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1 Introduction

Consider the linear regression model for spatial correlation

y = X� + u ; u = C� ; (1)

where y is a T � 1 observable random vector, X is a T � k matrix of known

constants with full column rank k, � is a k � 1 vector of unknown para-

meters, � is a T � 1 random vector with expectation zero and covariance

matrix Cov(�) = �2� I (I is the T -dimensional identity matrix and �2� an un-

known positive scalar). C denotes a T �T matrix such that the product CC
0

is positive de�nite and has identical diagonal elements.

The ordinary least squares (OLS) estimator of the unknown parameter � in

model (1) is given by �̂ = ( X
0

X)�1X
0

y with the covariance matrix Cov(�̂) =

�2� (X
0

X)�1X
0

V�X(X
0

X)�1, where V� = CC
0

.
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The OLS based estimator s2 = ( y� X�̂)
0

(y � X�̂)=(T � k) of the distur-

bance variance, under linear regression model with correlated disturbances,

is biased and inconsistent in general (see Dhrymes 1978, Chapter 3). This

means that when the disturbances are correlated, the standard formulae for

testing hypothesis and constructing con�dence intervals with respect to the

regression coe�cients lead to incorrect conclusions.

Several papers investigate the behaviour of the bias of s2 under different cor-

relation structures (Martin 1974; Neudecker 1977, 1978; Dufour 1986, 1988;

Kr�amer 1991; Kiviet and Kr�amer 1992; Fiebig et al., 1992; Song 1994). In

contrast, there are very few published studies on the problem concerning the

inconsistency of the variance estimator in the presence of correlation. Based

on the sample variance of the disturbances, Kr�amer and Bergho� (1991) give

a simple su�cient condition for the consistency of s2. Baltagi and Kr�amer

(1994) deal with the consistency of the estimator in the linear regression

model with error component disturbances.

The present paper provides conditions for the consistency of the estimator

s2 when the disturbances follow a �rst-order spatial error processes.

2 Consistency of s
2

Spatial dependence among the disturbance terms can be expressed in a num-

ber of ways. In general, an autoregressive or a moving average formulation

could be used as is frequently done in time series analysis.

Let the components of u follow a stationary �rst-order spatial autoregressive

(AR(1)) process

ui = �
TX
j=1

wijuj + �i

or, in matrix form

u = �W u + � ; (2)
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where � denotes a spatial correlation coe�cient. W is a weights matrix with

known nonnegative weights de�ned by (see Cli� and Ord, 1981, pp. 17-19)

wij

8><
>:

> 0 ; if regions Ri and Rj are neighbours (i 6= j)

= 0 ; otherwise :

The element wij of the weights matrix shows the strength of the e�ect of

region Rj on region Ri.

When the components of u are of the pattern

ui = �
TX
j=1

wij�j + �i

or, in matrix form

u = �W � + � ; (3)

then we have another scheme which is known as �rst-order spatial moving

average (MA(1)) process.

Equations (2) and (3) can be written as

u = ( I� �W )�1 � and u = ( I+ �W ) � ; (4)

respectively, where in AR(1) case the matrix I � �W must be nonsingular.

From (1) and (4), we get four possible structures of Cov(u) = �2�CC
0

= �2�V�

for �rst-order spatial error process:

V� =

8>>>>>>><
>>>>>>>:

(I + �W )(I + �W
0

) : MA(1)

(I + �W ) : MA(1)� conditional

(I � �W )�1(I � �W
0

)�1 : AR(1)

(I � �W )�1 : AR(1)� conditional :

(5)

Note that the possible values of � must be identi�ed to ensure that V� is

positive de�nite (see Horn and Johnson, 1985, p. 301). According to the

assumptions given in model (1) the matrix V� has identical diagonal elements,

and denoting this element by �, the covariance of u can be expressed as

Cov(u) = �2� V� = ( ��2� )V = �2u V ; (6)
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where V = (1 =�)V�, and �2u = ��2� is the variance of the disturbances ui,

i = 1 ;� � � ; T . Using the above assumptions under spatial process we can now

write model (1) as the general linear regression model:

y = X� + u ; E(u) = 0 ; Cov(u) = �2u V : (7)

Let �i(A) be the i-th eigenvalue of the matrix A, and let
p
! and

q:M:
�! denote

convergence in probability and in quadratic mean, respectively. Under the

assumptions of model (7) Kr�amer and Bergho� (1991) state that the OLS

based estimator S2 = ( T� k)s2=T of �2u is weakly consistent if

u
0

u

T

p
! �2u and �max(V ) = o(T ) ; (8)

where �max(V ) denotes the maximum eigenvalue of V . In other words, S2 is

weakly consistent if the sample variance of the true disturbances is consistent,

and �max(V )=T ! 0 as T !1 .

