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1 Introduction

Let the relationship between an observable random variable Y and k ex-

planatory variables X1; � � � ; Xk in a T -county system be speci�ed in linear

regression form

y = X� + u ; (1)

where X is a T � k matrix of known constants with full column rank k < T ,

and � is a k � 1 vector of unknown parameters. The vector u is a dis-

turbance term with E(u) = 0 and Cov(u) = �2�V�, where �2� is a positive

unknown scalar and V� a T � T positive de�nite matrix with identical dia-

gonal elements.

The ordinary least squares (OLS) and the generalized least squares (GLS)

estimators of � in model (1) are given by �̂ = ( X
0

X)�1X
0

y and ~� =

(X
0

V �1
�

X)�1X
0

V �1
�

y, respectively, with covariance matrices

Cov(�̂) = �2� (X
0

X)�1X
0

V�X(X
0

X)�1 and Cov( ~�) = �2� (X
0

V �1
�

X)�1.

1This work was partly supported by the Deutsche Forschungsgemeinschaft

(DFG), Graduiertenkolleg \Angewandte Statistik".
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When the covariance of the disturbance vector u is not a scalar multiple of

the identity matrix, that is Cov(u) 6= �2� I as in model (1), it is well known

that the GLS estimator provides the best linear unbiased estimator (BLUE)

of � in contrast to OLS (see e.g. Fomby et al., 1984, p. 17).

But in applications, Cov(u) usually involves unknown parameters like a spa-

tial correlation coe�cient, so one has to look for another estimator, OLS, say.

In cases where Cov(u) does not involve unknown parameters, one problem

facing a researcher dealing with model (1) is how to measure the e�ciency of

OLS estimator �̂ relative to GLS estimator ~�. For spatial case, this question

can be expressed as: what can we gain by estimating � in the regression

model based on spatial assumptions instead of using simple standard regres-

sion speci�cations?

A number of authors have investigated the e�ciency of OLS relative to GLS

estimator when the errors are serially or spatially correlated by using va-

rious e�ciency criteria (see Bloom�eld and Watson, 1975; Kr�amer, 1980;

Kr�amer and Donninger, 1987; Haining, 1990; Gri�th, 1988; Cordy and Grif-

�th, 1993; Kr�amer and Baltagi, 1996). The most remarkable feature of the

results obtained is that the relative e�ciency depends mainly on the error

process considered and the degree of correlation. Another aspect of the re-

sulting analysis shows the behaviour of the relative e�ciency of OLS when

the correlation parameter tends toward the boundary of the parameter space.

In this paper, bounds for the e�ciency of OLS relative to GLS estimator of �

in model (1) under �rst-order spatial error process are constructed by using

the measure of e�ciency based on

- the euclidean norm of the di�erence PXV� � V�PX , PX = X(X
0

X)�1X
0

- the ratio of the traces of the covariance matrices of X ~� and X�̂

- the ratio of the determinants of the covariances of ~� and �̂ .
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2 Bounds for the relative E�ciency of OLS Estimator

In order to analyse the e�ciency of OLS relative to GLS estimator, one needs

the structure of the covariance matrix of the disturbance vector u. So, we

start by specifying stationary �rst-order spatial error processes.

Let the components of u follow a �rst-order spatial moving average (MA(1))

process

ui = �
TX
j=1

wij�j + �i

or, in matrix form

u = �W � + � ; (2)

where � denotes a spatial correlation coe�cient and � an error term with

E(�) = 0 and Cov(�) = �2� I (I is the T -dimensional identity matrix). W is

a T � T matrix whose elements are known nonnegative weights de�ned by

(see Cli� and Ord, 1981, pp. 17-19)

wij

8><
>:

> 0 ; if counties i and j are neighbours (i 6= j)

= 0 ; otherwise :

The element wij of the weights matrixW measures the strength of the e�ect

of county j on county i.

Under �rst-order spatial autoregressive (AR(1)) process, the components of

u follow the pattern

ui = �
TX
j=1

wijuj + �i

or, in matrix form

u = �W u + � : (3)

Equations (2) and (3) can be written as

u = ( I+ �W ) � and u = ( I� �W )�1 � ; (4)

respectively, where in the AR(1) case the matrix I��W must be nonsingular.

