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Abstract

In this paper we propose a simulation study in order to discuss four statistical models dealing

with the problem of parameter estimation in enzyme-kinetics. The pseudo-maximum-

likelihood estimators for the transform-both-sides-model and the weighted TBS-model are

compared with least-square-estimators of the classical nonlinear regression model and the

linearized Eadie-Hofstee-plot. Due to heteroscedasticity of enzyme-kinetic data in low dose

experiments the proposed estimators are investigated.
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1. Introduction

The description of complex enzyme-kinetic-reactions is strongly connected with the statistical

analysis of conventional Michaelis-Menten-kinetic. The Michaelis-Menten-equation that

refers to the relation between the velocity v of  the reaction and  the concentration [S] of

substrate is as follows:

]S[k

]S[v
v

m

max

+
= , (1)

where vmax characterises the maximum velocity of the reaction and km is the half-saturation

constant. This constant defines the concentration of substrate achieving vmax/2 in (1).

Selecting an appropriate statistical model in order to estimate the parameters (vmax and km) of

a Michaelis-Menten-kinetic is of great importance. In Frei et al. (1999) the statistical

evaluation of enzyme-kinetic experiments investigating the potent liver carcinogen NTDMA

(N-nitro-dimethylamine) to rats has been described. One conclusion of Frei et al. (1999)

refers to similar estimators of the TBS and the weighted TBS-model after analysing low dose

data. This may cause in biased parameter estimators in this special application. In this

technical report a better validation of both statistical models will be connected with an

investigation of parameter estimation of the Eadie-Hofstee-plot (Eadie, 1942) and the

classical (unweighted) nonlinear regression.

On the one hand a validation has to consider the specific structure of data in enzyme-kinetic

experiments. Because of toxic effects, many experiments in high dose levels are not

practicable as described in Frei et al. (1999). In such an experiment observations of low dose

substrate concentrations are only available. On the other hand the statistical analysis of former

experiments indicate nonconstant error variances (heteroscedasticity). In these cases an

important assumption of nonlinear statistical models referring to constant error variances is

not fulfilled.

Hence simulations studies are an important adviser for future selection of a statistical model

in a real data situation and can validate the selection of statistical models of former

evaluations. Simulation studies are described in Currie (1982) or in Dowd and Riggs (1965).

The aim of Currie (1982) was to find an appropriate experimental design and Dowd and

Riggs (1964) compared linearization methods referring to statistical analysis of Michaelis-
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Menten-kinetic. Zivin and Waud (1982) described the advantages of the Eadie-Hofstee-plot in

comparison to other linearization methods.

In this technical report a new simulation study is described in order to discuss four statistical

models. The four statistical models dealing with parameter estimation are explained in the

following paragraph. In paragraph three the simulation study is described. Especially the

specific simulated data structure is mentioned. All results of the study are summarized in

paragraph four. In sequence of three assumed error variance structures the presented figures

enable a comparison of the statistical models. Finally a conclusion of the whole simulation

study will be drawn.

2. Statistical Models

Various methods were discussed in the literature (Ruppert et al., 1989; Zivin and Waud,

1982) in order to estimate the parameters vmax and km referring to the Michaelis-Menten-

kinetic. In biology, chemistry or medicine the nonlinear function of the velocity of the

enzyme-catalyzed reaction is often handled by standard methods of linearization. For

example, the Eadie-Hofstee-plot (Eadie, 1942) belongs to these methods. Alternatively, the

statistical models of nonlinear regression consider nonlinearity in a direct way. Moreover, the

transformation and/or weighting of these nonlinear models yields a wider class of statistical

models dealing with the estimation of vmax and km

2.1 The Eadie-Hofstee-plot

The reciprocal of both sides of equation (1) and the multiplication with vmax and km results in a

linearization of the Michaelis-Menten-function. By rearranging this new equation we yield:

s

v
kvv mmax −= . (2)

Plotting v versus 
s

v
from (2) results in a line with intercept vmax and slope -km. Therefore the

linear regression model is appropriate. It is defined as:

i
i

i
mmaxi e

s

v
kvv +−= , where (3)

ei, i=1, ... , n, are assumed to be identical and independent distributed

(i.i.d.) with a constant variance.
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The least-square-method leads to estimators of the intercept vmax and the slope –km by solving

the minimization problem

2
n

1i i

i
mmaxik,v

)
s

v
kv(vmin

mmax
∑

=








−− (4)

(for details see for example Zivin and Waud, 1982).

