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1 Introduction

Let the relationship between an observable random variable Y and k& ex-
planatory variables X,---, X} in a T-county system be specified in linear
regression form

y=Xf+u , (1)

where X is a T' x k matrix of known constants with full column rank £ < T,

and f is a k x 1 vector of unknown parameters. The vector u is a dis-

2

turbance term with E(u) = 0 and Cov(u) = o2V,, where o?

is a positive
unknown scalar and V, a T x T positive definite matrix with identical dia-
gonal elements.

The ordinary least squares (OLS) and the generalized least squares (GLS)
estimators of 3 in model (1) are given by 3 = ( XX) !X’y and § =
(X'V,1X)'X'V, 1y, respectively, with covariance matrices

Cov(f) = o2(X'X)' X'V, X(X'X)"! and Cov(B) = o2(X' V1 X)),
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When the covariance of the disturbance vector w is not a scalar multiple of
the identity matrix, that is Cov(u) # 021 as in model (1), it is well known
that the GLS estimator provides the best linear unbiased estimator (BLUE)
of § in contrast to OLS (see e.g. Fomby et al., 1984, p. 17).

But in applications, C'ov(u) usually involves unknown parameters like a spa-
tial correlation coefficient, so one has to look for another estimator, OLS, say.
In cases where C'ov(u) does not involve unknown parameters, one problem
facing a researcher dealing with model (1) is how to measure the efficiency of
OLS estimator B relative to GLS estimator (3. For spatial case, this question
can be expressed as: what can we gain by estimating [ in the regression
model based on spatial assumptions instead of using simple standard regres-

sion specifications?

A number of authors have investigated the efficiency of OLS relative to GLS
estimator when the errors are serially or spatially correlated by using va-
rious efficiency criteria (see Bloomfield and Watson, 1975; Krimer, 1980;
Kramer and Donninger, 1987; Haining, 1990; Griffith, 1988; Cordy and Grif-
fith, 1993; Kréamer and Baltagi, 1996). The most remarkable feature of the
results obtained is that the relative efficiency depends mainly on the error
process considered and the degree of correlation. Another aspect of the re-
sulting analysis shows the behaviour of the relative efficiency of OLS when

the correlation parameter tends toward the boundary of the parameter space.

In this paper, bounds for the efficiency of OLS relative to GLS estimator of 3
in model (1) under first-order spatial error process are constructed by using
the measure of efficiency based on
- the euclidean norm of the difference PxV, — V,Py, Px = X(X' X)) 'X’
- the ratio of the traces of the covariance matrices of X3 and X3

- the ratio of the determinants of the covariances of 3 and B



2 Bounds for the relative Efficiency of OLS Estimator

In order to analyse the efficiency of OLS relative to GLS estimator, one needs
the structure of the covariance matrix of the disturbance vector u. So, we
start by specifying stationary first-order spatial error processes.

Let the components of u follow a first-order spatial moving average (MA(1))

process
T
u; = prijej + €
=1
or, in matrix form
u=pWe+e |, (2)

where p denotes a spatial correlation coefficient and € an error term with
E(e) = 0 and Cov(e) = oI (I is the T-dimensional identity matrix). W is
a T x T matrix whose elements are known nonnegative weights defined by
(see Cliff and Ord, 1981, pp. 17-19)
> 0 , if counties i and j are neighbours (i # j)
Y =0 , otherwise

The element w;; of the weights matrix W measures the strength of the effect
of county j on county i.

Under first-order spatial autoregressive (AR(1)) process, the components of

u follow the pattern

T
U; = prijuj + €;
7j=1
or, in matrix form
u=pWu+e . (3)

Equations (2) and (3) can be written as
u=(I+pW)e and u=(I-pW) e |, (4)

respectively, where in the AR(1) case the matrix I —p W must be nonsingular.

