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1. Introduction

The combination of forecasts is usually based on the assumption of unbiased individual
forecasts. In the univariate case we restrict the combination weights to sum up to one which
results also in an unbiased forecast combination (see e.g. Bates and Granger, 1969). In
practice we often have the situation of biased forecasts, which is discussed e.g. in Ehrbeck
and Waldmann (1996). If the individual forecasts are biased it is possible to correct them so
that we can use the methods for the combination of unbiased forecasts. Another approach is to
calculate the combination weights with respect to the bias of the individual forecasts. Here, on
the one hand, we can derive the weights considering the covariance matrix as for the M SE-
optimal method, and on the other hand, we only use the bias of the individual forecasts. The
errors in estimation of the unknown parameters could influence the accuracy of the methods.
To analyse this, we perform a simulation study for different situations (different sizes of the
bias, stable and unstable covariance structure). Furthermore, we describe the problem for the
multivariate case. In this case it is possible to calculate the matrix-mean-sguare-error optimal
unbiased forecast combination which uses the complete covariance structure. Again, we

propose bias based combination strategies.

2. Combination of biased forecasts
2.1. Theunivariate case
We consider the following problem. Let F,r1.4,...,F. 1.1 be forecasts for a variable Y., (T+1:

time index) and U;;,, =Y, —-F.,, i=1..,n the corresponding forecast errors where
E(u;7.,) =1 ad Cov(u,,,) =2, Ur, = (ul.m,...,un’m) . The question is how to combine

these possibly biased forecasts to obtain an unbiased forecast. An easy way is a bias

correction of the forecasts, that is using F ., :=F 1, +1; ad U;1,, =Y, —F., Which
results in E(u;1,,) =0,i=1..,n. Then it is possible to use weights summing up to one to

obtain an unbiased combination, e.g. the simple average of the F.,,’s. The MSE-optimal
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unbiased combination of the bias corrected forecasts is given by F;ASE_OPLM =Oop Fray s
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where g, = %ln Z‘llnﬁ Z‘llnEr Firoy = (Frm Fir) ad 1, = (L...1) is the vector

of ones of lengthnand = and Y, i =1...,n, are unknown. Therefore, in practice we have to

estimate the bias terms and the covariance matrix for the calculation of this forecast
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combination. Let Y:=(Y,...Y;) be the observed values in the pas,
F = (F:L,li"'!Fl,T ) N SR (Fn’l,...,Fn’T ) the corresponding forecasts and

u:=Y-F,i=1.,n. Then we use fi,:=T,,i=1..,n and %:= (6”) where

i,j=1..,n

I

0, ::%ui u;, i,j=1..,n. The calculation of the weights could also be performed on the

basis of F' = (Fan) where F' =F +{1. 1, ,i=1..,n and Y. Consulting Granger and

Ramanathan (1984) we get:

~ I _1 I I _1 |:’|~

FMSE—opt,T+1 = %: F ﬁ F Y-LU@: F ﬁ 1, DF[T+1] '
O

where
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Another approach is to give up the bias correction. In the following we use the bias directly to
calculate the combination weights. We present a technique which is also based on the
covariance matrix and other techniques which disregard the covariance structure and use only

the bias terms.

Theorem 1: Let F,,,,...,F, ;,,be forecasts for Y., and u,;,, =Y, —F 1, betheindividual

forecast errors where E(u;1,,) =1, , i =1,...,n. Further, let Cov(um)::z, > p.d., where

Upy o= (u1,T+1,...,un,T+1)'. We assume that there exists at least one (i,j), i,jO0f{1,...n}, i<j,

where ; # ;. The MSE-optimal unbiased forecast combination of the form F, ., = W'F,,
where w'l =1 and Fy,y = (F:L,T+11"'7Fn,T+1)’ isgiven by

ﬁln' > @‘ﬁl - (u'Z‘lu)Z'lln ,
oot = —— , , where p:= (U, 1, ) -

= Z‘luﬁZ -(zw)A, =, B

w

Proof: We restrict the weights to sum up to one, which means w'l, =1. We also want to

minimize the MSE subject to the requirement of an unbiased combination which can be

expressed in w'y = 0. Thus, we consider the following function:



L(w,\,¢):=w'Ew - A(w'p)-d(w'1, -1).

The necessary conditions for aminimum are

) —5L(‘g’$’¢) = 2W'E - A -1, =0
1)) W:—W'uéo
1) %&:\’q)):l—w’ln!:o

From 1) we get

W' :Aulz—l +91nlz—1
2 2

and inserting in Il) and 111) gives
) R L
i+l s'u=0 and
2M M 5 M
Mz + 81511 o
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Some easy calculations result in

A = 1“ Z_lu and
2 ﬁlnlz‘luﬁ -(u’Z‘lu)ﬁln 71,

o _ -z )
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Because of the Cauchy-Schwarz inequality the denominator of the preceding expressions is

non-positive. Since the p,’s are not all equal and therefore p and 1, are linearly independent

it is even negative.

