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1. Introduction

The combination of forecasts is usually based on the assumption of unbiased individual

forecasts. In the univariate case we restrict the combination weights to sum up to one which

results also in an unbiased forecast combination (see e.g. Bates and Granger, 1969). In

practice we often have the situation of biased forecasts, which is discussed e.g. in Ehrbeck

and Waldmann (1996). If the individual forecasts are biased it is possible to correct them so

that we can use the methods for the combination of unbiased forecasts. Another approach is to

calculate the combination weights with respect to the bias of the individual forecasts. Here, on

the one hand, we can derive the weights considering the covariance matrix as for the MSE-

optimal method, and on the other hand, we only use the bias of the individual forecasts. The

errors in estimation of the unknown parameters could influence the accuracy of the methods.

To analyse this, we perform a simulation study for different situations (different sizes of the

bias, stable and unstable covariance structure). Furthermore, we describe the problem for the

multivariate case. In this case it is possible to calculate the matrix-mean-square-error optimal

unbiased forecast combination which uses the complete covariance structure. Again, we

propose bias based combination strategies.

2. Combination of biased forecasts

2.1. The univariate case

We consider the following problem. Let F1,T+1,...,Fn,T+1 be forecasts for a variable YT+1 (T+1:

time index) and n,...,1i,FY:u 1T,i1T1T,i =−= +++ the corresponding forecast errors where

i1T,i :)u(E µ=+ and Σ:)(Cov 1T =+u , ( )′= +++ 1T,n1T.11T u,...,u:u . The question is how to combine

these possibly biased forecasts to obtain an unbiased forecast. An easy way is a bias

correction of the forecasts, that is using i1T,i
*

1T,i F:F µ+= ++ and *
1T,i1T

*
1T,i FY:u +++ −= which

results in n,...,1i,0)u(E *
1T,i ==+ . Then it is possible to use weights summing up to one to

obtain an unbiased combination, e.g. the simple average of the s’F*
1T,i + . The MSE-optimal

unbiased combination of the bias corrected forecasts is given by ,:F *
]1T[opt

*
1T,optMSE ++−

′= Fg

where 










 ′= −
−

−
n

1
1

n
1

nopt : 111g ΣΣ , ( )′= +++
*

1T,n
*

1T,1
*

]1T[ F,...,F:F and ( )′= 1,...,1:n1 is the vector

of ones of length n and Σ and n,...,1i,i =µ , are unknown. Therefore, in practice we have to

estimate the bias terms and the covariance matrix for the calculation of this forecast
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combination. Let ( )′= T1 Y,...,Y:Y be the observed values in the past,

( ) ( )′=′= T,n1,nnT,11,11 F,...,F:,...,F,...,F: FF the corresponding forecasts and

.n,...,1i,: ii =−= FYu Then we use n,...,1i,:ˆ ii ==µ u and ( )
n,...,1j,iijˆ:ˆ

=
σ=Σ where

jiij T

1
:ˆ uu ′=σ , .n,...,1j,i = The calculation of the weights could also be performed on the

basis of ( )*
n

*
1

* ,...,: FFF = , where n,...,1i,ˆ: Tii
*
i =µ+= 1FF and Y. Consulting Granger and

Ramanathan (1984) we get:

*
]1T[n

1
***

1
***

1T,optMSE

~
:F̂ +

−−

+−

′














 ′ψ′






 ′= F1FF-YFFF ,

where












 ′′





 ′






 ′′=ψ

−

n

1
**

n
***

n 1: 1FF1-YFFF1 and ( )′µ+µ+= +++ n1T,n11T,1
*

]1T[ ˆF,...,ˆF:
~
F .

Another approach is to give up the bias correction. In the following we use the bias directly to

calculate the combination weights. We present a technique which is also based on the

covariance matrix and other techniques which disregard the covariance structure and use only

the bias terms.

Theorem 1: Let 1T,n1T,1 F,...,F ++ be forecasts for 1TY + and 1T,i1T1T,i FY:u +++ −= be the individual

forecast errors where i1T,i :)u(E µ=+ , n,...,1i = . Further, let ( ) Σ:Cov 1T =+u , Σ p.d., where

( )′= +++ 1T,n1T,11T u,...,u:u . We assume that there exists at least one (i,j), { }n,...,1j,i ∈ , ji < ,

where ji µ≠µ . The MSE-optimal unbiased forecast combination of the form ]1T[1T,w :F ++ ′= Fw

where 1n =′1w and ( )′= +++ 1T,n1T,1]1T[ F,...,F:F is given by

( )
( ) 


 ′′−


 ′

′−


 ′

=
−−−

−−−−

n
1

n
1

2
1

n

n
1111

n

opt:

111

11
w

ΣµΣµµΣ

ΣµΣµµΣµΣ
, where ( )′µµ= n1,...,:µ .

Proof: We restrict the weights to sum up to one, which means 1n =′1w . We also want to

minimize the MSE subject to the requirement of an unbiased combination which can be

expressed in 0=′µw . Thus, we consider the following function:
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( ) ( ) ( )1:,,wL n −′ϕ−′λ−′=ϕλ 1wwww µΣ .

The necessary conditions for a minimum are

I)
( )

01w
w

w ′=′ϕ−′λ−′=
δ

ϕλδ !

n2
,,L µΣ

II)
( )

0
,,L !

=′−=
δλ

ϕλδ µw
w

III)
( )

01
,,L !

n =′−=
δϕ

ϕλδ
1w

w

From I) we get

1
n

1

22
−− ′ϕ+′λ=′ ΣΣµ 1w

and inserting in II) and III) gives

0
22

1
n

1 =′ϕ+′λ −− µΣµΣµ 1 and

1
22 n

1
nn

1 =′ϕ+′λ −− 111 ΣΣµ .

