

Under certain restrictions (Dempster, Laird, Rubin (1971), Wu (1983)), the sequence

of estimates of the iterations steps of the EM-algorithm converges against a (global or local)

maximum of lobs.

Obviously, depending on the chosen starting values (and the used restrictions) it is

possible that in some applications a stationary value of lobs is found, but very often the EM-

algorithm is able to find a maximum.

Today, the EM-algorithm is widely used in different applications. Selinski and Urfer

(1998) and Selinski et al (1999) used this method for the estimation of toxicokinetic parame-

ters for the risk assessment of potential harmful chemicals.

In the article of Kao and Zeng (1997), the ECM-algorithm as a subclass of generalized

EM-algorithms has been used for the estimation of parameters.

Before this method will be described, the EM-algorithm for the defined Model has to

be explained (Emrich (1999)).
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For the F2-Generation situation and the models (1) and (2) it has to be said that the ob-

served data (y(obs,j)) given the missing data (y(mis,j)) are normally distributed with:

( )( ) ( )2
j

*
j

*
j

*
j

*
jjj,obs ,XdzaxN~z,x,X,yf σβ++θ

The conditional density of missing data given specified observations is the above de-

fined density of QTL genotypes ( )*
j

*
jj z,xg . In accordance with the formula of conditional

probability (P(AξB)=P(A ∩ B)/P(B)), the density of the complete data set (y(com,j)) can be con-

sidered as the likelihood-function and is defined as:
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Now the conditional expectation of the complete data log-likelihood with respect to

the conditional distribution of Ymis given Yobs and the parameter )t(θ  is in the E-step of the

EM-algorithm calculated as:
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f is the normal density of yj with expectation jiµ  (or )t(
jiµ ) and variance 2σ  (or )t(2σ ).

For the M-step of the EM-algorithm Q should be maximized:

A continuous, two times differentiable multidimensional function of a parameter vec-

tor θ has a maximum on the point *θ=θ , if

-the partial derivations of the function are zero on the point *θ=θ  and

-the matrix of second derivations is negative definite in *θ=θ .

The Theorem of Hurwitz says that a real, symmetric Matrix S=(sij) is positive definite,

if

0

s s

       

ss

det

kkk1

k111

>
















L

MOM

L

, for k=1,2,...,n.

Thus the steps for calculating the maximum of Q are,

-to build the partial derivations and set them equal to zero

-and it would be advantageous, if the system of partial derivatives (=0) could be

brought in a form like

Aθ=b

because:

-then the zero point of the system of partial derivatives is

θ*=A-1b,

-for such a case the matrix of second derivatives could be calculated by differentiating

(b−Aθ (=0)), and it follows, that the matrix of second derivatives is (−A ) and this matrix is

negative definite, if A is positive definite.
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The conditional expectation of the complete data log-likelihood with respect to the conditional distribution of Ymis given Yobs and the parameter

)t(θ  can be brought to the form:
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Using this transformation, it is easy to build the partial derivatives of Q for the parameters a, d, 2
1k0  and ,..., σββ −  (for the (t+1) th iteration step of

the EM-algorithm), to equal them with zero and to transform the equations in a desirable form:
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Now, the equations of partial derivatives of a, d, 1k0 ,..., −ββ  can be written as a matrix equation:
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-The partial derivative for σ is dependent from the other parameters a, d, β0,...,βk-1, but

the other partial derivatives ( =0) do not contain 2σ .

-Now it is possible to calculate the parameter estimator of the first (k+1) parameter by

solving b1)*(t =θ +A  and to use these estimators for calculating )1t(2 +σ  with

( )[∑
=

++ πµ−=σ
n

1j

)t(
1j

2)1t(
1jj

)1t(2 y
n

1 ( ) )t(
2j

2)1t(
2jjy πµ−+ + ( ) ])t(

3j

2)1t(
3jjy πµ−+ + .

Now the parameter estimator vector of the (t+1)-th iteration step of the EM-algorithm

is

)1t( +θ = ( )T)1t()1t(
1k

)1t(
0

)1t()1t( ,,...,,d,a ++
−

+++ σββ .