Refering to 1) the optimal weight vector turns out to be
ﬁln' =7 @‘ﬁl - [z tu)z,
W gt = —— : .
' = Z‘luﬁ2 -(zw)A, = B

Looking at the form of the function L(W,?\,d)) it is straightforward that w

o 1S the

minimizing vector.
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In practice we have to caculate F T by using the estimators > and [ as above. Hereit is

also possible to egimate the weights directly by restricted regression. Using R = BL FH

H1, H

where F:=(F,,...,F, ) and r := EN che optimal weights are given by
1

w,, =(F'F)*FY —(F’F)'lR’(R(F’F)'lR’)_l(R(F’F)'lF’Y —r) .

Of course, the combination F, ., has not a smaller MSE than the combination Fseopt.T+1 -

ZW and

Since both are unbiased forecasts their M SEs are given by the error variances w,, 2w,

I

Jox Z90x - respectively, and the vector w,,, includes one more regtriction than the vector

opt

g - BUt We have to remark that in practice it might be difficult to justify a bias correction. In

this situation we correct forecasts given by some experts or calculated by sophisticated and
expensive models before combining them and thus we have to convince the analyst that he

cannot use the individual forecasts asthey are.

In the following we present bias based methods which disregard the covariance structure and

also result in an unbiased combination.

Theorem 2: Let F ,,,,...,F, ;,,be forecasts for Y., and u,;,, =Y, —F 1, betheindividual
forecast errorswhere E(u; ;) =1 , i =1,...,n. Further, let i, # 0 and —Z R, #1, where

]#V

R, =M =1 njzv, vO{1...,n} fixed but arbitrary. Then

i
vT+1 ZRJ j, T+

j¢V

1 o
_EZR‘

j£EV

I:Jl,T+1 =

is an unbiased forecast for Y., .



Proof: For the error of the forecast combination we get

il - 1 2. D
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n 1; #v D j#v ]

j¢V

& B ;

1 o . T+ _Fv,T+1 _Eln__lJZRj(YTﬂ _Fj,T+1)|:Pj
- n_lsz O U] j#v

j£Ev

v+ n- 1ZRJ jT+1

]#V

E[D@DD
Mmood

Tn- 1ZR‘

]#V

Thus
1 5
E(Uyra) = %( Uy i) = n— 12 = E(UJT+1)D
n 12 i E j#v E
j#v
10 5
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JERY
=0

The bias based method is in the form of the generalized Jackknife-estimator well-known in
point estimation. Its MSE is equal or exceeds the MSE of the MSE-optimal combination, but
in practice one has to estimate the unknown parameters for the calculation of the combined
forecast. The errors in estimation could result in more unreliability of the MSE-optimal
forecast combination because it depends also on the whole covariance structure. We have to
remark that all of the methods presented above might result in negative weights and produce
extreme outliers. An example for this, regarding e.g. the MSE-optimal combination of
unbiased forecasts, is given in Klapper (1998). Hence, there is the demand of a more robust
bias based combination strategy.
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Theorem 3. Let F.,,...F, be forecasts for Y., and u;, =Y., -F,, where

E(u;+.,) =1 . i=1..,n. Further, let p, #0 and Z‘Rj‘ # —Zsign(Rj), where R, =Hv
= = M

jEv j£Ev

j=1..,n, j#v, vO{,..,n} fixed but arbitrary. Then:

n
va,T+1 + Z ‘RJ ‘Fj,T+1
B n

i) Fppu = 2V , Where y .= —Z sign(R,) , isan unbiased forecast for Y., .

y+i‘RJ‘ jJ;v

j£EV

ii) If there exists at least one ;, >0 and at least one W, <0, i #j,i,j0{L...,n}, then we
construct Fy,.,, as follows as an unbiased forecast with value inside the interval of the
individual forecasts:

If there exists an unbiased individual forecast F, ;.,, k O{L...,n} by definition v =k, else

)

if #(u, >0)_, . 22 then choosev so that p, <0, else

if #(u, >0)._, <g then choosev so that p, > 0.

Proof:

i) At first we calculate the error of the forecast combination, and then we show that it has

mean Zero.

Ut = Yra ~Fpra = Z‘R ‘D(T+1 YR ra Z‘R ‘ T+1D

v+Z\R \% o o

j#v
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JE2Y
0 ] 0
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j£v
0 ] ] 0
= 1 T sgn(Rj)uﬁZhuE
V+Z‘R1‘EJ;V jev j E

0
. .0
TS SO(R ), + ngn(Rj)%ujD:o.