A problem of this method concerns the quotient of dependent variable yi and independent

variable xi. Biased estimators can be the result of this problem.

In this simulation study the SAS procedure Proc Reg has been used for computing the

estimators.

2.2 The classical  nonlinear regression model

The application of classical (unweighted) nonlinear regression model to Michaelis-Menten-

kinetic results in the model

i
im

imax
i e

sk

sv
v +

+
= , (5)

where the errors ei, i= 1, ... , n, are assumed to be independent and

identical distributed with constant variances.

From the model (5) we yield estimators for vmax and km with ordinary least-square-method.

The minimization of

2
n

1i im

imax
i sk

sv
vRQS ∑

= 
















+

−= (6)

requires an application of a nonlinear optimization algorithms. In the presented simulation

study the DuD-algorithm (doesn't use derivatives-algorithm) has been applied. This method

approximates the nonlinear function at each iteration step by an affine function that agrees

with the approximated functions of previous iteration steps. Thereby a linear least-square-

problem leads to estimators of the parameters (Ralston and Jennrich, 1978).

The estimation of parameters by the least-squares-method is optimal and yields ML-

estimators if additionally the errors are normally distributed.
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Violations of the assumptions especially heteroscedasticity may lead to biased estimators.

Transformation and/or weighting of the classical nonlinear regression model are well known

methods to handle this problem.

The SAS procedure Proc Nlin has been used for computing the estimators.

2.3 The TBS-model

The TBS-model (transform-both-sides-model) is a modified nonlinear regression model

which deal with the problem of heteroscedasticity by transforming data. Here the

transformation rule proposed by Box and Cox (1964) is used. This transformation is defined

as follows:





=λ
≠λλ−

==λ
λ

λ

.0ifzlog

0if/)1z(
z),z(h )(

(7)

The application of the Box-Cox-transformation to both sides of equation (5) is expressed by

the following TBS-model:

.n,...,1i,e]
sk

sv
[v i

)(

im

imax)(
i =+

+
= λλ (8)

The Box-Cox-transformation of vi causes a symmetric distribution of errors and a constant

error variance. Besides this the transformation of the regression function preserves the

relation between vi and si in absence of the stochastic error term. The functional relationship

holds in case of a deterministic model.

2.4 The weighted TBS-model

An alternative approach to handle heteroscedasticity is the definition of a flexible weighting

function. By applying the weighted nonlinear regression model to the Michaelis-Menten-

kinetic we yield:

iii
im

imax
i e)s,(g

sk

sv
v θ+

+
= , (9)

where gi, i=1, ... , n, are functions depending on an additional parameter

θ and the concentration of substrate si.
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The weighting of the errors with consideration of the concentration of substrate counteracts

heteroscedasticity. Former analyses of experiments of enzyme-kinetics indicate that especially

the power function θ=θ ii s)(g , i=1, ..., n, is appropriate for weighting the errors in order to

consider the influence of the concentration of substrate on the variability of the observed

velocities (Gilberg, 1996; Ruppert et al., 1989).

Combining approach (9) and transformation (7) we yield the weighted TBS-model:

.es]
sk

sv
[v ii

)(

im

imax)(
i

θλλ +
+

= (10)

Consequently, we have to estimate two additional parameters λ and θ which give an insight

into the underlying error structure. In addition, if 0=θ the TBS-model is a special case of

the weighted TBS-model and if 0=θ and 1=λ the classical nonlinear model is a special

case of the weighted TBS-model.