3.2 The ECM-algorithm

In the article of Kao and Zeng (1997) a generalization of the EM-algorithm, called the

ECM (Expectation/ Conditional Maximization) has been used for parameter estimation

(Meng, Rubin, (1993)). The ECM-algorithm should be preferred when the complete-data

Maximum Likelihood estimation is complicated. For this case, the calculation of parameter

estimators using the ECM-algorithm is slightly easier than with the EM-algorithm. For more

complicated models the ECM-algorithm could more considerably simplify the calculation of

parameter estimators. On the other hand, the ECM-algorithm needs further restrictions to

converge against a Maximum Likelihood estimator.

The ECM-algorithm replaces the original M-step of the EM-algorithm by a number of

S conditional maximization (CM-) steps. These CM-steps are computationally simpler to cal-

culate because each maximization is conditional on a function gs (s=1,...,S). Therefore, in

each CM-step a maximization of ( )( )SstQ +θ  takes place.

The (t+1) th iteration step is analogous to the E-step of the EM-Algorithm. Therefore,

the calculation of the conditional expectation of the complete data log-likelihood with respect

to the conditional distribution of Ymis given Yobs and the parameter )t(θ  computes as:

)t(
ji

n

1j

3

1i
ji

2

jij)t( )pln(
y

2

1
)ln()2ln()(Q π⋅












+





σ

µ−
−σ−π−=θθ ∑∑

= =
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Then four CM-steps are calculated:

-The first CM-step is the maximization of Q under the condition that

(t)(t))t(  and   ,dd σ=σβ=β=  are fixed values, which were calculated in the (t)-th step of the

ECM-algorithm. So the partial derivative aQ ∂∂  = 0 is calculated and can be solved to:

( )( ) ( )[ ]
( )∑

∑
=

=+

π+π

π−π−β−π−π
= n

1j

)t(
3j

)t(
1j

n

1j

)t()t(
1j

)t(
3j2

1)t(
jj

)t(
3j

)t(
1j)1t(

dxy
a .

-The second CM-step contains the maximization of Q under the condition of fixed pa-

rameter estimator values of earlier steps, i. e. (t)(t))1t(  and  ,a σβ+  are fixed values and the partial

derivative 0dQ =∂∂  can be transformed to:

( )( ) ( )[ ]
( )∑

∑
=

=
+

+

π+π+π

π−π−β−π−π+π−
= n

1j

)t(
3j

)t(
2j

)t(
1j4

1

n

1j

)1t()t(
1j

)t(
3j

)t(
jj

)t(
3j

)t(
2j

)t(
1j2

1

)1t(
axy

d .

-The third CM-step uses the fixed parameter estimators of the last two earlier CM-

steps, so that (t)1)(t)1t(  and d ,a σ++  are fixed:

( )[ ]1t)t(T1)1t( EY)’( +−+ Π−=β DXXX

Here, D )D,D( 21=  is the design matrix of the genetic model,

( )T
n1 y,...,yY = , ( ))t(

ji
)t( π=Π , ( )T)1t()1t()1t( d,aE +++ =  and ( )T

n1 X,...,XX = .

-The fourth CM-step now uses the calculated parameter estimators of the last three

CM-steps as fixed values.

( ) ( ) ( )[ )1t()t(T)1t()1t(T)1t(
n
1)1t(2 DEXY2XYXY +++++ Πβ−−β−β−=σ .

The parameter estimator vector of the (t+1)-th iteration step of the ECM-algorithm can

be written as

)1t( +θ = ( )T)1t()1t(
1k

)1t(
0

)1t()1t( ,,...,,d,a ++
−

+++ σββ .

Each iteration step of the ECM-algorithm computes a conditional maximum rather

than the (unconditioned) maximum of the EM-algorithm, that is to say the ECM-algorithm

needs additional conditions in order to converge against a Maximum Likelihood estimator.