Whether the above result is operational under spatial error process, depends

on the form of the error process and the weights matrix W . Note that the

consistency of s2 is implied by that of S2 because (T � k)=T goes to one as

T goes to in�nity.

In the following, conditions for the consistency of S2 in the presence of spatial

correlation will be given. For this purpose, the following results are needed.

De�nition

An interval (�l; �u), �l; �u 2 [�1; 1], where �l � �u, for a real valued function

f : ( �l; �u)! IR is said to be suitable if

lim
(�;T )!(�u;1)

f(�)

T
= lim

(�;T )!(�l;1)

f(�)

T
= 0 ; (9)

that is, for �! �l or �! �u we have f(�) = o(T ). 3

In this paper, we focus on the positive values of �, so the suitable interval in

the above de�nition becomes (�l; �u) with �l; �u 2 (0; 1].
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Lemma 1

Suppose that the weights matrix W is symmetric with row sums equal to

unity, and let V = (1 =�)V�, where V� is as given in (5) with diagonal elements

all equal to �. Then �max(V ) = o(T ) for values of � from a suitable interval

(�l; �u), �l > 0.

Proof:

The asserted result will be proved for MA(1) and conditional AR(1) cases

given in (5). For the proofs of AR(1) and conditional MA(1) cases, similar

arguments can be used.

Under �rst-order spatial moving average process the matrix V is given by

V = (1 =�)(I + �W )(I + �W
0

). Using the assumption that the matrix W is

symmetric we can express the eigenvalues of V in terms of the eigenvalues of

W as

�i(V ) =
1

�
(1 + ��i(W ))2 ; � ; � > 0:

Denoting the largest eigenvalue of the weights matrix W by �max(W ), and

assuming that the eigenvalues ofW and V are in ascending order for positive

values of � we have

�i(V ) �
1

�
(1 + ��max(W ))2 :

If the row sums of W are all equal to one, then the absolute value of �i(W )

is less than or equal to one for all i (see Graybill, 1983, p. 98). This implies

that �max(W ) � 1 and

�i(V ) �
1

�
(1 + �)2 ; � > 0 :

From this we get �max(V ) = o(T ) .

For the conditional AR(1) case, the matrix V is given as V = ( �(I��W ))�1,

and

�i(V ) =
1

� (1� ��i(W ))
:

Analogous to the MA(1) case we get, for positive values of �,

�i(V ) �
1

� (1� �)
: (10)
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Using (10) we obtain �max(V ) = o(T ). 3

Lemma 2

Assume that the weights matrix W is symmetric with row sums equal to

unity. When the components of u follow �rst-order spatial MA(1) or AR(1)

process, then for values of � from a suitable interval (�l; �u), �l > 0,

u
0

PXu

T

p
! 0 ;

where PX = X(X
0

X)�1X
0

.

Proof:

Let tr(A) denote the trace of the matrix A. For the expectation of u
0

PXu=T

we have (see e.g. Magnus and Neudecker, 1988, p. 247)

E(
u

0

PXu

T
) =

1

T

�
tr (PX Cov(u)) + E(u)

0

PXE(u)
�

=
�2u
T

tr (PXV ) : (11)

The trace of the matrix product PXV can be expressed as

tr (PXV ) = tr (Z
0

V Z) =
kX

i=1

�i(Z
0

V Z) ;

where Z = X(X
0

X)�1=2. This implies

E(
u

0

PXu

T
) =

�2u
T

kX
i=1

�i(Z
0

V Z) :

From Poincar�e separation theorem (see Horn and Johnson, 1985, p. 190) it

follows that all eigenvalues of Z
0

V Z are less than or equal to �max(V ). Using

this fact gives

E(
u

0

PXu

T
) �

�2u
T

k �max(V ) : (12)

By applying Lemma 1 we get �max(V ) = o(T ), and from (12) it is clear that

E(
u

0

PXu

T
)! 0 ( T!1 ) :
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Since PX is symmetric and idempotent, u
0

PXu � 0. Furthermore, for �� > 0

we have (see Davidson, 1994, p. 132: Markov-Inequality)

P (
u

0

PXu

T
> ��) � E(

u
0

PXu

�� T
) ! 0 ( T!1 ):

This means, by de�nition, (u
0

PXu)=T
p
! 0: 3

Given model (1), suppose that the error vector � has the following �nite

moments:

E(� 
 ��
0

) = � and E(��
0


 ��
0

) = 	 ; (13)

where 
 denotes the Kronecker-product.

The following theorem provides a su�cient condition for the consistency of

S2 under �rst-order spatial error processes that can be veri�ed in practice.

In what follows Ci: denotes the i-th row of the matrix C in model (1).