SRIEE S

j#v

if) The special choice of F, ., (respectively |,) guarantees that y=0, since in the case where
none of the forecasts is unbiased, the number of ;s with different sign as p, is grester or
equal than the number of p;’s with the same sign as i, . Therefore, by definition all weights

areintheinterval [0,1] and sum up to one.

Remark: For the cases where all ;>0 or al ;<0 we gety = —(n —1) . This does not depend on

h
=T |,

>n-1

J#v J¢v

and hence only the weight for F, .., is negative.



2.2. Simulation study

We consider the combination of six biased forecasts by using two different bias vectors:
b, :=(50,40,20,10,-10,-20)" and b, :=(54,21,-1,-2)". Furthermore, we randomly generate
20 covariance matrices and on their basis (together with the bias) 200 series (6 forecasts) of
normally distributed forecast errors are generated. The series are of length 60. We fix 10 data
points to calculate the first combination weights, thus 50 performance points are left for our
analysis. In each step we calculate the new weights by regarding all available history for the
estimation of the unknown parameters. To compare the different methods we calculate their
RMSEs relative to the values of the simple average of the individual forecasts. The study
includes the following methods: 6 bias corrected individual forecasts (No. 1-6), MSE-optimal
combination with the assumption of unbiased individual forecasts (No. 7), MSE-optimal

combination  Fe o7y Of bias corrected forecasts (No. 8), MSE-optimal combination

=

w

T4 of the biased individual forecasts (No. 9), simple average (No. 10), simple average of
bias corrected forecasts (No. 11), and the two bias based combinations F; ., (No. 12) and
Fiore (No. 13). For the combination F,.,, we choose the individual forecast with the
smallest absolute bias as F,;,,, and in addition for the combination F,,;,, we choose the

candidate with the highest absolute bias as F, ;,,. Instead of calculating all data points with

stable covariance matrices we consider a situation of structural change. Here, the variances of

the individual forecast errors are varying over time which is described in detail below.

a) time stable covariance structure

al) bias vector b,
Table 1: Comparison of methods for case al

S1: number of times simple average is beaten, S2: number of times simple average of bias
corrected forecasts is beaten, best: number of times the special method is the best one.
M1,...,M 13 denote the methods.

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
No.
1 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 200 200 200 0 - 0 151
best 0 0 0 0 0 0 4 196 0 0 0 0 0
2 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 11 200 200 200 0 - 3 116
best 0 0 0 0 0 0 0 200 0 0 0 0 0
3 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 76 132 74 0 - 3 82
best 0 0 0 0 0 0 12 109 4 0 43 0 32
4 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 200 200 200 0 - 0 168
best 0 0 0 0 0 0 4 193 3 0 0 0 0




Table 1 continiued

5 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 199 199 199 0 - 0 0
best 0 0 0 0 0 0 4 193 3 0 0 0 0
6 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 7 0 0 0 18 200 18 0 - 0 1
best 0 0 0 0 0 0 0 200 0 0 0 0 0
7 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 103 200 103 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
8 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 3 0 6 0 0 198 192 198 0 - 0 0
best 0 0 0 0 0 0 74 72 52 0 2 0 0
9 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 129 98 29 0 - 0 93
best 0 0 0 0 0 0 36 27 52 0 45 0 40
10 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 132 187 133 0 - 0 0
best 0 0 0 0 0 0 3 184 0 0 13 0 0
11 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
12 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 0 126 0 0 - 0 0
best 0 0 0 0 0 0 0 126 0 0 74 0 0
13 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 191 200 191 0 - 0 3
best 0 0 0 0 0 0 0 200 0 0 0 0 0
14 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 3 0 200 200 200 0 - 0 156
best 0 0 0 0 0 0 0 200 0 0 0 0 0
15 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 1 0 200 200 200 0 - 0 190
best 0 0 0 0 0 0 0 200 0 0 0 0 0
16 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 199 199 199 0 - 0 0
best 0 0 0 0 0 0 67 77 56 0 0 0 0
17 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
18 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 0 0 0 200 0 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
19 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
2 0 0 0 0 39 0 160 178 160 0 - 22 124
best 0 0 0 0 2 0 10 134 23 0 13 0 18
20 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
S2 0 0 0 0 0 0 200 200 200 0 - 0 107
best 0 0 0 0 0 0 1 196 3 0 0 0 0

If we consider Table 1 it is obvious that method No. 8 is best in the sense of the RMSE. In 18
cases it is the best one. For covariance matrix No. 8 methods No. 7, 8 and 9 and for
covariance matrix No. 9 methods No. 9, 11, 13, 7 and 8 perform similarly. Thisresult is not a
surprise because of the time stable covariance structure. With this assumption, method No. 14
is theoretically optimal and the estimators for the unknown parameters perform well. If we

compare method No. 13 (F,,;,,) and method No. 11 (simple average of bias corrected

forecasts) we can see that for covariance matrices No. 1, 2, 4, 14, 15, 19 and 20 the first one
performs better. These are exactly the cases (also covariance matrix No. 9) where the bias

based combination theoretically outperforms the simple average of bias corrected forecasts.
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We can also see that neglecting the bias and the covariance structure, the simple average

combination is of less quality.