From (1) and (4), we obtain four possible structures of Cov(u) = o2V, for



the first-order spatial error process:

(L +pW)I +pW') : MA(1)
V- I+ p,W) : MA(1)— conditional 5)
(= W)= pW')~ & AR(1)

AR
(I —pW)™t : AR(1) — conditional

\

To ensure that V, is positive definite, the possible values of p must be iden-
tified (see Horn and Johnson, 1985, p. 301). According to the assumptions
given in model (1) the matrix V, has identical diagonal elements, and denot-

ing this element by v, we get

Cov(u) =0?V, = (v@)V =02V (6)

€

where V' = (1 /9V,, and 02 = vo? is the variance of the disturbances u;,
t=1,--,T. Using the above assumptions under spatial process we can now

write model (1) as the familiar general linear regression model

y=XB+u , Eu)=0 , Cov(u)=0o2V . (7)

u

Consider the measure of efficiency based on the euclidean norm of the dif-

ference PxV — V Px defined by (see Bloomfield and Watson, 1975)

1
ei(p) = §||PXV — VPx|P

= Str((PV — VP (PV — V)

= tr(PxV?) — tr (PxV)* . (8)

When e;(p) = 0, the OLS estimator 3 can be applied without loss of effi-
ciency whereas a loss of efficiency is expected if e;(p) # 0.

Let 41;(A) denote the i-th eigenvalue of a T' x T matrix A. Under the as-
sumptions that X' X = I, V positive definite and 7" > 2k, Bloomfield and
Watson give the following upper bound for e;(p):

;(Mi(v) —pr—in(V))? 9)

A~

el(p) <



where the eigenvalues of V' are in ascending order.

Remarks:

When there are big differences within the k pairs (u;(V'), pr—_iz1(V)) of the
eigenvalues of V', then the bound in (9) will be large.

For the matriz X with full column rank, there is no loss of generality in

assuming that X' X = T because under the transformation
y=X0+u (10)

with X = X(X'X)™Y2 and § = ( XX)'23 the condition X' X = I is valid
for all X, and the OLS and GLS estimators of § are given by 3 = ( X X)~1/2§
and B = ( XX) Y25, respectively. 6 and 6 are the estimators of & in (10).

By inserting V' = (1 /9Vi in (8), we have

r(p) = —lir(PxV2) — tr (PV2)?). (1)

Using the result of Bloomfield and Watson (1975), under the assumption
that X' X = I, V, positive definite and 7' > 2k, and applying (11) we obtain

(p) < g ) — (V) (12)

=1

where the eigenvalues of V, are in ascending order.

In the following the upper bounds of e;(p) will be given, by applying the

relationship given in (12) under some assumptions on the weights matrix.

Corollary 1
Let X'X = I and T > 2k. When the components of the disturbance vector

u in model (7) follow a conditional spatial MA(1) process, then

0

er(p) < D (W) = prmia (W) (13)

=1



Proof:

For a conditional spatial MA(1) process the matrix V, is given by V, =
(I + pW), with W being symmetric. The diagonal elements of V, are all
equal to one because the respective elements of the weights matrix are all

equal to zero. This implies that v = 1. Furthermore,
pi(Ve) =1+ ppa(W) (14)

where the eigenvalues p; (Vi) and p;(W), i =1,--,T are in ascending order.

Inserting (14) in (12) completes the proof. <&

Remarks:

The bound in (13) will be large when there are large differences within the
k pairs of eigenvalues (p;(W), pr—is1(W)) of the matriz W. That is, the
efficiency of OLS relative to GLS estimator will be lower when the difference
within the pairs of eigenvalues of W are large.

The result of Corollary 1 also holds for a conditional spatial AR(1) process
if W is orthogonal.

If the row sums of W are equal to one, then ei(p) < kp?® because the absolute
value of the eigenvalue p;(W) is less than or equal to one for all i (see

Graybill, 1983, p. 98).