Some easy calculations result in

( ) 


 ′′−


 ′

′
=λ

−−−

−

n
1

n
1

2
1

n

1
n

2
111

1

ΣµΣµµΣ

µΣ
and

( )
( ) 


 ′′−


 ′

′−=ϕ
−−−

−

n
1

n
1

2
1

n

1

2
111 ΣµΣµµΣ

µΣµ
.

Because of the Cauchy-Schwarz inequality the denominator of the preceding expressions is

non-positive. Since the s’iµ are not all equal and therefore µ and n1 are linearly independent

it is even negative.

Refering to I) the optimal weight vector turns out to be

( )
( ) 


 ′′−


 ′

′−


 ′

=
−−−

−−−−

n
1

n
1

2
1

n

n
1111

n

opt:

111

11
w

ΣµΣµµΣ

ΣµΣµµΣµΣ
.

Looking at the form of the function ( )ϕλ,,L w it is straightforward that optw is the

minimizing vector.      ÿ
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In practice we have to calculate 1T,wopt
F̂ + by using the estimators Σ̂ and µ̂ as above. Here it is

also possible to estimate the weights directly by restricted regression. Using 









′

′
=

n

T:
1

F1
R ,

where ( )n1,...,: FFF = and 








 ′
=

1
: T Y1r the optimal weights are given by

( ) ( ) ( )( ) ( )( )rYFFFRRFFRRFFYFFFw −′′′′′′−′′= −−−−− 11111
opt .

Of course, the combination 1T,wopt
F + has not a smaller MSE than the combination *

1T,optMSEF +− .

Since both are unbiased forecasts their MSEs are given by the error variances optopt ww Σ′ and

optopt gg Σ′ , respectively, and the vector optw includes one more restriction than the vector

optg . But we have to remark that in practice it might be difficult to justify a bias correction. In

this situation we correct forecasts given by some experts or calculated by sophisticated and

expensive models before combining them and thus we have to convince the analyst that he

cannot use the individual forecasts as they are.

In the following we present bias based methods which disregard the covariance structure and

also result in an unbiased combination.

Theorem 2: Let 1T,n1T,1 F,...,F ++ be forecasts for 1TY + and 1T,i1T1T,i FY:u +++ −= be the individual

forecast errors where i1T,i :)u(E µ=+ , n,...,1i = . Further, let 0j ≠µ and ∑
≠
=

≠
−

n

vj

1j
j 1R

1n

1
, where

j

v
j :R

µ
µ

= , { }n,...,1v,vj,n,...,1j ∈≠= fixed but arbitrary. Then

∑

∑

≠
=

≠
=

++

+

−
−

−
−

=
n

vj

1j
j

n

vj

1j
1T,jj1T,v

1T,1J

R
1n

1
1

FR
1n

1
F

:F

is an unbiased forecast for 1TY + .
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Proof:  For the error of the forecast combination we get

1T,1Ju +

















−
+−

















−
−

−
−

=−= ∑∑
∑ ≠

=
+++

≠
=

≠
=

++

n

vj

1j
1T,jj1T,v1T

n

vj

1j
jn

vj

1j
j

1T,1J1T FR
1n

1
FYR

1n

1
1

R
1n

1
1

1
FY:
































−

−
−−

−
−

= ∑
∑ ≠

=
++++

≠
=

n

vj

1j
1T,j1Tj1T,v1Tn

vj

1j
j

)FY(R
1n

1
FY

R
1n

1
1

1

















−
−

−
−

= ∑
∑ ≠

=
++

≠
=

n

vj

1j
1T,jj1T,vn

vj

1j
j

uR
1n

1
u

R
1n

1
1

1
.

Thus

)u(E 1T,1J +

















µ
µ

−
−

−
−

= ∑
∑ ≠

=
++

≠
=

n

vj

1j
1T,j

j

v
1T,vn

vj

1j
j

)u(E
1n

1
)u(E

R
1n

1
1

1
















µ

µ
µ

−
−µ

−
−

= ∑
∑ ≠

=

≠
=

n

vj

1j
j

j

v
vn

vj

1j
j

1n

1

R
1n

1
1

1

0= .

The bias based method is in the form of the generalized Jackknife-estimator well-known in

point estimation. Its MSE is equal or exceeds the MSE of the MSE-optimal combination, but

in practice one has to estimate the unknown parameters for the calculation of the combined

forecast. The errors in estimation could result in more unreliability of the MSE-optimal

forecast combination because it depends also on the whole covariance structure. We have to

remark that all of the methods presented above might result in negative weights and produce

extreme outliers. An example for this, regarding e.g. the MSE-optimal combination of

unbiased forecasts, is given in Klapper (1998). Hence, there is the demand of a more robust

bias based combination strategy.
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Theorem 3: Let 1T,n1T,1 F,...,F ++ be forecasts for 1TY + and 1T,i1T1T,i FY:u +++ −= , where

i1T,i :)u(E µ=+ , n,...,1i = . Further, let 0j ≠µ and ∑ ∑
≠
=

≠
=

−≠
n

vj

1j

n

vj

1j
jj )R(signR , where 

j

v
j :R

µ
µ

= ,

{ }n,...,1v,vj,n,...,1j ∈≠= fixed but arbitrary. Then:

i) 

∑

∑

≠
=

+

≠
=

+

+

+γ

+γ

=
n

vj

1j
j

1T,j

n

vj

1j
j1T,v

1T,2J

R

FRF

:F , where ∑
≠
=

−=γ
n

vj

1j
j )R(sign: , is an unbiased forecast for 1TY + .

ii) If there exists at least one 0i >µ and at least one 0j <µ , { }n,...,1j,i,ji ∈≠ , then we

construct 1T,2JF + as follows as an unbiased forecast with value inside the interval of the

individual forecasts:

If there exists an unbiased individual forecast { }n,...,1k,F 1T,k ∈+ by definition k:v = , else

if ( )
2

n
0#

)(

n,...,1ii

>

= ≥>µ then choose v so that 0v <µ , else

if ( )
2

n
0#

)(

n,...,1ii

≤

= <>µ then choose v so that 0v >µ .