a2) bias vector b,

Table 2: Comparison of methods for case a2

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
No.
1 S1 0 0 6 0 0 0 200 200 200 - 200 0 164
X 0 0 0 0 0 0 200 200 200 0 - 0 20
best 0 0 0 0 0 0 5 194 1 0 0 0 0
2 S1 0 0 0 3 0 117 200 200 200 - 199 45 163
X 0 0 0 0 0 18 200 200 200 1 - 5 92
best 0 0 0 0 0 0 0 200 0 0 0 0 0
3 S1 0 0 0 3 0 23 193 198 191 - 200 22 171
X 0 0 0 0 0 0 78 131 75 0 - 0 40
best 0 0 0 0 0 0 11 109 9 0 57 0 14
4 Sl 0 0 138 0 0 0 200 200 200 - 200 0 138
X 0 0 0 0 0 0 200 200 200 0 - 0 12
best 0 0 0 0 0 0 8 190 2 0 0 0 0
5 S1 0 24 37 0 0 6 200 200 200 - 200 11 133
X 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 6 191 3 0 0 0 0
6 S1 0 0 200 193 0 0 200 200 200 - 200 0 172
X 0 0 11 0 0 0 26 200 20 0 - 0 1
best 0 0 0 0 0 0 0 200 0 0 0 0 0
7 S1 0 0 1 14 0 0 200 200 200 - 200 0 65
X 0 0 0 0 0 0 95 200 87 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
8 S1 0 184 0 166 1 0 200 200 200 - 200 1 133
X 0 1 0 7 0 0 198 194 198 0 - 0 1
best 0 0 0 0 0 0 60 64 74 0 2 0 0
9 S1 21 38 21 0 6 11 200 200 200 - 200 22 175
X 0 0 0 0 0 0 130 113 130 0 - 0 54
best 0 0 0 0 0 0 35 37 44 0 50 0 34
10 S1 1 0 0 0 0 0 200 200 200 - 200 0 91
X 0 0 0 0 0 0 146 185 130 0 - 0 0
best 0 0 0 0 0 0 4 178 4 0 14 0 0
11 Sl 0 79 1 0 0 0 200 200 200 - 200 0 44
X 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
12 S1 0 0 0 0 7 7 200 200 200 - 200 35 198
X 0 0 0 0 0 0 0 144 0 0 - 0 0
best 0 0 0 0 0 0 0 144 0 0 56 0 0
13 S1 0 0 5 0 0 0 200 200 200 - 200 1 177
X 0 0 0 0 0 0 199 200 193 0 - 0 4
best 0 0 0 0 0 0 0 200 0 0 0 0 0
14 S1 0 0 5 0 126 46 200 200 200 - 200 58 188
X 0 0 0 0 1 0 200 200 200 0 - 0 106
best 0 0 0 0 0 0 2 198 0 0 0 0 0
15 S1 6 0 2 0 35 52 200 200 200 - 200 44 168
X 0 0 0 0 1 0 200 200 200 0 - 2 95
best 0 0 0 0 0 0 0 200 0 0 0 0 0
16 S1 0 0 0 32 44 0 200 200 200 - 200 19 185
X 0 0 0 0 0 0 199 200 198 0 - 0 1
best 0 0 0 0 0 0 65 69 66 0 0 0 0
17 S1 0 7 35 0 48 0 200 200 200 - 200 2 192
X 0 0 0 0 0 0 200 200 200 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
18 S1 0 52 0 0 0 0 200 200 188 - 200 0 8
X 0 0 0 0 0 0 0 200 0 0 - 0 0
best 0 0 0 0 0 0 0 200 0 0 0 0 0
19 S1 4 0 0 0 192 0 200 200 200 - 200 97 196
X 0 0 0 0 42 0 173 187 168 0 - 12 86
best 0 0 0 0 0 0 23 132 31 0 6 0 8
20 S1 0 0 11 0 0 18 200 200 200 - 200 4 179
X 0 0 0 0 0 0 200 200 200 0 - 0 29
best 0 0 0 0 0 0 2 196 2 0 0 0 0
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Although for the same covariance matrices as above the combination F;, ., should be better

than the simple average of the bias corrected forecasts, it only happens in case No. 14. In
some of these cases it is clearly outperformed. Naturaly, the best combination is again
method No. 8. In cases No. 8, 9 and 16 some methods are nearly of the same high quality
(methods No. 9, 8, 7, methods No. 11, 9, 8, 7, 13 and methods No. 8, 9, 7). Because of the

"low" bias the simple average performs better than before, whereas method No. 12 (F, ;,,) is

again of poor quality.

b) Structural change all five data points
We analyse a structural change every five steps. We generate first five data points by using
24 =2 asbefore. We generate the next five points with %, =%, +0.2 miag(z(l)) where

diag(Z(l)) is adiagonal matrix of the diagonal elements of Z ;). Then we calculate five points
with 4 =%, +0.2 miag(z(z)), and so on. Thus, only the variances will change over time

which isillustrated in Figure 1. The differences between the error variances increase, so over
time the quality of all forecasts decreases but the forecasts with lower variance are less

influenced by the changes.