From (1) and (4), we obtain four possible structures of Cov(u) = �2�V� for
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the �rst-order spatial error process:

V� =

8>>>>>>><
>>>>>>>:

(I + �W )(I + �W
0

) : MA(1)

(I + �W ) : MA(1)� conditional

(I � �W )�1(I � �W
0

)�1 : AR(1)

(I � �W )�1 : AR(1)� conditional :

(5)

To ensure that V� is positive de�nite, the possible values of � must be iden-

ti�ed (see Horn and Johnson, 1985, p. 301). According to the assumptions

given in model (1) the matrix V� has identical diagonal elements, and denot-

ing this element by �, we get

Cov(u) = �2� V� = ( ��2� )V = �2u V ; (6)

where V = (1 =�)V�, and �2u = ��2� is the variance of the disturbances ui,

i = 1 ;� � � ; T . Using the above assumptions under spatial process we can now

write model (1) as the familiar general linear regression model

y = X� + u ; E(u) = 0 ; Cov(u) = �2u V : (7)

Consider the measure of e�ciency based on the euclidean norm of the dif-

ference PXV � V PX de�ned by (see Bloom�eld and Watson, 1975)

e1(�) :=
1

2
jjPXV � V PX jj

2

=
1

2
tr((PXV � V PX)

0

(PXV � V PX))

= tr(PXV
2) � tr (PXV )

2 : (8)

When e1(�) = 0, the OLS estimator �̂ can be applied without loss of e�-

ciency whereas a loss of e�ciency is expected if e1(�) 6= 0.

Let �i(A) denote the i-th eigenvalue of a T � T matrix A. Under the as-

sumptions that X
0

X = I, V positive de�nite and T � 2k, Bloom�eld and

Watson give the following upper bound for e1(�):

e1(�) �
1

4

kX
i=1

(�i(V )� �T�i+1(V ))
2 ; (9)
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where the eigenvalues of V are in ascending order.

Remarks:

When there are big di�erences within the k pairs (�i(V ); �T�i+1(V )) of the

eigenvalues of V , then the bound in (9) will be large.

For the matrix X with full column rank, there is no loss of generality in

assuming that X
0

X = I because under the transformation

y = ~X� + u (10)

with ~X = X(X
0

X)�1=2 and � = ( X
0

X)1=2� the condition ~X
0 ~X = I is valid

for all X, and the OLS and GLS estimators of � are given by �̂ = ( X
0

X)�1=2�̂

and ~� = ( X
0

X)�1=2~�, respectively. �̂ and ~� are the estimators of � in (10).

By inserting V = (1 =�)V� in (8), we have

e1(�) =
1

�2
ftr(PXV

2

�
) � tr (PXV�)

2g: (11)

Using the result of Bloom�eld and Watson (1975), under the assumption

that X
0

X = I, V� positive de�nite and T � 2k, and applying (11) we obtain

e1(�) �
1

4�2

kX
i=1

(�i(V�)� �T�i+1(V�))
2 ; (12)

where the eigenvalues of V� are in ascending order.

In the following the upper bounds of e1(�) will be given, by applying the

relationship given in (12) under some assumptions on the weights matrix.

Corollary 1

Let X
0

X = I and T � 2k. When the components of the disturbance vector

u in model (7) follow a conditional spatial MA(1) process, then

e1(�) �
�2

4

kX
i=1

(�i(W )� �T�i+1(W ))2 : (13)
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Proof:

For a conditional spatial MA(1) process the matrix V� is given by V� =

(I + �W ), with W being symmetric. The diagonal elements of V� are all

equal to one because the respective elements of the weights matrix are all

equal to zero. This implies that � = 1. Furthermore,

�i(V�) = 1 + ��i(W ) ; (14)

where the eigenvalues �i(V�) and �i(W ), i = 1 ;� � � ; T are in ascending order.

Inserting (14) in (12) completes the proof. 3

Remarks:

The bound in (13) will be large when there are large di�erences within the

k pairs of eigenvalues (�i(W ); �T�i+1(W )) of the matrix W . That is, the

e�ciency of OLS relative to GLS estimator will be lower when the di�erence

within the pairs of eigenvalues of W are large.

The result of Corollary 1 also holds for a conditional spatial AR(1) process

if W is orthogonal.

If the row sums of W are equal to one, then e1(�) � k�2 because the absolute

value of the eigenvalue �i(W ) is less than or equal to one for all i (see

Graybill, 1983, p. 98).

Corollary 2

Assume that W is orthogonal and symmetric. Let X
0

X = I and T � 2k.