Proof:

i) At first we calculate the error of the forecast combination, and then we show that it has

mean zero.

 1T,2Ju +

















−γ−















+γ

+γ
=−= ∑∑

∑ ≠
=

+++

≠
=

≠
=

++

n

vj

1j
1T,jj1T,v1T

n

vj

1j
jn

vj

1j
j

1T,2J1T FRFYR
R

1
FY:

( ) ( )















−+−γ

+γ
= ∑

∑ ≠
=

++++

≠
=

n

vj

1j
1T,j1Tj1T,v1Tn

vj

1j
j

FYRFY
R

1
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














+γ

+γ
= +

≠
=

+

≠
=

∑
∑

1T,j

n

vj

1j
j1T,vn

vj

1j
j

uRu
R

1
and thus

 ( )1T,2JuE + ( ) ( )















+γ

+γ
= ∑

∑ ≠
=

++

≠
=

n

vj

1j
1T,jj1T,vn

vj

1j
j

uERuE
R

1
















µ

µ
µ

+µ−
+γ

= ∑ ∑
∑ ≠

=
≠
=

≠
=

n

vj

1j

n

vj

1j
j

j

v
vjn

vj

1j
j

)R(sign
R

1

0)R(sign)R(sign
R

1 n

vj

1j

n

vj

1j
j

j

v
jvjn

vj

1j
j

=















µ

µ
µ

+µ−
+γ

= ∑ ∑
∑ ≠

=
≠
=

≠
=

.

ii) The special choice of 1T,vF + (respectively vµ ) guarantees that γ≥0, since in the case where

none of the forecasts is unbiased, the number of µj’s with different sign as vµ is greater or

equal than the number of µj’s with the same sign as vµ . Therefore, by definition all weights

are in the interval [0,1] and sum up to one.

ÿ

Remark: For the cases where all µj>0 or all µj<0 we get )1n( −−=γ . This does not depend on

the choice of 1T,vF + . If we choose v so that in,...,1iv max µ=µ = we get ∑∑
≠
=

≠
=

−>
µ
µ

=
n

vj

1j j

v
n

vj

1j
j 1nR

and hence only the weight for 1T,vF + is negative.
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2.2. Simulation study

We consider the combination of six biased forecasts by using two different bias vectors:

)20,10,10,20,40,50(:b1 ′−−= and )2,1,1,2,4,5(:b2 ′−−= . Furthermore, we randomly generate

20 covariance matrices and on their basis (together with the bias) 200 series (6 forecasts) of

normally distributed forecast errors are generated. The series are of length 60. We fix 10 data

points to calculate the first combination weights, thus 50 performance points are left for our

analysis. In each step we calculate the new weights by regarding all available history for the

estimation of the unknown parameters. To compare the different methods we calculate their

RMSEs relative to the values of the simple average of the individual forecasts. The study

includes the following methods: 6 bias corrected individual forecasts (No. 1-6), MSE-optimal

combination with the assumption of unbiased individual forecasts (No. 7), MSE-optimal

combination  *
1T,optMSEF +− of bias corrected forecasts (No. 8), MSE-optimal combination

1T,wopt
F + of the biased individual forecasts (No. 9), simple average (No. 10), simple average of

bias corrected forecasts (No. 11), and the two bias based combinations 1T,1JF + (No. 12) and

1T,2JF + (No. 13). For the combination 1T,1JF + we choose the individual forecast with the

smallest absolute bias as 1T,vF + , and in addition for the combination 1T,2JF + we choose the

candidate with the highest absolute bias as 1T,vF + . Instead of calculating all data points with

stable covariance matrices we consider a situation of structural change. Here, the variances of

the individual forecast errors are varying over time which is described in detail below.

a) time stable covariance structure

a1) bias vector b1

Table 1: Comparison of methods for case a1

S1: number of times simple average is beaten, S2: number of times simple average of bias

corrected forecasts is beaten, best: number of times the special method is the best one.

M1,...,M13 denote the methods.

Cov.
No.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

1 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
200

4

200
200
196

200
200

0

-
0
0

200
-
0

200
0
0

200
151

0
2 S1

S2
best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
11
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