Figure 1: Structural changes in the error variances
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bl) bias vector b,

Table 3: Comparison of methods for case bl

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
No.
1 Sl 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 9 83 9 0 - 0 14
best 0 0 0 0 0 0 0 79 0 0 114 0 7
2 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 2 68 76 68 0 - 1 15
best 0 0 0 0 0 0 28 37 19 0 110 0 6
3 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 10 9 10 0 - 0 36
best 0 0 0 0 0 0 2 1 1 0 161 0 35
4 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 7 0 0 0 199 199 199 0 - 0 52
best 0 0 0 0 0 0 55 103 41 0 1 0 0
5 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 0 103 0 0 - 0 0
best 0 0 0 0 0 0 0 103 0 0 97 0 0
6 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 49 6 0 0 0 195 1 0 - 0 0
best 0 0 1 0 0 0 0 194 0 0 5 0 0
7 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 0 14 0 0 - 0 0
best 0 0 0 0 0 0 0 14 0 0 186 0 0
8 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 5 0 6 0 0 34 166 33 0 - 0 8
best 0 1 0 2 0 0 1 161 0 0 33 0 2
9 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 71 80 71 0 - 0 97
best 0 0 0 0 0 0 26 32 17 0 70 0 55
10 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 37 45 35 0 0 0 57
best 0 0 0 0 0 0 5 23 8 0 119 0 45
11 Sl 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 0 137 0 0 - 0 0
best 0 0 0 0 0 0 0 137 0 0 63 0 0
12 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 24 52 23 0 - 0 20
best 0 0 0 0 0 0 5 43 0 0 139 0 13
13 Sl 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 2 91 1 0 - 0 0
best 0 0 0 0 0 0 0 91 0 0 109 0 0
14 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 92 146 92 0 - 0 74
best 0 0 0 0 0 0 7 129 5 0 39 0 20
15 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 121 125 123 0 - 0 158
best 0 0 0 0 0 0 18 35 19 0 28 0 100
16 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 1 0 0 22 154 22 0 - 0 0
best 0 0 0 0 0 0 0 154 0 0 46 0 0
17 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 22 114 22 0 . 0 5
best 0 0 0 0 0 0 1 112 1 0 85 0 1
18 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 3 0 0 0 0 0 158 0 0 - 0 0
best 0 0 0 0 0 0 0 158 0 0 42 0 0
19 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 14 0 89 99 89 0 - 4 127
best 0 0 0 0 3 0 15 48 11 0 47 0 76
20 S1 0 200 200 200 200 200 200 200 200 - 200 200 200
X 0 0 0 0 0 0 91 96 90 0 - 0 85
best 0 0 0 0 0 0 20 41 12 0 77 0 50

We can see that the structural change in the variances has influence on methods No. 7, No. 8
and No. 9. Because these strategies depend on the covariance structure, the errors in

estimation occuring in this case worsen their quality. Now the bias based method No. 13 in
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two cases is better than the arithmetic mean of bias corrected forecasts. As a result of the
special structural change it should now outperform method No. 11 only in the cases No. 9, 15
and 19. For instance, method No. 11 is nine times, the MSE-optimal combination of bias

corrected forecasts is eight times, and the combination Fy,;,, is two times the best

(covariance matrices No. 15 and 19). In one case the MSE-optimal combination of bias
corrected forecasts and the simple average of bias corrected forecasts are best. For the cases
No. 9, No. 19 and No. 20 the differences between the best and some other methods are

smaller.