An important condition is that the set of constraint functions is space filling.
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Moreover it is of interest to discuss the cases where both the algorithms converge

against the identical Maximum Likelihood estimators. Further discussion of this point is

planned in later work.

4. The Asymptotic Variance-Covariance Matrix

Kao and Zeng (1997) described a method to calculate an asymptotic variance-

covariance matrix for the specified model. The result of the iterative algorithm to estimate the

parameters of the model is ( )T

1k0
2 ,...,,,d,a,p −ββσ=θ . The parameter p is set as earlier esti-

mated (or "known", e. g. from a lod score analysis). The posteriori-probabilities jiπ  of the

parameter estimation are known from the EM-algorithm as well.

For cases where the EM-algorithm is used, Louis (1982) derived a method to acquire

the asymptotic variance-covariance matrix. The obtaining of the asymptotic variance-

covariance matrix is equivalent to extracting the observed information of the incomplete

problem.

The likelihood function of the (hypothetically) complete data set can be found by

making the following considerations:

-The complete data problem can be regarded as a two stage hierarchical model.

-The QTL genotypes are the realizations of a two dimensional random variable

( )*
j

*
j z,x  (j=1,2,...,n), which are randomized from a trinomial experiment.

-Each realization of the random variable is assigned to one of the QTL genotypes

222111 QQor  QQ ,QQ .

-The observations are normally distributed with a mean depends on the realization of

the QTL genotype.

Then the likelihood function of the (hypothetical) complete data set is:

( ) ( ) ( ) ( )( ) ( ) ( )∏
=






 −−





 ++





 −+−








 σµ×σµ×σµ=βσλ
n

1j

2

1
z1x

2

1
2

3jj3j
2

1
z1x2

2jj2j
2

1
z1x

2

1
2

1jj1j
2

com

*
j

*
j

*
j

*
j

*
j

*
j ,;yfp,;yfp,;yfp,,da,p,Y

with
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otherwise0

Q/Qof enotypg QTLa for1

2

1*
j

z1*
j

x

otherwise0

Q/Q of enotypg QTLa for1
)

2

1*
j

z)(1*
j

x(
2

1

22

21

11

Now, for a fixed sample the log-likelihood-function can be described as:

( ) { ( ) }
2

jij
n

1j

3

1i
ji

y

2

1
)ln(2lnplnln 





σ

µ−
−σ−π−=λ ∑∑

= =

For independent observations the information matrices can be calculated as:

( ) miscomobsobs III −=θ Y

( )( )
θ=

∑ 







θ

θ∂
θλ∂

−=
n

1j
)j,obs(2

j,com
2

com ,y
yln

EI

( ) ( )
∑

=
θ













θ







θ∂

θλ∂








θ∂

θλ∂
=

n

1j
)j,obs(

T

)j,com()j,com(
mis ,y

ylnyln
EI

( ) ( )
∑

≠
θθ 






















θ

θ∂
θλ∂













θ
θ∂

θλ∂
+

n

ji

T

)j,obs(
)j,com(

)i,obs(
)i,com( ,y

yln
E,y

yln
E

And the asymptotic variance covariance matrix is calculated as the inverse of the ob-

served information matrix:

Cov( θ ) = (Iobs)
1− .

Obviously, to calculate these information matrices the first and second derivatives of

( )λln  have to be calculated. On the following page the tables 2 and 3 show the first and sec-

ond derivatives of conditional probabilities of QTL genotypes given marker genotypes jip

(j=1,2,...,n and i=1,2,3) for the possible marker genotypes of table 1. These matrices enable us

to calculate matrices of first and second derivatives ( ))1(
ji

)1( pP =  and ( ))2(
ji

)2( pP =  in depend-

ence of the marker genotypes of a sample of n plants (equivalent to matrix P in chapter 1).