For simultaneously estimation of the parameters vmax, km, λ and θ using the weighted TBS-

model (10) a pseudo-maximum-likelihood-method by Giltinan and Ruppert (1989) has been

applied. The resulting pseudo model can be implemented in SAS using the procedure Proc

Nlin. For details of implementation see Giltinan and Ruppert (1989) and Gilberg (1996).

3. Description of the simulation study

Simulation of data and computation of estimators has been performed using SAS, version 6.12

TS level 045 on an Intel 200 MHz workstation under Windows NT, version 4.0.

3.1 Error structures

An aim of this simulation study is to consider different error structures in order to compare

the four statistical models. Hence we suppose the following error structures, i=1, ... , n:

• Constant error variance: Var(ei)=0.002.

Together with normally distributed errors this error variance is an important

assumption of nonlinear regression. Therefore this error structure has the function of

control if we compare different error structures.
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• Relative constant error variance: Var(ei)=[0,2 E(vi)]
2.

An error variance  that is connected with the expected velocities 
im

imax
i sk

sv
)v(E

+
= .

Former statistical analysis of enzyme kinetics indicates that the quantity of variability

may depend on the substrate doses (Edler et al., 1997). This defined structure of

variance corresponds to this experience.

• Heteroscedastic error variance: Var(ei)=[(0,05+0,1si)/(km+si)]
2.

An error variance that varies and has no relation to the expected velocities E(vi). In

Currie (1982) this heteroscedastic condition has been used in a simulation study

comparing different statistical models to the proposed.

3.2 Simulation of the data

An example of substrate doses that can be analysed is:

0.008, 0.016, 0.024, 0.048, 0.096, 0.192, 0.384, 0.768, 1.536.

These values indicate a normal dose level, if 1max =v and 1.0=mk as defined in this

example. A data set of a low or high dose level can be generated by multiplication of these

normal values with a constant factor k. In this simulation study { }9.0,...,3.0,2.0,1.0k ∈ are

factors for generating low dose level data sets and { }10,...,3,2k ∈ are factors for

generating high dose level data sets.

For each data set the velocities vi are calculated by:

pseudo)e(Var
sk

sv
v j

jm

jmax
j +

+
= , j=1,..,9,

where Var(ej) depends on the assumed error structures (3.1) and pseudo is a standard normal

distributed random number.

All together on each data set 500 Monte-Carlo simulations have been performed. With

consideration of each error structure we yield 1500 simulated data sets consisting of 9

substrates and 9 velocities for k=0.1, 0.2, ... , 0.9, 1, 2, .... , 10.
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The evaluation of all simulated data in low/high dose levels for each error structure results in

13.500 estimations. An additional evaluation of simulated data in normal dose levels (k=1)

results in 1500 estimations. For each error structure and low or high dose levels the

computations result in 4.500 estimations and for normal dose level data sets in 1.500

estimations.

The evaluation of all four discussed statistical models and error structures results in 114.000

estimations.

4. Results

The following statistics are considered in order to describe the results of the simulation study:

- Arithmetic mean of all simulated estimators for each error structure and statistical

model.

- Simulation error 
N

s=σ , where s is standard deviation of N simulated estimators.

- Coefficient of variation CV, calculated as quotient of standard deviation and arithmetic

mean.

In this simulation study the simulation error of estimated km varies from 0.0001 to 0.0027 and

the simulation error of estimated vmax varies from 0.0006 to 0.0154. Therefore the variation of

mean estimators is small and the bias of estimators can be quantified by the examination of

the arithmetic mean of simulated estimators and the coefficient of variation.

4.1 Figures

First we compare all estimators of the simulated data with constant error structure. The

arithmetic mean of the estimators vmax and km are plotted in figure 1 and 2 and the coefficients

of variation (CV) referring to the estimators of vmax are plotted in figure 3. The coefficients of

variation of the estimators of km are not presented because they are similar to those of vmax.
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Figure 1: Mean estimator of vmax, constant error structure.