b2) bias vector b,

Table 4. Comparison of methods for case b2

Cov. M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
No.
1 S1 0 0 0 0 0 0 117 179 72 - 198 0 23
X 0 0 0 0 0 0 23 73 12 2 - 0 2
best 0 0 0 0 0 0 4 70 1 1 123 0 1
2 S1 0 0 0 0 0 3 164 169 146 - 194 1 51
X 0 0 0 0 0 1 69 74 60 6 - 0 14
best 0 0 0 0 0 0 30 28 23 4 108 0 7
3 S1 0 0 0 0 0 0 920 102 68 - 195 0 57
X 0 0 0 0 0 0 13 10 11 5 - 0 6
best 0 0 0 0 0 0 8 5 5 5 173 0 4
4 S1 39 0 52 0 0 0 200 200 200 - 200 0 20
X 4 0 8 0 0 0 199 199 100 0 - 0 1
best 0 0 0 0 0 0 66 96 37 0 1 0 0
5 S1 0 0 0 0 0 0 92 198 43 - 200 0 10
X 0 0 0 0 0 0 2 114 1 0 - 0 0
best 0 0 0 0 0 0 0 114 0 0 86 0 0
6 S1 0 0 143 61 0 0 105 200 24 - 200 0 3
X 0 0 48 7 0 0 2 195 0 0 - 0 0
best 0 0 0 0 0 0 0 195 0 0 5 0 0
7 S1 0 0 0 0 0 0 23 111 11 - 195 0 4
X 0 0 0 0 0 0 1 14 0 5 - 0 1
best 0 0 0 0 0 0 1 13 0 4 181 0 1
8 Sl 0 38 0 23 0 0 175 199 137 - 200 0 21
X 0 10 0 5 0 0 62 176 37 0 - 0 2
best 0 0 0 0 0 0 2 174 0 0 24 0 0
9 S1 2 0 0 0 0 0 186 159 174 - 197 0 78
X 0 0 0 0 0 0 102 70 93 3 - 0 26
best 0 0 0 0 0 0 56 20 28 0 86 0 10
10 S1 1 0 0 0 0 0 130 142 106 - 197 0 30
X 0 0 0 0 0 0 39 42 32 3 - 0 5
best 0 0 0 0 0 0 16 23 14 0 146 0 1
11 S1 0 11 0 0 0 0 15 198 5 - 200 0 0
X 0 0 0 0 0 0 0 136 0 0 - 0 0
best 0 0 0 0 0 0 0 136 0 0 64 0 0
12 S1 0 0 0 0 0 0 175 196 141 - 200 1 103
X 0 0 0 0 0 0 31 57 23 0 - 0 6
best 0 0 0 0 0 0 7 46 4 0 139 0 4
13 S1 0 0 0 0 0 0 92 190 36 - 199 0 10
X 0 0 0 0 0 0 9 85 4 1 - 0 0
best 0 0 0 0 0 0 1 84 0 0 115 0 0
14 S1 0 0 0 0 14 1 198 197 182 - 199 3 120
X 0 0 0 0 2 0 126 170 103 1 - 0 38
best 0 0 0 0 0 0 23 135 9 0 25 0 8
15 S1 0 0 0 0 0 1 185 187 174 - 194 0 94
X 0 0 0 0 0 0 126 127 123 6 - 0 37
best 0 0 0 0 0 0 54 42 34 1 57 0 12
16 S1 0 0 0 1 2 0 182 199 118 - 200 0 25
X 0 0 0 0 1 0 66 161 30 0 - 0 0
best 0 0 0 0 0 0 2 157 2 0 39 0 0
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Table 4 continiued

17 S1 0 0 1 0 0 0 196 200 190 - 200 0 115
2 0 0 0 0 0 0 41 121 33 0 - 0 4
best 0 0 0 0 0 0 0 120 1 0 78 0 1
18 S1 0 7 0 0 0 0 31 196 6 - 198 0 0
S2 0 3 0 0 0 0 1 152 0 2 - 0 0
best 0 0 0 0 0 0 0 152 0 0 48 0 0
19 S1 0 0 0 0 60 0 188 189 180 - 198 17 120
2 0 0 0 0 8 0 109 117 94 2 - 1 57
best 0 0 0 0 0 0 47 48 17 0 67 0 21
20 S1 0 0 0 0 0 1 194 193 184 - 200 1 101
2 0 0 0 0 0 0 90 89 83 0 - 0 28
best 0 0 0 0 0 0 32 35 31 0 92 0 10

Here, the bias based combination techniques are of poor quality. Using the simple average of
bias corrected forecasts or the MSE-optimal combination of bias corrected forecasts is more
accurate. Method No. 8 in nine cases is the best, method No. 11 in eight cases (adding the
following three). In one case (covariance matrix No. 9) methods No. 11 and 7 perform better,
for covariance matrix No. 15 methods No. 11, 7, 8, 9 and for covariance matrix No. 19
methods No. 11, 8, 7. Here, the simple average of the individual forecast is of higher quality
than in b3.

2.3. Concluding remarksfor the univariate case
If the covariance structure is stable over time the MSE-optimal combination is of course the
best in the sense of the RMSE. Depending on the covariance structure in the case of "large”

absolute bias and so "large" distances between the bias, the combination F;,;,, can

outperform the simple average of bias corrected individual forecasts. When the absolute bias

are"small" and so the distances are "small", too, more often the "wrong" individual forecast is

chosen as F, ;,,. Furthermore, we frequently get a "wrong" y. Due to the given covariance
matrices in this simulation study the combination F,.,, performs poorly. If a structural

change happens at al five data points in the error variances, the simple average of bias
corrected forecasts performs as good as the MSE-optimal combination of bias corrected

forecasts. The combination F, .., performs better than the other methods in the situation of

"large" bias and where it is, theoretically, of high quality. Furthermore, the given covariance

matrices in this simulation study are a reason for the bad performance of the method F,, ;.