200
3
0

200
116

0
3 S1

S2
best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
76
12

200
132
109

200
74
4

-
0
0

200
-

43

200
3
0

200
82
32

4 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
200

4

200
200
193

200
200

3

-
0
0

200
-
0

200
0
0

200
168

0
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Table 1 continiued
5 S1

S2
best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
199

4

200
199
193

200
199

3

-
0
0

200
-
0

200
0
0

200
0
0

6 S1
S2

best

0
0
0

200
0
0

200
7
0

200
0
0

200
0
0

200
0
0

200
18
0

200
200
200

200
18
0

-
0
0

200
-
0

200
0
0

200
1
0

7 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
103

0

200
200
200

200
103

0

-
0
0

200
-
0

200
0
0

200
0
0

8 S1
S2

best

0
0
0

200
3
0

200
0
0

200
6
0

200
0
0

200
0
0

200
198
74

200
192
72

200
198
52

-
0
0

200
-
2

200
0
0

200
0
0

9 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
129
36

200
98
27

200
29
52

-
0
0

200
-

45

200
0
0

200
93
40

10 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
132

3

200
187
184

200
133

0

-
0
0

200
-

13

200
0
0

200
0
0

11 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

200
0
0

200
0
0

12 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
126
126

200
0
0

-
0
0

200
-

74

200
0
0

200
0
0

13 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
191

0

200
200
200

200
191

0

-
0
0

200
-
0

200
0
0

200
3
0

14 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
3
0

200
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

200
0
0

200
156

0
15 S1

S2
best

0
0
0

200
0
0

200
0
0

200
0
0

200
1
0

200
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

200
0
0

200
190

0
16 S1

S2
best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
199
67

200
199
77

200
199
56

-
0
0

200
-
0

200
0
0

200
0
0

17 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

200
0
0

200
0
0

18 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
200
200

200
0
0

-
0
0

200
-
0

200
0
0

200
0
0

19 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
39
2

200
0
0

200
160
10

200
178
134

200
160
23

-
0
0

200
-

13

200
22
0

200
124
18

20 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
200

1

200
200
196

200
200

3

-
0
0

200
-
0

200
0
0

200
107

0

If we consider Table 1 it is obvious that method No. 8 is best in the sense of the RMSE. In 18

cases it is the best one. For covariance matrix No. 8 methods No. 7, 8 and 9 and for

covariance matrix No. 9 methods No. 9, 11, 13, 7 and 8 perform similarly. This result is not a

surprise because of the time stable covariance structure. With this assumption, method No. 14

is theoretically optimal and the estimators for the unknown parameters perform well. If we

compare method No. 13 ( 1T,2JF + ) and method No. 11 (simple average of bias corrected

forecasts) we can see that for covariance matrices No. 1, 2, 4, 14, 15, 19 and 20 the first one

performs better. These are exactly the cases (also covariance matrix No. 9) where the bias

based combination theoretically outperforms the simple average of bias corrected forecasts.
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We can also see that neglecting the bias and the covariance structure, the simple average

combination is of less quality.

a2) bias vector b2

Table 2: Comparison of methods for case a2

Cov.
No.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

1 S1
S2

best

0
0
0

0
0
0

6
0
0

0
0
0

0
0
0

0
0
0

200
200

5

200
200
194

200
200

1

-
0
0

200
-
0

0
0
0

164
20
0

2 S1
S2

best

0
0
0

0
0
0

0
0
0

3
0
0

0
0
0

117
18
0

200
200

0

200
200
200

200
200

0

-
1
0

199
-
0

45
5
0

163
92
0

3 S1
S2

best

0
0
0

0
0
0

0
0
0

3
0
0

0
0
0

23
0
0

193
78
11

198
131
109

191
75
9

-
0
0

200
-

57

22
0
0

171
40
14

4 S1
S2

best

0
0
0

0
0
0

138
0
0

0
0
0

0
0
0

0
0
0

200
200

8

200
200
190

200
200

2

-
0
0

200
-
0

0
0
0

138
12
0

5 S1
S2

best

0
0
0

24
0
0

37
0
0

0
0
0

0
0
0

6
0
0

200
200

6

200
200
191

200
200

3

-
0
0

200
-
0

11
0
0

133
0
0

6 S1
S2

best

0
0
0

0
0
0

200
11
0

193
0
0

0
0
0

0
0
0

200
26
0

200
200
200

200
20
0

-
0
0

200
-
0

0
0
0

172
1
0

7 S1
S2

best

0
0
0

0
0
0

1
0
0

14
0
0

0
0
0

0
0
0

200
95
0

200
200
200

200
87
0

-
0
0

200
-
0

0
0
0

65
0
0

8 S1
S2

best

0
0
0

184
1
0

0
0
0

166
7
0

1
0
0

0
0
0

200
198
60

200
194
64

200
198
74

-
0
0

200
-
2

1
0
0

133
1
0

9 S1
S2

best

21
0
0

38
0
0

21
0
0

0
0
0

6
0
0

11
0
0

200
130
35

200
113
37

200
130
44

-
0
0

200
-

50

22
0
0

175
54
34

10 S1
S2

best

1
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

200
146

4

200
185
178

200
130

4

-
0
0

200
-

14

0
0
0

91
0
0

11 S1
S2

best

0
0
0

79
0
0

1
0
0

0
0
0

0
0
0

0
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

0
0
0

44
0
0

12 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

7
0
0

7
0
0

200
0
0

200
144
144

200
0
0

-
0
0

200
-

56

35
0
0

198
0
0

13 S1
S2

best

0
0
0

0
0
0

5
0
0

0
0
0

0
0
0

0
0
0

200
199

0

200
200
200

200
193

0

-
0
0

200
-
0

1
0
0

177
4
0

14 S1
S2

best

0
0
0

0
0
0

5
0
0

0
0
0

126
1
0

46
0
0

200
200

2

200
200
198

200
200

0

-
0
0

200
-
0

58
0
0

188
106

0
15 S1

S2
best

6
0
0

0
0
0

2
0
0

0
0
0

35
1
0

52
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

44
2
0

168
95
0

16 S1
S2

best

0
0
0

0
0
0

0
0
0

32
0
0

44
0
0

0
0
0

200
199
65

200
200
69

200
198
66

-
0
0

200
-
0

19
0
0

185
1
0

17 S1
S2

best

0
0
0

7
0
0

35
0
0

0
0
0

48
0
0

0
0
0

200
200

0

200
200
200

200
200

0

-
0
0

200
-
0

2
0
0

192
0
0

18 S1
S2

best

0
0
0

52
0
0

0
0
0

0
0
0

0
0
0

0
0
0

200
0
0

200
200
200

188
0
0

-
0
0

200
-
0

0
0
0

8
0
0

19 S1
S2

best

4
0
0

0
0
0

0
0
0

0
0
0

192
42
0

0
0
0

200
173
23

200
187
132

200
168
31

-
0
0

200
-
6

97
12
0

196
86
8

20 S1
S2

best

0
0
0

0
0
0

11
0
0

0
0
0

0
0
0

18
0
0

200
200

2

200
200
196

200
200

2

-
0
0

200
-
0

4
0
0

179
29
0
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Although for the same covariance matrices as above the combination 1T,2JF + should be better