Figure 2: Mean estimator of km, constant error structure.
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Figure 3: Coefficient of variation referring to estimators of vmax, constant error structure.

If we consider constant error structure figures 1 and 2 indicate similar mean estimators

referring to the classical nonlinear regression, the TBS-model and the weighted TBS-model.

Little overestimated km by the weighted TBS-model and little underestimated km by the TBS-

model and nonlinear regression can be pointed out in figure 2. Taking into account the
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parameters (horizontal reference lines). Therefore these estimators are comparatively useless.
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standard deviation. In other words standard deviation amounts less than 2% of mean

estimator. For this reason figure 3 confirms that the least-square-method yields optimal

estimators in the case of normally distributed errors and constant error variance.

As the last result should have been expected in every simulation study the control of

simulation study by constant error structure is fulfilled.

Next we compare all estimators of the simulated data with relative constant error structure.

The arithmetic mean of the estimators vmax and km are plotted in figure 4 and 5 and the

coefficients of variation (CV) referring to the estimators of vmax are plotted in figure 6. The

coefficients of variation of the estimators of km are not presented because they are similar to

those of vmax.

Figure 4: Mean estimator of vmax, relative constant error structure.
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Figure 5: Mean estimator of km, relative constant error structure.

Figure 6: Coefficient of variation referring to estimators of vmax, relative constant error

structure.
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If we consider the relative constant error structure figures 4 and 5 indicate that the mean

estimators of the TBS-model and the weighted TBS-model are near the true parameters.

Underestimation can be pointed out by the Eadie-Hofstee-plot and overestimation can be

pointed out by the classical nonlinear regression model. The mean estimators of Eadie-

Hoftsee-plot and the classical nonlinear regression model show a strong increase/decrease in

dose levels with k<0.4. The estimated vmax of the  Eadie-Hofstee-plot amount about 0.09 in

dose level 6.0≥k . Therefore a relative constant error structure can be better aggregated by

the Eadie-Hoftsee-plot in dose levels with 6.0≥k than a constant error structure.

Figure 6 stresses the last result. Because now, the coefficients of variation of Eadie-Hofstee-

plot in low dose levels are lower than CV’s of other statistical models (excepted k=0.1).

Considering k between 0.2 and 1 the coefficients of variation can be ordered by their

quantities. Thereby CV’s of the Eadie-Hofstee-plot are lower than CV’s of the TBS-model.

Then CV’s of the TBS-model are lower than CV’s of the weighted TBS-model and

furthermore CV’s of the weighted TBS-model are lower than CV’s of the classical nonlinear

regression model. A ranking of statistical models referring to these coefficient of variation

should be made with consideration of systematically underestimation by Eadie-Hofstee-plot

and overestimation by classical nonlinear regression model and additional estimation of θ by

the weighted TBS-model. An additional estimator decreases number of degrees of freedom

referring to the standard deviation of the estimator and a lower number of degrees of freedom

increases standard deviation. In high dose levels all CV’s have a range of 0.03 which is lower

than the range in low dose levels. This indicates better estimators in high dose levels.

Finally we compare all estimators of the simulated data with heteroscedastic error structure.

The arithmetic mean of the estimators vmax and km are plotted in figure 7 and 8 and the

coefficients of variation (CV) referring to the estimators of vmax are plotted in figure 9. The

coefficients of variation of the estimators of km are not presented because they are similar to

those of vmax.
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Figure 7: Mean estimator of vmax, heteroscedastic error structure.

Figure 8: Mean estimator of km, heteroscedatic error structure.
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Figure 9: Coefficient of variation referring to estimators of vmax, heteroscedastic error
structure.
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the comparatively high range of CV (0.08 to 0.78) referring to the classical nonlinear

regression model, the TBS-model and the weighted TBS-model. Useful estimators are

indicated by values of CV between 0.04 to 0.08 in high dose levels. Furthermore CV’s of the

weighted TBS are minimal in comparison to all other models in dose levels with 8.0k ≥ .