When the components of the disturbance vector u in model (7) follow a

spatial MA(1) or AR(1) process, then

e1(�) �
4 k �2

(1 + �2)2
:
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Proof:

MA(1) process:

Under a spatial MA(1) process we have

V� = ( I+ �W )(I + �W
0

) :

From the assumption that the weights matrixW is orthogonal and symmetric

it follows that

V� = (1 + �2)I + 2 �W ;

implying � = 1 + �2 and �i(V�) = (1 + �2) + 2 ��i(W ). Inserting these

eigenvalues in (12) we get

e1(�) �
�2

(1 + �2)2

kX
i=1

(�i(W )� �T�i+1(W ))2 :

Since W is orthogonal and symmetric we have �i(W ) 2 f� 1;1g, which gives

e1(�) � (4k�2)=(1 + �2)2.

AR(1) process:

Under a spatial AR(1) process the matrix V� is given by

V� = ( I� �W )�1(I � �W
0

)�1 :

When the weights matrixW is assumed to be symmetric and orthogonal, we

obtain (I � �W )�1 = (1 =(1� �2))(I + �W ) (see Searle, 1982, p. 137), and

V� has the form

V� =
1

(1� �2)2
((1 + �2)I + 2 �W)) :

This implies that � = (1 + �2)=(1� �2)2 and

�i(V�) =
1

(1� �2)2
((1 + �2) + 2 ��i(W )) ; (15)

where the eigenvalues are in ascending order. Inserting (15) in (12) and using

the fact that �i(W ) 2 f� 1;1g completes the proof. 3
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Remark:

If the diagonal elements of V� are not identical, then (9) holds when V� is

used instead of V .

The following result shows that the OLS estimator can be applied without

loss of e�ciency as � goes to one.

Theorem 1

Let R(X) be the k-dimensional space spanned by the columns of X, and let

` := (1; � � � ; 1)
0

2 R (X). If lim�!1 V = c ``
0

, c 2 IR, then lim�!1 e1(�) = 0 :

Proof:

The e�ciency e1(�) can be written as:

e1(�) = tr(PXV
2) � tr (PXV )

2 = tr(PXV (V � PXV ))

= tr(PXVMXV ) :

When the condition lim�!1 V = c ``
0

holds, we have

lim
�!1

e1(�) = c2tr(PX``
0

MX``
0

) :

Since ` 2 R (X) we get MX` = ( I� PX)X = 0,  being a k� 1 vector, and

this implies lim�!1 e1(�) = 0 : 3

If the ratio of the mean squared errors are used to de�ne the measure of

e�ciency of OLS relative to GLS estimator, then we have (see Kr�amer, 1980)

e2(�) :=
tr (Cov(X ~�))

tr (Cov(X�̂))

with Cov(X ~�) = �2uX(X
0

V �1X)�1X
0

and Cov(X�̂) = �2uPXV PX .

Using this measure of e�ciency a number of papers investigate the e�ciency

of OLS relative to GLS estimator under stationary AR(1) process in time

series and spatial models (see Kr�amer, 1980, 1984; Kr�amer and Donninger,

1987; Kr�amer and Baltagi, 1996).
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The following theorem gives a lower bound for e2(�) which holds for all co-

variance structures under general linear regression model (7).

Theorem 2

Let X
0

X = I. Then

Pk
i=1 �i(V )Pk

i=1 �T�k+i(V )
� e2(�) � 1 : (16)

Proof:

Since �2u, in e2(�), cancels out, we set �2u = 1 in calculating covariances.

Under the assumption X
0

X = I, we have

tr (Cov(X�̂)) = tr (PXV PX) = tr (X
0

V X) (17)

and

tr (Cov(X ~�)) = tr (X(X
0

V �1X)�1X
0

) = tr (X
0

V �1X)�1

=
kX
i=1

�i((X
0

V �1X)�1)

=
kX
i=1

1

�i(X
0V �1X)

: (18)

Applying Poincar�e separation theorem we obtain the following inequalities

(see Horn and Johnson, 1985, p. 190):

kX
i=1

�i(V ) � tr (Cov(X�̂)) �
kX
i=1

�T�k+i(V )

�i(V
�1) � �i(X

0

V �1X) � �T�k+i(V
�1) : (19)

The second inequality in (19) implies

1

�i(X
0V �1X)

�
1

�T�k+i(V �1)
; i = 1 ;� � � ; k:
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Using (17) to (19) we have

tr (Cov(X ~�)) �
kX
i

1

�T�k+i(V �1)

=
kX
i

�i(V )

tr (Cov(X�̂)) �
kX
i=1

�T�k+i(V ) : (20)

From (20) it is clear that

Pk
i=1 �i(V )Pk

i=1 �T�k+i(V )
� e2(�) :

The inequality e2(�) � 1 follows from the optimality of GLS estimator (see

Kr�amer, 1980). 3

Remark:

If there is a large di�erence between the sum of the k smallest and k largest

eigenvalues of V , then the e�ciency of OLSE will be small, but never less

than the ratio of the smallest and the largest eigenvalues �min(V )=�max(V ).