than the simple average of the bias corrected forecasts, it only happens in case No. 14. In

some of these cases it is clearly outperformed. Naturally, the best combination is again

method No. 8. In cases No. 8, 9 and 16 some methods are nearly of the same high quality

(methods No. 9, 8, 7, methods No. 11, 9, 8, 7, 13 and methods No. 8, 9, 7). Because of the

"low" bias the simple average performs better than before, whereas method No. 12 ( 1T,1JF + ) is

again of poor quality.

b) Structural change all five data points

We analyse a structural change every five steps. We generate first five data points by using

ΣΣ =:)1( as before. We generate the next five points with ( ))1()1()2( diag2.0: ΣΣΣ ⋅+= where

( ))1(diag Σ is a diagonal matrix of the diagonal elements of )1(Σ . Then we calculate five points

with ( ))2()2()3( diag2.0: ΣΣΣ ⋅+= , and so on. Thus, only the variances will change over time

which is illustrated in Figure 1. The differences between the error variances increase, so over

time the quality of all forecasts decreases but the forecasts with lower variance are less

influenced by the changes.

Figure 1: Structural changes in the error variances
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b1) bias vector b1

Table 3: Comparison of methods for case b1

Cov.
No.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

1 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
9
0

200
83
79

200
9
0

-
0
0

200
-

114

200
0
0

200
14
7

2 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
2
0

200
68
28

200
76
37

200
68
19

-
0
0

200
-

110

200
1
0

200
15
6

3 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
10
2

200
9
1

200
10
1

-
0
0

200
-

161

200
0
0

200
36
35

4 S1
S2

best

0
0
0

200
0
0

200
7
0

200
0
0

200
0
0

200
0
0

200
199
55

200
199
103

200
199
41

-
0
0

200
-
1

200
0
0

200
52
0

5 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
103
103

200
0
0

-
0
0

200
-

97

200
0
0

200
0
0

6 S1
S2

best

0
0
0

200
0
0

200
49
1

200
6
0

200
0
0

200
0
0

200
0
0

200
195
194

200
1
0

-
0
0

200
-
5

200
0
0

200
0
0

7 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
14
14

200
0
0

-
0
0

200
-

186

200
0
0

200
0
0

8 S1
S2

best

0
0
0

200
5
1

200
0
0

200
6
2

200
0
0

200
0
0

200
34
1

200
166
161

200
33
0

-
0
0

200
-

33

200
0
0

200
8
2

9 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
71
26

200
80
32

200
71
17

-
0
0

200
-

70

200
0
0

200
97
55

10 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
37
5

200
45
23

200
35
8

-
0
0

200
0

119

200
0
0

200
57
45

11 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
137
137

200
0
0

-
0
0

200
-

63

200
0
0

200
0
0

12 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
24
5

200
52
43

200
23
0

-
0
0

200
-

139

200
0
0

200
20
13

13 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
2
0

200
91
91

200
1
0

-
0
0

200
-

109

200
0
0

200
0
0

14 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
92
7

200
146
129

200
92
5

-
0
0

200
-

39

200
0
0

200
74
20

15 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
121
18

200
125
35

200
123
19

-
0
0

200
-

28

200
0
0

200
158
100

16 S1
S2

best

0
0
0

200
0
0

200
0
0

200
1
0

200
0
0

200
0
0

200
22
0

200
154
154

200
22
0

-
0
0

200
-

46

200
0
0

200
0
0

17 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
22
1

200
114
112

200
22
1

-
0
0

200
.

85

200
0
0

200
5
1

18 S1
S2

best

0
0
0

200
3
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
158
158

200
0
0

-
0
0

200
-

42

200
0
0

200
0
0

19 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
14
3

200
0
0

200
89
15

200
99
48

200
89
11

-
0
0

200
-

47

200
4
0

200
127
76

20 S1
S2

best

0
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
0
0

200
91
20

200
96
41

200
90
12

-
0
0

200
-

77

200
0
0

200
85
50

We can see that the structural change in the variances has influence on methods No. 7, No. 8

and No. 9. Because these strategies depend on the covariance structure, the errors in

estimation occuring in this case worsen their quality. Now the bias based method No. 13 in
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two cases is better than the arithmetic mean of bias corrected forecasts. As a result of the

special structural change it should now outperform method No. 11 only in the cases No. 9, 15

and 19. For instance, method No. 11 is nine times, the MSE-optimal combination of bias

corrected forecasts is eight times, and the combination 1T,2JF + is two times the best

(covariance matrices No. 15 and 19). In one case the MSE-optimal combination of bias

corrected forecasts and the simple average of bias corrected forecasts are best. For the cases

No. 9, No. 19 and No. 20 the differences between the best and some other methods are

smaller.