Corollary 2
Assume that W is orthogonal and symmetric. Let X' X =T and T > 2k.
When the components of the disturbance vector u in model (7) follow a

spatial MA(1) or AR(1) process, then

4 k p?

erfp) < m



Proof:
MA (1) process:
Under a spatial MA(1) process we have

Vi

(I+ pW)(I 4 pW')

From the assumption that the weights matrix W is orthogonal and symmetric
it follows that
Ve=Q0+p)I+2pW
implying v = 1 + p* and u; (Vi) = (1 + p?) + 2 pp(W). Inserting these
eigenvalues in (12) we get
2 k

P S (W) = g (W))?

al) < Ty pp L

Since W is orthogonal and symmetric we have u;(W) € {— 1,1}, which gives
ei(p) < (4kp?) /(1 + p?)*.

AR(1) process:
Under a spatial AR(1) process the matrix V; is given by

Vo= (1= pW) (I = pW')~!

When the weights matrix W is assumed to be symmetric and orthogonal, we
obtain (I — pW)~! = (1 /(1= p*))(I + pW) (see Searle, 1982, p. 137), and
V. has the form

1 2
Vi = m((lﬂLp)[Jr?PW))

This implies that v = (1 + p?)/(1 — p*)* and

1
pi(Vs) = m((l +0%) + 2 pu(W)) (15)
where the eigenvalues are in ascending order. Inserting (15) in (12) and using
the fact that u;(W) € {— 1,1} completes the proof. &



Remark:
If the diagonal elements of V., are not identical, then (9) holds when V, is
used instead of V.

The following result shows that the OLS estimator can be applied without

loss of efficiency as p goes to one.

Theorem 1
Let R(X) be the k-dimensional space spanned by the columns of X, and let
(:=(1,---,1) € R(X). Iflim, ,; V = cll , c € IR, then lim, ,; e;(p) =0 .

Proof:

The efficiency e;(p) can be written as:

er(p) = tr(PxV? — tr (PxV)? = tr(PxV(V — PxV))
= tr(PXVMXV)

When the condition lim,_,; V' = ctl holds, we have

lim e, (p) = c2tr(Px 0 Mx ()

p—1
Since £ € R (X) we get Mx{ = ( I— Px)X~ =0, v being a k x 1 vector, and
this implies lim, ,; €;(p) =0 . &

If the ratio of the mean squared errors are used to define the measure of

efficiency of OLS relative to GLS estimator, then we have (see Kréamer, 1980)
tr (Cov(X

e2(p) = tr ECO’UEXE;;

with Cov(X ) = 02X (X'V X)X’ and Cov(Xj3) = 02PxV Py.

Using this measure of efficiency a number of papers investigate the efficiency

of OLS relative to GLS estimator under stationary AR(1) process in time

series and spatial models (see Kramer, 1980, 1984; Kramer and Donninger,

1987; Kramer and Baltagi, 1996).



The following theorem gives a lower bound for e;(p) which holds for all co-

variance structures under general linear regression model (7).

Theorem 2
Let X' X = I. Then

k
E (v
kzz_l :u’l( ) S 62([)) S 1 . (16)
it Hr—k+i(V)
Proof:
Since o2, in ey(p), cancels out, we set o2 = 1 in calculating covariances.

Under the assumption X' X = I, we have
tr (Cov(X3)) = tr (PxVPx) = tr (X VX) (17)

and

tr (Cov(XpB)) = tr ( X(XVIX)'X) = tr (X VIX)!
= > m((XVX)™

=1
k 1

= 2

2 XV (18)

Applying Poincaré separation theorem we obtain the following inequalities

(see Horn and Johnson, 1985, p. 190):

Sou(V) < tr(Coo(XB)) < 3 prpeiV)

=1 =1

(VY < w(XVTX) < (VT (19)

The second inequality in (19) implies

1 1
e S
pi(X'VAIX) T pp (V)



Using (17) to (19) we have

tr (Cov(X3))

v

~

tr(Cov(XP)) < ) pr—kn(V) (20)

From (20) it is clear that

Zf:l /M(V)
Z§:1 NT—k+i(V)

< esp)

The inequality es(p) < 1 follows from the optimality of GLS estimator (see
Krémer, 1980). &

Remark:

If there is a large difference between the sum of the k smallest and k largest
eigenvalues of V', then the efficiency of OLSE will be small, but never less
than the ratio of the smallest and the largest eigenvalues pimin(V')/ thmaz (V).