We have to remark that the simulation study is giving only limited insight into the
characteristics of the different methods. Other structural changes, e.g. in the covariances
between the forecast errors are possible. A more extensive analysis of this problem, regarding
other methods, is given e.g. in Diebold and Pauly (1987) or in Deutsch, Granger and

Terésvirta (1994). Nevertheless, if the differences between the bias are not too "small” we can
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use knowledge from the past to decide if we calculate a combination of bias corrected forecast
or a bias based forecast combination. Furthermore, if we consider bias corrected forecasts for
a combination, then the question arises if the forecasting models must be respecified. On the
other side, in bias based combinations we use the forecast as they are and give them special

weights.

Finally, if we look at the combinations F; ;,, and F,,;,,, we notice that other strategies in the

choice of F,;,, are possible. For this we can again take advantage of experience from the

past.

2.4 The multivariate case

Let Y;, = (Yl,T+1!"'!Yk,T+1) , k=2, be avector to be forecasted, F,,,,...,F, 1., be forecasts,

I

where Fi,T+1 = (F:L(,i'lz+17"" I:I<(I2I'+1) and ui,T+1 = YT+1 - I:i,T+17 with E(ui,T+1) = ui and

T
T T T

W = (Wi My ) i =100 Further, let Uy = Erlﬂﬂ s Up 4 E and

>:=(2.). oy . =Cov(uy,). We want to caculate an unbiased forecast combination where

rsl,..,
we use weight matrices G, ~ (kxk), i =1,...,n, summing up to |, . An easy way, like in the
univariate case, isto consider the bias corrected forecasts. Then, the optimal weight matrices
minimizing the matrix-mean-square-error (MMSE) of the combined forecast in the sense of
the Lowner-ordering are given by (see e.g. Wenzel, 1998)

Gopt = [Gl,opti""Gn,opt] = [W’V_l!I k _W’V_ll*k] '

where

VI'S ': ZI'S +Znn
1=l ]~ (n=1kxk,
W = (wy,...,w, )~ (n -1k xk,

T
T T

w, = ﬁ/vj1 e W E ~(n-1kx1, j=1...k,

w; =(Z,, -Z,)e ~kxLi=1.,n-1j=1..Kk,

and e; denotesthe j-th unit vector.
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As in the univariate case we now calculate a MM SE-optimal unbiased forecast combination

without using a bias correction.

Theorem 4: Let F,,, = (F{2+1,...,F|ff’T+1) be forecasts for Y,,, := (YLTH,...,YK’M)I, k=2, and

T
T T

Uity == Yy —Fi 1., Where E(ui’m)::ui, i =1...,n. Further let u;,, = Erlﬂﬂ yerr U4 E

MMSE-optimal (in the sense of the Lowner-ordering) unbiased forecast combination of the

form F 1, = Z H.F 1. , where Z H, =1I,,isgiven by

H, =[H

opt

Hoo] =[(W'+D)V 21, = (W +D)V L],

Lopt 1t

where D := (y’V ‘1y)_1 (un -W'V ‘1y)y’ .

Proof: Because the MMSE of the optimal forecast combination must have minimal trace we
minimize it in the following and prove afterwards, that for any other combination which
satisfies the restrictions, the optimal MM SE-combination has smaller or equal MMSE in the
sense of the Lowner-ordering. Consulting Odell et al. (1989), the MM SE of any combination

n n-1
which satisfies the restrictions (1) Z H, =1, and (2) Z H.(u, —p,)=p, canbewrittenas
I\/”\/|SE(FH,T+1!YT+1) = EﬁYTﬂ - I:H,T+1)(YT+1 - I:H,T+1) ﬁ
= H*VH*’ -H'W —W’H*’ +2
where H" :=[H,...,H ]~ kx(n-1)k.
To minimize tr(M MSE(FH’M, Ym)) with repect to the restrictions (1) and (2), we consider:
L(H*,)\):: trﬁ—i*VH*' “H'W-WH" + 2 E‘A'(H*V—Hn)

T

where A:=(A,,... A, ) .
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The necessary conditions for aminimum are:

1) w =2H"V -2W' —)\V'!zokx(n—l)k
1) WWJ-(H*V)';%

From 1) we get
H =w'v™* +%)\y’v *

and inserting in Il) we obtain

%)\ = y’\/l_ly (pn -W'V '1y) .