b2) bias vector b2

Table 4: Comparison of methods for case b2

Cov.
No.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

1 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

117
23
4

179
73
70

72
12
1

-
2
1

198
-

123

0
0
0

23
2
1

2 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

3
1
0

164
69
30

169
74
28

146
60
23

-
6
4

194
-

108

1
0
0

51
14
7

3 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

90
13
8

102
10
5

68
11
5

-
5
5

195
-

173

0
0
0

57
6
4

4 S1
S2

best

39
4
0

0
0
0

52
8
0

0
0
0

0
0
0

0
0
0

200
199
66

200
199
96

200
100
37

-
0
0

200
-
1

0
0
0

20
1
0

5 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

92
2
0

198
114
114

43
1
0

-
0
0

200
-

86

0
0
0

10
0
0

6 S1
S2

best

0
0
0

0
0
0

143
48
0

61
7
0

0
0
0

0
0
0

105
2
0

200
195
195

24
0
0

-
0
0

200
-
5

0
0
0

3
0
0

7 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

23
1
1

111
14
13

11
0
0

-
5
4

195
-

181

0
0
0

4
1
1

8 S1
S2

best

0
0
0

38
10
0

0
0
0

23
5
0

0
0
0

0
0
0

175
62
2

199
176
174

137
37
0

-
0
0

200
-

24

0
0
0

21
2
0

9 S1
S2

best

2
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

186
102
56

159
70
20

174
93
28

-
3
0

197
-

86

0
0
0

78
26
10

10 S1
S2

best

1
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

130
39
16

142
42
23

106
32
14

-
3
0

197
-

146

0
0
0

30
5
1

11 S1
S2

best

0
0
0

11
0
0

0
0
0

0
0
0

0
0
0

0
0
0

15
0
0

198
136
136

5
0
0

-
0
0

200
-

64

0
0
0

0
0
0

12 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

175
31
7

196
57
46

141
23
4

-
0
0

200
-

139

1
0
0

103
6
4

13 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

92
9
1

190
85
84

36
4
0

-
1
0

199
-

115

0
0
0

10
0
0

14 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

14
2
0

1
0
0

198
126
23

197
170
135

182
103

9

-
1
0

199
-

25

3
0
0

120
38
8

15 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

185
126
54

187
127
42

174
123
34

-
6
1

194
-

57

0
0
0

94
37
12

16 S1
S2

best

0
0
0

0
0
0

0
0
0

1
0
0

2
1
0

0
0
0

182
66
2

199
161
157

118
30
2

-
0
0

200
-

39

0
0
0

25
0
0
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Table 4 continiued
17 S1

S2
best

0
0
0

0
0
0

1
0
0

0
0
0

0
0
0

0
0
0

196
41
0

200
121
120

190
33
1

-
0
0

200
-

78

0
0
0

115
4
1

18 S1
S2

best

0
0
0

7
3
0

0
0
0

0
0
0

0
0
0

0
0
0

31
1
0

196
152
152

6
0
0

-
2
0

198
-

48

0
0
0

0
0
0

19 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

60
8
0

0
0
0

188
109
47

189
117
48

180
94
17

-
2
0

198
-

67

17
1
0

120
57
21

20 S1
S2

best

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

194
90
32

193
89
35

184
83
31

-
0
0

200
-

92

1
0
0

101
28
10

Here, the bias based combination techniques are of poor quality. Using the simple average of

bias corrected forecasts or the MSE-optimal combination of bias corrected forecasts is more

accurate. Method No. 8 in nine cases is the best, method No. 11 in eight cases (adding the

following three). In one case (covariance matrix No. 9) methods No. 11 and 7 perform better,

for covariance matrix No. 15 methods No. 11, 7, 8, 9 and for covariance matrix No. 19

methods No. 11, 8, 7. Here, the simple average of the individual forecast is of higher quality

than in b3.

2.3. Concluding remarks for the univariate case

If the covariance structure is stable over time the MSE-optimal combination is of course the

best in the sense of the RMSE. Depending on the covariance structure in the case of "large"

absolute bias and so "large" distances between the bias, the combination 1T,2JF + can

outperform the simple average of bias corrected individual forecasts. When the absolute bias

are "small" and so the distances are "small", too, more often the "wrong" individual forecast is

chosen as 1T,vF + . Furthermore, we frequently get a "wrong" γ. Due to the given covariance

matrices in this simulation study the combination 1T,2JF + performs poorly. If a structural

change happens at all five data points in the error variances, the simple average of bias

corrected forecasts performs as good as the MSE-optimal combination of bias corrected

forecasts. The combination 1T,2JF + performs better than the other methods in the situation of

"large" bias and where it is, theoretically, of high quality. Furthermore, the given covariance

matrices in this simulation study are a reason for the bad performance of the method 1T,1JF + .

We have to remark that the simulation study is giving only limited insight into the

characteristics of the different methods. Other structural changes, e.g. in the covariances

between the forecast errors are possible. A more extensive analysis of this problem, regarding

other methods, is given e.g. in Diebold and Pauly (1987) or in Deutsch, Granger and

Teräsvirta (1994). Nevertheless, if the differences between the bias are not too "small" we can
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use knowledge from the past to decide if we calculate a combination of bias corrected forecast

or a bias based forecast combination. Furthermore, if we consider bias corrected forecasts for

a combination, then the question arises if the forecasting models must be respecified. On the

other side, in bias based combinations we use the forecast as they are and give them special

weights.

Finally, if we look at the combinations 1T,1JF + and 1T,2JF + , we notice that other strategies in the

choice of 1T,vF + are possible. For this we can again take advantage of experience from the

past.