For spatial models with first-order spatial error process the following result

is obtained.

Corollary 3
Assume that the matrix X fulfills X' X = I. Let the weights matrix W be

symmetric with row sums equal to one. If the components of the disturbance

vector u follow a spatial MA(1) or AR(1) process, then

: p>0 . (21)

10



Proof:
MA (1) process
Under a spatial MA(1) process with symmetric weights matrix the eigenval-

ues of V, are given by

where the eigenvalues of W and V, are in ascending order. When the row
sums of W are all equal to one, then the absolute value of y;(W) is less than

or equal to one for all ¢ (see Graybill, 1983, p. 98). This implies

%(1—p)2 < (V) < %(lﬂLp)2 , p>0 (22)

so that applying Theorem 2 gives (21).

AR(1) process
Using the same reasoning as in the MA(1) case we obtain the following

bounds for the eigenvalues of V:

1 1
<< ———— >0 23
U(1+p)2_u( )_U(l_p)2 p (23)
and (21) follows by applying Theorem 2. O

In what follows we use a measure of efficiency which is based on the deter-
minants of the covariances of the least squares estimators, and give a lower
bound for the efficiency of OLS relative to GLS estimator.

Consider the measure of efficiency given by (see Watson, 1955)

e (p) o |COU(5)| _ |XIX|2
T Cou(B)] T IXVXTIXVEIX]

where | - | stands for determinant. The matrices X' VX and X'V 'X are
positive definite because V' is positive definite and X of full column rank.
This implies that e3(p) > 0.

Let A and B be T x k matrices and assume that B'B is nonsingular. The

11



well known Cauchy-Inequality concerning the determinants of two matrices
A and B states that |A'B|> < |A'A|| BB| (see Basilevsky, 1988, p. 167).
Using A = V/2X and B = V12X, we get | X' X|* < [ X'VX]|| X'V 1X].
This implies, under the assumption X' X = I, e3(p) < 1.

The following theorem gives a lower bound for e3(p).

Theorem 3
Let X' X = I. Then
(V')
es(p) > _ 24
3( ) izl—IlﬂT—k+i(V) ( )
Proof:

By applying Poincaré separation theorem we get

[Mw(v) < H/M(X’VX) < [ pr—s+:(V)

=1 =1 =1

Hﬂi(v_l) < MwXVTX) < [T pr—res(V

i=1 i=1
where the eigenvalues are in ascending order. This implies
’ k ! k
(X VX = [[m(XVX) > [[m(V)
i=1 i=1

so that

Furthermore,
, k
X VX < [ prss(V)
i=1

k
XVIX] < [T eV
i=1

12



This implies

1 . ﬁ 1
I X'VX] 7 i prks(V)
k
, 1
X VX| < (25)
Z-:Hl (V)
According to the definition, we have
C/IX'VX|
63(p) - |X/V_1X| )
and using (25) yields the asserted result. <&

Remark:
Bloomfield and Watson (1975) give a narrower lower bound for es(p) under
the additional assumptions that T > 2k and k > 1.

Under first-order spatial error process we get the following result.
Corollary 4

Assume that X' X = I. Let the weights matrix ¥ be symmetric with row
sums equal to one. If the components of the disturbance vector u follow a

spatial MA(1) or AR(1) process, then

(1—p*
e —_ >0
Proof:
The proof follows by applying Theorem 3 using the bounds of the eigenvalues
of the matrix V' given in (22) and (23). &
Remark:

When the diagonal elements of Vi are not identical, meaning that the uls
have different variances, we get (see Theorems 2 and 3)

Zf:l Hz‘(V:k)
Z?:l NT—k+i(V*)

es(p) 2>

oV
i=1 :U/T—k-l-i(v*)

v

e3(p)

13
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