The assumed error variance structures can be recognized by the estimators of transforming

parameter λ and the estimators of weighting parameter θ . For example, if we consider a

constant error variance the mean estimators of θ of the TBS-model are between 0.7908 and

0.9873 (cf. table 5 in appendix). Therefore the constant error structure is well recognized.

Flexibility in the TBS-model and  in the weighted TBS-model will be found if we consider

heteroscedastic error variance (cf. table 6 in appendix.).

5. Conclusions

From the point of expected results assuming constant error structure and of the low simulation

error ( %2<σ ) we can justify the proposed simulation study. Furthermore the recognition of

error structure secure the possibility of a careful discussion of the results.

Summarizing the TBS-model and the weighted TBS-model will be more appropriate than the

Eadie-Hofstee-plot or the classical nonlinear regression model. Only in one case (estimator of

km referring to relative constant error structure) the Eadie-Hofstee-plot will be more

appropriate than the classical nonlinear regression model if we accept an underestimation of

km to be a conservative method for example in toxicokinetics. In all other cases the Eadie-

Hofstee-plot should not be applied.

The results of this simulation study lead to this conclusion because of several reasons.

• Especially the estimators of the TBS-model and the weighted TBS-model are acceptable

in the important low dose level if we consider all three error structures.

• The coefficients of variation assuming relative constant and heteroscedastic error structure

are comparatively low if we consider TBS and weighted TBS-model.
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• In a real data situation the error structure is unknown and the TBS-model and the

weighted TBS-model are able to recognize the underlying error structure by estimating the

transformation parameter λ and weighting parameter θ .

This simulation study does indicate an influence of overparameterisation referring to the

weighted TBS-model in the case of relative constant error structure. In future evaluations the

choice of the weighted TBS-model with two additional parameters or of the TBS-model with

only one additional parameter should be made in consideration of similar estimators of km or

vmax but different standard deviations. In Frei et al. (1999) similar estimators of the TBS-

model and the weighted TBS-model caused the choice of the TBS-model.

Nevertheless it has to be discussed if different nonlinear optimization algorithm than DuD-

algorithm yields better TBS- or weighted TBS-estimators.
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TBS-
model

k

Constant
error
structure

mean of
λ̂ s.d.

Relative
constant
error
structure

mean of
λ̂ s.d.

Heteroscedastic
error
structure

mean of
λ̂ s.d.

0.1 0.8764 0.1505 0.0051 0.1299 0.4827 0.1785
0.2 0.8989 0.1369 0.0147 0.1326 0.6196 0.2356
0.3 0.9152 0.1288 0.0132 0.1432 0.7515 0.2598
0.4 0.9293 0.1369 0.0070 0.1675 0.8471 0.2621
0.5 0.9366 0.1552 0.0166 0.1633 0.9111 0.2694
0.6 0.9565 0.1400 0.0171 0.1724 0.9571 0.2804
0.7 0.9608 0.1452 0.0097 0.1762 0.9927 0.2571
0.8 0.9759 0.1508 0.0103 0.1893 1.0280 0.2648
0.9 0.9725 0.1521 0.0208 0.2006 1.0953 0.2851
1 0.9873 0.1667 0.0253 0.1998 1.0939 0.2751
2 0.9697 0.2286 0.0084 0.2656 1.2557 0.2783
3 0.9680 0.2902 0.0355 0.3177 1.3576 0.3408
4 0.9625 0.3403 0.0518 0.3809 1.4615 0.3590
5 0.9376 0.3934 0.0746 0.4320 1.5759 0.3912
6 0.9014 0.4472 0.1110 0.4496 1.6255 0.3935
7 0.8799 0.5143 0.1180 0.4534 1.6995 0.3905
8 0.8877 0.5407 0.1326 0.5044 1.7679 0.3998
9 0.9064 0.5742 0.1316 0.5416 1.8469 0.5173
10 0.7908 0.5789 0.1605 0.5593 1.8589 0.5178
Table 5: Mean estimator of transforming parameter λ , standard deviation (s.d.) in dark columns.
Weighted
TBS-
model

k

Constant
error
structure

mean of
λ̂ s.d.

mean of

θ̂ s.d.