Theorem 1

Let the weights matrix W be symmetric with row sums equal to unity. Sup-

pose that the components of � in model (1) are independent and identically

distributed, and the components of u follow a �rst-order spatial AR or MA

process. Then S2 is weakly consistent for �2u if for positive values of � from

a suitable interval (�l; �u), �l > 0, and two neighbouring regions Ri and Rj

tr (C
0

i:Cj:) = o(T ) : (14)

Proof:

The OLS based estimator S2 can be expressed as

S2 =
u

0

MXu

T
=

u
0

u

T
�

u
0

PXu

T
:

From Lemma 2 we have
u

0

PXu

T

p
! 0 ;

so it su�ces to show, under condition (14), that

u
0

u

T

p
! �2u :
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The theorem will be proved if, for T !1 , we are able to show

E(
u

0

u

T
)! �2u and V ar(

u
0

u

T
)! 0 : (15)

For the disturbance vector u = C�, as de�ned in (1), the following holds:

E(u
0

u) = E(�
0

C
0

C�) = tr (C
0

C�2� I) = �2� tr (CC
0

) :

Since the matrix V� = CC
0

has diagonal elements which are all equal to �,

E(u
0

u) = �2� tr (V�) = �2� T � ;

and from the expression Cov(u) = �2uV = �2�V� = � �2�V , it follows that

E(
u

0

u

T
) = � �2� = �2u ;

showing the �rst part of (15). Now, to prove the second part of (15) which

states

V ar(
u

0

u

T
) = E(

u
0

u

T
)2 � (�2u)

2 ! 0 ( T!1 );

it su�ces to show that E((u
0

u)=T )2 converges to (�2u)
2.

Consider E(u
0

u)2:

Since W is symmetric, we obtain C = C
0

implying u
0

u = �
0

CC
0

� = �
0

V��,

and

E(u
0

u)2 = E(�
0

V���
0

V��) : (16)

Using the result of Rao and Kle�e (1988, p. 32) we get

E(�
0

V���
0

V��) = E(tr (V���
0

V���
0

))

= tr ((V� 
 V�)	) ; (17)

where 	 = E(��
0


 ��
0

).

When the components of � are independent and identically distributed, then

E(�i�j�i�) =

8><
>:

'� ; i = j = i�

0 ; otherwise
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and

E(�i�j�i��j�) =

8>>>><
>>>>:

(�2� )
2 ; pairwise equal

' ; i = j = i� = j�

0 ; otherwise ;

where '� = E(�i)
3 and ' = E(�i)

4.

Let 	ij be a T � T symmetric matrix with elements

	ij(i
�; l) = 	ij(l; i

�) =

8><
>:

�4� ; i = l; j = i�

0 ; otherwise :

Further, let 	1;	2; : : : ;	T be T�T diagonal matrices with diagonal elements

equal to ' or �4� such that

	j(ii) =

8><
>:

' ; i = j

�4� ; otherwise :

For the expectation of the Kronecker-product 	 we obtain

	 =

0
BBBBBBB@

	1 	12 � � � 	1T

	21 	2 � � � 	2T

...
...

. . .
...

	T1 � � � 	TT�1 	T

1
CCCCCCCA

:

This matrix can be written as

	 = �4� IT 2 + ( '� �4� )I
� + �4�	

� ; (18)

where IT 2 denotes the T 2 � T 2 identity matrix. I� and 	� denote T 2 � T 2

matrices given as

I�ij =

8><
>:

1 ; i = j = ( i� � 1)T + i� ; i� = 1 ;� � � ; T

0 ; otherwise
; (19)

	� =

0
BBBBBBB@

	0 	�12 � � � 	�1T

	�21 	0 � � � 	�2T
...

...
. . .

...

	�T1 � � � 	�TT�1 	0

1
CCCCCCCA
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with 	0 := 	�ii = OT�T , where OT�T denotes the T � T matrix whose

elements are all equal to zero. The T � T matrix 	�ij is given by

	�ij(i
�; l) = 	�ij(l; i

�) =

8><
>:

1 ; i = l; j = i�

0 ; otherwise :

and is symmetric according to the de�nition .

From (16), (17) and (18), we get

E(u
0

u)2 = tr ((V� 
 V�)	)

= tr ((V� 
 V�)(�
4
� IT 2 + ( '� �4� )I

� + �4�	
�))

= tr ((V� 
 V�)�
4
� IT 2) + tr ((V� 
 V�)('� �4� )I

�) + tr ((V� 
 V�)�
4
�	

�):

(20)

The �rst term of the right hand side of equation (20) can be expressed as

tr ((V� 
 V�)�
4
� IT 2) = �4� tr ((V� 
 V�) = �4� tr (V�)tr (V�) = �4� �

2 T 2 ; (21)

because tr (V�) = � T (see Magnus and Neudecker, 1988, p. 28).