2.4 The multivariate case

Let ( ) 2k,Y,...,Y: 1T,k1T,11T ≥′= +++Y , be a vector to be forecasted, 1T,n1T,1 ,..., ++ FF be forecasts,

where ( )′= +++
)i(

1T,k
)i(

1T,11T,i F,...,F:F and 1T,i1T1T,i : +++ −= FYu , with ( ) i1T,i :E µ=+u and

( )′µµ= ik1ii ,...,:µ , n,...,1i = . Further, let 
′




 ′′= +++ 1T,n1T,11T ,...,: uuu and

( ) ( )1Tn,...,1s,rrs Cov:: += == uΣΣ . We want to calculate an unbiased forecast combination where

we use weight matrices n,...,1i),kk(~i =×G , summing up to kI . An easy way, like in the

univariate case, is to consider the bias corrected forecasts. Then, the optimal weight matrices

minimizing the matrix-mean-square-error (MMSE) of the combined forecast in the sense of

the Löwner-ordering are given by (see e.g. Wenzel, 1998)

],[:],...,[: *
k

1
k

1
opt,nopt,1opt IVWIVWGGG −− ′−′== ,

where

( ) ( ) ( )k1nk1n~: n,...,1s,rrs −×−= =VV ,

1n,...,1s,r,: nsnrnnrsrs −=−−+= ΣΣΣΣV ,

( ) kk1n~],...,[: kk
*
k ×−′= III ,

( ) ( ) kk1n~,...,: k1 ×−= wwW ,

( ) k,...,1j,1k1n~,...,: 1n,j1jj =×−
′




 ′′= −www ,

( ) k,...,1j,1n,...,1i,1k~: jinnnji =−=×−= ew ΣΣ ,

and je denotes the j-th unit vector.



17

As in the univariate case we now calculate a MMSE-optimal unbiased forecast combination

without using a bias correction.

Theorem 4: Let ( )′= +++
)i(

1T,k
)i(

1T,11T,i F,...,F:F be forecasts for ( ) 2k,Y,...,Y: 1T,k1T,11T ≥′= +++Y , and

1T,i1T1T,i : +++ −= FYu , where ( ) i1T,i :E µ=+u , n,...,1i = . Further let 
′




 ′′= +++ 1T,n1T,11T ,...,: uuu

and ( ) ( )1Tn,...,1s,rrs Cov:: += == uΣΣ . Assume that ( ) ( ) 0≠
′




 ′−′−= − n1nn1 ,..., µµµµγ . The

MMSE-optimal (in the sense of the Löwner-ordering) unbiased forecast combination of the

form ∑
=

++ =
n

1i
1T,ii1T,H : FHF , where ∑

=
=

n

1i
ki IH , is given by

( ) ( ) ],[:],...,[: *
k

1
k

1
opt,nopt,1opt IVDWIVDWHHH −− +′−+′== ,

where ( ) ( )γγµγγ ′′′= −−− 1
n

11: VW-VD .

Proof: Because the MMSE of the optimal forecast combination must have minimal trace we

minimize it in the following and prove afterwards, that for any other combination which

satisfies the restrictions, the optimal MMSE-combination has smaller or equal MMSE in the

sense of the Löwner-ordering. Consulting Odell et al. (1989), the MMSE of any combination

which satisfies the restrictions (1) ∑
=

=
n

1i
ki IH and (2) ( )∑

−

=
=−

1n

1i
nnii µµµH can be written as

( )1T1T,H ,MMSE ++ YF ( )( ) 


 ′−−= ++++ 1T,H1T1T,H1TE: FYFY

nn
*** Σ+′′−−′= *HWWHVHH ,

where ( )k1nk~],...,[: 1n1
* −×= −HHH .

To minimize ( )( )1T1T,H ,MMSEtr ++ YF with repect to the restrictions (1) and (2), we consider:

( ) ( )n
*

nn
**** tr:,L µγλΣλ −′−





 +′′−−′= HHWWHVHHH *

where ( )′λλ= k1,...,:λ .
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The necessary conditions for a minimum are:

I) 
( )

k)1n(k

!
*

*

*

22
,L

−×=′−′−=
δ

δ
0WVH

H
H γλλ

II)
( ) ( ) k1

!
*

n

* ,L
×=

′
−′=

′δ
δ

0H
H γµ
λ

λ

From I) we get

11*

2

1 −− ′+′= VVWH γλ

and inserting in II) we obtain

( )γµ
γγ

λ 1
n1

1

2

1 −
−

′
′

= VW-
V

.

Back to I) results in

( ) ( ) 11
n

111*
opt

−−−−− ′′′+′= VVW-VVWH γγµγγ .

Using this weights for the combination and calculating the MMSE results in

( )1TH ,MMSE
1T,opt ++

YF ( ) ( ) WVVVWVWVW 1
n

11
n

1111
nn

−−−−−−− ′′−′′′−′−= γµγγγµγγΣ

( ) ( ) WVVWVV 1111
nn

11 −−−−−− ′′′+′′+ γγγγµµγγ .

Considering now an arbitrary *
arbH satisfying the two restrictions, we can write