Relative
constant
error
structure

mean of
λ̂ s.d.

mean of
θ̂ s.d.

Heteroscedastic
error
structure

mean of
λ̂ s.d.

mean of
θ̂ s.d.

0.1 0.5275 0.3140 -0.2748 0.2175 0.3943 0.7956 0.3327 0.6859 0.4582 0.2114 -0.0457 0.1509
0.2 0.4971 0.3234 -0.3176 0.2432 0.3034 0.7165 0.2193 0.5603 0.5395 0.2188 -0.1528 0.1701
0.3 0.5103 0.3517 -0.3054 0.2583 0.2167 0.6508 0.1414 0.4742 0.5506 0.2531 -0.2573 0.1663
0.4 0.5464 0.3964 -0.2748 0.2744 0.1839 0.5996 0.1141 0.4004 0.5729 0.2753 -0.2821 0.1451
0.5 0.5815 0.4224 -0.2479 0.2739 0.1714 0.6310 0.0962 0.4040 0.5509 0.2637 -0.3123 0.1423
0.6 0.6429 0.4785 -0.2113 0.2939 0.1671 0.5419 0.0891 0.3326 0.5166 0.2855 -0.3463 0.1346
0.7 0.6455 0.4653 -0.2023 0.2815 0.1607 0.5431 0.0852 0.3195 0.5288 0.2938 -0.3589 0.1474
0.8 0.7210 0.4790 -0.1591 0.2776 0.1639 0.5737 0.0819 0.3137 0.5053 0.2951 -0.3671 0.1418
0.9 0.7686 0.4917 -0.1242 0.2687 0.1934 0.6128 0.0895 0.3273 0.5231 0.3176 -0.3741 0.1431
1 0.7545 0.5437 -0.1335 0.2884 0.2259 0.5824 0.1019 0.3079 0.5179 0.3166 -0.3733 0.1444
2 0.8394 0.6957 -0.0582 0.2696 0.1885 0.5751 0.0714 0.2354 0.5154 0.3295 -0.3926 0.1417
3 0.8383 0.7812 -0.0485 0.2482 0.2529 0.6736 0.0762 0.2185 0.5599 0.3769 -0.3699 0.1407
4 0.7239 0.8403 -0.0742 0.2298 0.3282 0.6704 0.0905 0.1875 0.6217 0.4254 -0.3475 0.1387
5 0.7452 0.9636 -0.0509 0.2281 0.3102 0.7535 0.0717 0.1804 0.7256 0.4818 -0.3056 0.1446
6 0.7019 0.9891 -0.0509 0.2123 0.3607 0.7315 0.0679 0.1682 0.7435 0.5263 -0.2956 0.1453
7 0.6566 1.1341 -0.0478 0.2084 0.3499 0.7181 0.0621 0.1518 0.8087 0.5446 -0.2750 0.1473
8 0.6295 1.2189 -0.0519 0.2109 0.4194 0.7496 0.0771 0.1528 0.9121 0.5211 -0.2397 0.1302
9 0.7374 1.2751 -0.0333 0.1986 0.3952 0.7579 0.0681 0.1482 0.9236 0.6813 -0.2429 0.1448
10 0.5525 1.3819 -0.0416 0.2096 0.4802 0.8022 0.0820 0.1491 0.9015 0.7225 -0.2282 0.1347
Table 6: Mean estimator of transforming parameter λ and weighting parameter θ , standard deviation (s.d.) in
dark columns.
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