By the assumption in model (1) all diagonal elements of V� 
 V� are equal

to �2, and the matrix I� has exactly T diagonal elements which are equal to

unity (zero otherwise). Thus for the second term we have

tr ((V� 
 V�)('� �4� )I
�) = ( '� �4� )T �2 : (22)

Since V� is symmetric, we can write the third term as (see Magnus and

Neudecker, 1988, p. 30)

�4� tr ((V� 
 V�)	
�) = �4� (vec (V� 
 V�))

0

vec (	�) : (23)

Denoting the j�th column of an m � n matrix A by aj, vec stands for a

vector of size mn with a1 as its �rst m elements, a2 its second m elements

and so on.

For Ri and Rj being neighbours, E(uiuj) = �2�V�(i; j), and by successive

calculation we get

�4� (vec (V� 
 V�))
0

vec (	�) = 2
TX
i

giX
j

(E(uiuj))
2 ; (24)
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where gi denotes the number of neighbours for the i-th region Ri. Further-

more, ui = Ci:� = �
0

C
0

i: and uj = Cj:� . From this we obtain

E(uiuj) = E(�
0

C
0

i:Cj:�) = E(tr (C
0

i:Cj:��
0

)) = �2� tr (C
0

i:Cj:) : (25)

From (23) to (25) follows

�4� tr ((V� 
 V�)	
�) = 2 �4�

TX
i

giX
j

(tr (C
0

i:Cj:))
2 : (26)

Using equations (20) to (22) and (26) for values of � from a suitable interval

(�l; �u) we obtain

lim
T!1

E(
u

0

u

T
)2 = lim

T!1
�4� �

2 + lim
T!1

('� �4� )
�2

T
+ lim

T!1

2 �4�
T 2

TX
i

giX
j

(tr (C
0

i:Cj:))
2

= �4� �
2 = ( �2

u)
2 : (27)

The last expression holds because of the assumption tr (C
0

i:Cj:) = o(T ) 3

Example

Let the weights matrix W be of the pattern
8<
:

w1;T = w2;T�1 = wi;T�i+1 = 1 ; i = 3 ;4; : : : ; T

wi;j = 0 ; otherwise .
(28)

Furthermore, let the components of � in model (1) be independent and iden-

tically distributed. If the components of u follow a �rst-order spatial MA

process, then S2 is weakly consistent for �2u.

This can be proved by showing that, for � from a suitable interval (�l; �u),

condition (14) is ful�lled. Under a spatial MA(1) process we have V� =

(I + �W )(I + �W
0

), and this means C = I + �W . If the weights matrix W

is of the form (28), then C is symmetric, and the regions Ri and Rj with

j = T � i + 1 are neighbours. Denoting a T-dimensional vector whose i-th

element is equal to unity (zero otherwise) by ~ei, we get

C
0

i: = ~ei + �~ej :
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Using this yields

C
0

i:Cj: = (~ei + �~ej)((~ej)
0

+ � (~ei)
0

) ;

implying

tr (C
0

i:Cj:) = tr (~ei(~ej)
0

) + tr (�~ej(~ej)
0

) + tr (�~ei(~ei)
0

) + tr (�2 ~ej(~ei)
0

) :

= 2 � ; (29)

because tr (~ei(~ej)
0

) = 0 and tr (~ei(~ei)
0

) = tr (~ej(~ej)
0

) = 1. From (29) it is

clear that, for � from a suitable interval (�l; �u), tr (C
0

i:Cj:) = o(T ), and the

weak consistency of S2 for �2u follows from Theorem 1. 3

The next result gives necessary and su�cient condition for the consistency

of S2 under �rst-order spatial error process.

Theorem 2

Let the weights matrix W be symmetric with row sums equal to unity, and

suppose that the components of u follow a �rst-order spatial MA or AR

process. Then S2 is weakly consistent for �2u if and only if, for values of �

from suitable a interval (�l; �u), �l > 0,

u
0

u

T

p
�! �2u : (30)

Proof:

(su�ciency)

Consider the OLS based estimator

S2 =
u

0

MXu

T
=

u
0

u

T
�

u
0

PXu

T
:

From Lemma 2 we have
u

0

PXu

T

p
�! 0 ;

and S2 p
�! �2u follows from the assumption u

0

u=T
p
�! �2u.
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(necessity)

If S2 is weakly consistent, then S2 p
�! �2u. This means

u
0

u

T
�

u
0

PXu

T

p
�! �2u :

From Lemma 2 it holds u
0

PXu=T
p
�! 0. So, the statement that S2 p

�! �2u

is valid if and only if u
0

u=T
p
�! �2u. 3
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