Back to 1) resultsin
* ny- Ny - -1 n - Ny —
Ho =WV (v oy, - wev iy yv
Using this weights for the combination and calculating the MM SE resultsin
MMSE(FHOMM,YM) =3 -W'VTWw- (y'V ‘1y)‘1W'V —1wn' ~ (y’V —1y)—1unyr\/ W
ny7-1 -1 ! n /-1 -1 n /-1 nys-1
vy e, vy Wy vew
Considering now an arbitrary H, satisfying the two redrictions, we can write
H., =W'V*+ (y’V ‘1y)_1(un -W'V ‘1y)y’V * where W ~ (n -1k xk, and calculate
MMSE(F, . Yra) =2, + WV AW =WV AW =WV W+ (V) o,

(Vi) WV v W= (v ) gy iw
(Vv 2y WV tyyvEw - (v iy wey

+ (y’V 1y)_lw VYV W

+

Thus,
MM SE(FHam.T+1 ! YT+1) -MM SE(FHOpt.Tﬂ ! YT+1)

= (W' - W)(V <o (yvy) vy '1) (W -w)

and since (V - (y’V ‘1y)_1V‘1yy’V ‘1) is n.n.d. (see e.g. Horn and Johnson, 1985, p. 47) the

difference of the two MMSEsisn.n.d., aswell.
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In the multivariate case it is also possible to calculate bias based unbiased forecast
combinations but because of the more complex bias structure there are several combination
strategies. A simple procedure is to consider each component separately and then to derive the
combination as we did in the univariate case, so that we get diagonal weight matrices. Similar

to Theorem 2 we propose here:

Theorem5: Let F, ., : (Fl(Qﬂ, k("m) be forecasts for Y., := (YLTH,...,YK’M)I, k=2, and

Uity == Yy —Fi1., Where E(ui’m)::ui, i =1,...,n. Further let uV:ZAiui, where

izv

vO{L...,n} isfixed but arbitrary, A, ~kxk,i=1..,n, i#v,and rgd, - ZAi O=k. Then
U = U
U] izv U]
Fara =0 = Z A0 [Fyr - Z AF ;.. Oisan unbiased forecast for Y,, .
O = OO = U
U 0o i#v U

Proof: The mean of the error of the forecast combination is

-1

E(YT+1 FA T+1 A D ED A DYT+1 vT+1+ZAiFi,T+1

%

i it

k (YT+1 - FV,T+1) - i A (YT+1 -F ,T+1)

izv

™M

>
DooCo,

m
[
[ o

[N

WMy = ZA u.

[N

00O Cooo  oooom
|
M
>
Oooom,
[ -

[
>
[ p
=
[
=
I
o
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Remark: It is possible to use bias proportions in Theorem 5 for the definition of the matrices

A;.lIfweassumethat pu; #0,i=1..,ni#v, j=1..,k, weget

where a¥ = M =1 ni#v, rs=1..k.

r,s=1,..,k? T k(n_l) uls;

If we proceed in that way, we have to check if the assumption of regularity in Theorem 5 is
satisfied.

Finally we present another general bias based combination method.

Theorem 6: Let F,.,, : (Fl(Qﬂ, ,Fk("m) be forecasts for Y., = (Yyruer Yera) » k22,

I

and u,,,, the i-th forecast error vector, p; = (bt ) = E(U;7y1), i =1...,n. Further let

;20 ,i=L..,n,j=L..k. Then, F ., = ZAiFi’T+1 is an unbiased forecast for Y.,,,

where
B Al
A;=0: "~ : Oad
%(i) . g0O
k1 A

al :=énllzrs—5,(5” @/M,, Z.. Z a rs=1.,k r#s,

Z ZB—ZrJ a QJ” , r=1...k where the a’s must be chosen so that
i u|r ]

j#l’

M, #0.

r

Proof: For a fixed hO{L,....k} we consider the h-th row of each of the n weight matrices,

givenby a¥ := (aﬂl’aﬂ@) , i =1...,n. Therefore,
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B _iiiaﬂg“ip 't m=h
n ) O 1= uih =
Zahm :D P
£ 01 @ZEZ“—ZE‘EQH it mO{L...k}, m#h
%ﬁh & n = 0
o ifm=h
) if mO{1...k}, m#h’

n .
Thus we can write Y, 1, = Z al’Y.,, , and the mean of the combined forecast error in the h-

th component is

C a0y He % a0 SR
I —_
EEZ a, U, U= Zahhuih + Z Zahmllim
= |:| 1= 1I=1 M=

mzh

ih m=

n Hl k (0 H n ok 0
= _Z E“_ AmMim glih + Z Zahmuim =0.
: [0 mzh ] e

mzh

If we look at Theorem 6 again, we have to notice that the a’s are not specified there. The

practitioner could choose them by his subjective view of the given problem. Obviously such a

general method could also be defined for the univariate case, but because of the subjective

choice of thea"’s, this is excluded from the simulation study and therefore not presented in

Section 2.1.
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