( ) ( ) 11
n

111*
arb

~~
: −−−−− ′′′+′= VVW-VVWH γγµγγ , where ( ) kk1n~

~ ×−W , and calculate

( )1TH ,MMSE
1T,arb ++

YF ( ) ′′+′−′−′+= −−−−−
nn

11111
nn

~~~~ µµγγΣ VWVWWVWWVW

( ) ( ) WVVWVVWV 1
n

111111 ~~ −−−−−−− ′′−′′′− γµγγγγγγ

( ) ( ) ′′′−′′′+ −−−−−−−
n

1111111 ~ γµγγγγγγ VWVWVVWV

( ) WVVWV
~1111 −−−− ′′′+ γγγγ .

Thus,

( ) ( )1TH1TH ,MMSE,MMSE
1T,opt1T,arb ++ ++

− YFYF

( ) ( )( ) ( )′′−′′′−−′= −−−−− WWVVVVWW
~~ 11111 γγγγ

and since ( )( )11111 −−−−− ′′− VVVV γγγγ is n.n.d. (see e.g. Horn and Johnson, 1985, p. 47) the

difference of the two MMSEs is n.n.d., as well.

ÿ
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In the multivariate case it is also possible to calculate bias based unbiased forecast

combinations but because of the more complex bias structure there are several combination

strategies. A simple procedure is to consider each component separately and then to derive the

combination as we did in the univariate case, so that we get diagonal weight matrices. Similar

to Theorem 2 we propose here:

Theorem 5: Let ( )′= +++
)i(

1T,k
)i(

1T,11T,i F,...,F:F be forecasts for ( ) 2k,Y,...,Y: 1T,k1T,11T ≥′= +++Y , and

1T,i1T1T,i : +++ −= FYu , where ( ) i1T,i :E µ=+u , n,...,1i = . Further let ∑
≠
=

=
n

vi

1i
iiv µµ A , where

{ }n,...,1v ∈ is fixed but arbitrary, kk~i ×A , vi,n,...,1i ≠= , and krg
n

vi

1i
ik =















− ∑

≠
=

AI . Then
















−
















−= ∑∑

≠
=

++

−

≠
=

+

n

vi

1i
1T,ii1T,v

1

n

vi

1i
ik1T,A : FAFAIF is an unbiased forecast for 1T+Y .

Proof: The mean of the error of the forecast combination is

( )1T,A1TE ++ − FY



































+−















−
















−= ∑∑∑

≠
=

+++

≠
=

−

≠
=

n

vi

1i
1T,ii1T,v1T

n

vi

1i
ik

1

n

vi

1i
ikE FAFYAIAI

( ) ( )















−−−
















−= ∑∑

≠
=

++++

−

≠
=

n

vi

1i
1T,i1Ti1T,v1Tk

1

n

vi

1i
ik E FYAFYIAI
















−
















−= ∑∑

≠
=

−

≠
=

n

vi

1i
iivk

1

n

vi

1i
ik µµ AIAI

( ) 0AI =−















−=

−

≠
=
∑ vv

1

n

vi

1i
ik µµ .
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Remark: It is possible to use bias proportions in Theorem 5 for the definition of the matrices

iA . If we assume that k,...,1j,vi,n,...,1i,0ij =≠=≠µ , we get:

 ( ) k,...,1s,r
)i(

rsi a: ==A , where k,...,1s,r,vi,n,...,1i,
)1n(k

1
:a

is

vr)i(
rs =≠=

µ
µ

−
= .

If we proceed in that way, we have to check if the assumption of regularity in Theorem 5 is

satisfied.

Finally we present another general bias based combination method.

Theorem 6: Let ( )′= +++
)i(

1T,k
)i(

1T,11T,i F,...,F:F be forecasts for ( )′= +++ 1T,k1T,11T Y,...,Y:Y , 2k ≥ ,

and 1T,i +u the i-th forecast error vector, ( ) ( ) n,...,1i,E:,...,: 1T,iik1ii ==′µµ= +uµ . Further let

k,...,1j,n,...,1i,0ij ==≠µ . Then, ∑
=

++ =
n

1i
1T,ii1T,A : FAF is an unbiased forecast for 1T+Y ,

where
















=

)i(
kk

)i(
1k

)i(
k1

)i(
11

i

aa

aa

:

L

MOM

L

A and

r
)i(

rsrs
)i(

rs Ma~Z
n

1
:a 





 −= , ∑

=
=

n

1i

)i(
rsrs a~:Z , sr,k,..,1s,r ≠= ,

∑
≠
=

µ
µ

−=
k

rj

1j
ij

)i(
rj

ir

)i(
rr a

1
:a , n,...,1i = ,

ij

n

1i

k

rj

1j

)i(
rjrj

ir
r a~Z

n

11
:M µ





 −

µ
−= ∑ ∑

=
≠
=

, k,...,1r = where the s’a~ )i(
rs must be chosen so that

0Mr ≠ .

Proof:  For a fixed { }k,...,1h ∈ we consider the h-th row of each of the n weight matrices,

given by ( )′= )i(
hk

)i(
1h

)i(
.h a,...,a:a , n,...,1i = . Therefore,
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∑
=

n

1i

)i(
hma













≠∈




 −

=µ
µ

−

=

∑ ∑

∑ ∑

= =

=
≠
=

hm},k,...,1{mifa~Z
n

1

M

1

hmifa
1

n

1i

n

1i

)i(
hmhm

h

n

1i

k

hp

1p
ip

)i(
hp

ih





≠∈
=

=
hm},k,...,1{mif0

hmif1
.

Thus we can write ∑
=

++ =
n

1i
1T

)i(
.h1T,hY Ya , and the mean of the combined forecast error in the h-

th component is






 ′∑

=
+

n

1i
1T,i

)i(
.hE ua ∑ ∑ ∑

= =
≠
=

µ+µ=
n

1i

n

1i

k

hm

1m
im

)i(
hmih

)i(
hh aa

0aa
1 n

1i

k

hm

1m
im

)i(
hm

n

1i
ih

k

hm

1m
im

)i(
hm

ih

=µ+µ















µ

µ
−= ∑ ∑∑ ∑

=
≠
==

≠
=

.

If we look at Theorem 6 again, we have to notice that the s’a~ )i(
rs are not specified there. The

practitioner could choose them by his subjective view of the given problem. Obviously such a

general method could also be defined for the univariate case, but because of the subjective

choice of the s’a~ )i(
rs , this is excluded from the simulation study and therefore not presented in

Section 2.1.
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