Then the information matrices comI  and misI can be calculated using the tables 4 and 5. There-

fore obsI  and the desired asymptotic variance-covariance matrix can be calculated.
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Table 2 : First derivatives of the conditional probabilities of QTL genotypes given

marker genotypes:

no. of genotype of the
marker

Q1/Q1 Q1/Q2 Q2/Q2

1 0 0 0
2

p1

1

−
−

p

1 0

3

p1

2

−
−

)p1(p

p21

−
−

p

2

4

p

1

p1

1

−
−

0

5

)p1(p

p21

−
−

)p1(cp21

)p21(c2

−−
−−

)p1(p

p21

−
−

6 0

p1

1

−
−

p

1

7

p

2

)p1(p

p21

−
−

p1

2

−
−

8 0

p

1

p1

1

−
−

9 0 0 0
Table 3: Second derivatives of the conditional probabilities of QTL genotypes given
marker genotypes:
no. of genotype of
the marker

Q1/Q1 Q1/Q2 Q2/Q2

1 0 0 0
2

( )2p1

1

−
−

2p

1−
0

3

( )2p1

2

−
−

22

2

)p1(p

1p2p2

−
−+−

2p

2−

4
2p

1−
( )2p1

1

−
−

0

5
22

2

)p1(p

1p2p2

−
−+− ( )[ ]

[ ]2

2

)p1(cp21

1p2p2c1c4

−−
−+−+

22

2

)p1(p

1p2p2

−
−+−

6 0

( )2p1

1

−
−

2p

1−

7
2p

2−
22

2

)p1(p

1p2p2

−
−+−

( )2p1

2

−
−

8 0
2p

1−
( )2p1

1

−
−

9 0 0 0
with c=rA

2/(rA
2+(1-rA

2))
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Table 5: ( ) ( )
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5. Discussion and outlook

In this work we have described two methods for the estimation of genetic parameters

and a way to calculate an asymptotic variance-covariance matrix. In a forthcoming paper ex-

amples will be published showing that the EM-algorithm and the ECM-algorithm as described

by Kao and Zeng may or may not converge against different maxima. In other cases the

ECM-algorithm converges against stationary values that are not maxima, while the EM-

algorithm converges against a maximum.

The calculation of the asymptotic variance-covariance-matrix is similar for both pa-

rameter estimation methods and enables us to calculate confidence intervals. Today, a range

of widely applicable software programs for QTL-analysis exists. PLABQTL (Utz and

Melchinger (1996)) used a multiple regression approach with flanking markers according to

the procedure described by Haley and Knott (1992). Basten et al (1999) have implemented the

ECM-algorithm as described by Kao and Zeng (1997) for QTL-analysis.

Melchinger et al. (1998) evaluated testcross progenies of 344 F3 lines in combination

with two unrelated testers plus additional testcross progenies from an independent but smaller

sample of 107 F3 lines from the same cross in combination with the same two testers for grain

yield and four other important agronomic traits. For a more detailed statistical analysis of this

data set A.E. Melchinger and H.F. Utz from the Institute of Plant Breeding, Seed Science and

Population Genetics, University of Hohenheim, provided plant height measurements of an F2

–population of maize, which were genotyped for a total of 89 marker loci. This data set is

(like other practical applications) based on so called adjusted means. Urfer et al (1999) pre-

sented several ways to calculate adjusted means in α -designs.

The aim of our further statistical approach is to find Maximum Likelihood estimates

for QTL locations and effects including their estimated standard errors using the described

and further methods. Recently, Kao, Zeng and Teasdale (1999) presented a new statistical

approach for interval mapping, called multiple marker interval mapping (MIM). It uses multi-

ple marker intervals simultaneously to fit multiple putative QTLs directly in the model for

mapping QTLs. Here the ECM-algorithm is used as well. To integrate our estimation proce-

dure in this approach seems to be a promising field for further statistical research.

Another area of challenging statistical problems is the mapping of QTLs for cellular

defects in glucose and fatty acid metabolism. Al-Majali et al (1999) constructed a radiation

hybrid map of the proximal region of rat chromosome 4. This map will facilitate identification
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of genes underlying cardiovascular and metabolic QTLs and also provides an interesting

comparison of synteny relationships between the rats, mouse and human genomes.
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