For spatial models with �rst-order spatial error process the following result

is obtained.

Corollary 3

Assume that the matrix X ful�lls X
0

X = I. Let the weights matrix W be

symmetric with row sums equal to one. If the components of the disturbance

vector u follow a spatial MA(1) or AR(1) process, then

e2(�) �
(1� �)2

(1 + �)2
; � > 0 : (21)
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Proof:

MA(1) process

Under a spatial MA(1) process with symmetric weights matrix the eigenval-

ues of V� are given by

�i(V�) = (1 + ��i(W ))2 ; i = 1 ;� � � ; T ;

where the eigenvalues of W and V� are in ascending order. When the row

sums of W are all equal to one, then the absolute value of �i(W ) is less than

or equal to one for all i (see Graybill, 1983, p. 98). This implies

1

�
(1� �)2 � �i(V ) �

1

�
(1 + �)2 ; � > 0 ; (22)

so that applying Theorem 2 gives (21).

AR(1) process

Using the same reasoning as in the MA(1) case we obtain the following

bounds for the eigenvalues of V :

1

�(1 + �)2
� �i(V ) �

1

�(1� �)2
; � > 0 (23)

and (21) follows by applying Theorem 2. 3

In what follows we use a measure of e�ciency which is based on the deter-

minants of the covariances of the least squares estimators, and give a lower

bound for the e�ciency of OLS relative to GLS estimator.

Consider the measure of e�ciency given by (see Watson, 1955)

e3(�) :=
jCov( ~�)j

jCov(�̂)j
=

jX
0

Xj2

jX 0V Xj jX0V �1Xj
;

where j � j stands for determinant. The matrices X
0

V X and X
0

V �1X are

positive de�nite because V is positive de�nite and X of full column rank.

This implies that e3(�) > 0.

Let A and B be T � k matrices and assume that B
0

B is nonsingular. The
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well known Cauchy-Inequality concerning the determinants of two matrices

A and B states that jA
0

Bj2 � jA
0

Aj jB
0

Bj (see Basilevsky, 1988, p. 167).

Using A = V 1=2X and B = V �1=2X, we get jX
0

Xj2 � jX
0

V Xj jX
0

V �1Xj.

This implies, under the assumption X
0

X = I, e3(�) � 1.

The following theorem gives a lower bound for e3(�).

Theorem 3

Let X
0

X = I. Then

e3(�) �
kY
i=1

�i(V )

�T�k+i(V )
: (24)

Proof:

By applying Poincar�e separation theorem we get

kY
i=1

�i(V ) �
kY
i=1

�i(X
0

V X) �
kY
i=1

�T�k+i(V )

kY
i=1

�i(V
�1) �

kY
i=1

�i(X
0

V �1X) �
kY
i=1

�T�k+i(V
�1) ;

where the eigenvalues are in ascending order. This implies

jX
0

V Xj =
kY
i=1

�i(X
0

V X) �
kY
i=1

�i(V ) ;

so that
1

jX 0V Xj
�

kY
i=1

1

�i(V )
:

Furthermore,

jX
0

V Xj �
kY
i=1

�T�k+i(V )

jX
0

V �1Xj �
kY
i=1

�T�k+i(V
�1) :
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This implies

1

jX 0V Xj
�

kY
i=1

1

�T�k+i(V )

jX
0

V �1Xj �
kY
i=1

1

�i(V )
: (25)

According to the de�nition, we have

e3(�) =
1=jX

0

V Xj

jX 0V �1Xj
;

and using (25) yields the asserted result. 3

Remark:

Bloom�eld and Watson (1975) give a narrower lower bound for e3(�) under

the additional assumptions that T � 2k and k > 1.

Under �rst-order spatial error process we get the following result.

Corollary 4

Assume that X
0

X = I. Let the weights matrix W be symmetric with row

sums equal to one. If the components of the disturbance vector u follow a

spatial MA(1) or AR(1) process, then

e3(�) �
(1� �)2k

(1 + �)2k
; � > 0 :

Proof:

The proof follows by applying Theorem 3 using the bounds of the eigenvalues

of the matrix V given in (22) and (23). 3

Remark:

When the diagonal elements of V� are not identical, meaning that the u0is

have di�erent variances, we get (see Theorems 2 and 3)

e2(�) �

Pk
i=1 �i(V�)Pk

i=1 �T�k+i(V�)

e3(�) �
kY
i=1

�i(V�)

�T�k+i(V�)
:
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