
Peaks or tails -

What distinguishes �nancial data?

by Walter Kr�amer and Ralf Runde1

Abstract

We argue against the view that it is mostly the peaks of the empirical densities

of stock returns (and of other risky returns as well) that set such data aside

from "normal" variables. We show that peaks depend on sample size and

on the way returns are standardized, and that for given data sets of stock

returns, both higher peaks and lower peaks than in a standard normal case

can be obtained.

JEL-classi�cation: C13, C14

1We are grateful to Deutsche Forschungsgemeinschaft (DFG) for �nancial support, and

to Adrian Pagan for stimulating discussion and comments. Stock returns were obtained

from Deutsche Finanzdatenbank (DFDB).
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1 Peaks versus tails as indicators of leptocur-

tic stock returns

Starting with Mandelbrot (1963), the normality of changes of speculative

prices, which since Bachelier (1900) had been considered a good �rst appro-

ximation, has been in much dispute. In particular, it is by now well known

that returns on speculative assets typically exhibit higher than normal kurtosis

as expressed in both higher peaks and fatter tails than can be found in normal

data. Figure 1 (from Granger and Orr, 1972) is a typical diagram which has

in various versions been used to illustrate this fact.

Figure 1: Typical densities of �nancial as compared to "normal" data

Below we argue against putting too much emphasis on peaks, and advocate to

focus on the tails. As we demonstrate below, and as has long been known, the

tails of a distribution are robust against the particular standardisation used,

whereas the peak is not. For instance, if the second moment of the data does

not exist, then the usual standardisation, i.e. dividing the returns by their
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empirical standard deviation, will always produce sharp peaks in the empir-

ical densities which are getting ever sharper as the sample size increases (in

the limit, all empirical probability mass is concentrated in arbitrary intervals

around the origin).

While such peaks correctly point towards deviations from normality and are

therefore often correctly suggested as rough indicators of excess kurtosis (see

e.g. Pagan 1994, 1996), their exact magnitude is an artifact of sample size, so

a di�erent standardisation like dividing the raw data by their interquartile or

interdecile range appears preferable from a statistical point of view: as sample

size increases, the empirical density then converges to a nondegenerate limit,

and any �nite-sample properties of the empirical density can unambiguously

be viewed as estimates for some underlying population properties.

However, if standardisation is done by interquantile ranges rather than by stan-

dard deviations, many empirical return distributions have smaller peaks than

the standard normal density, as we demonstrate with German stock returns

below. The message is: return-histograms based on conventional standardisa-

tion of returns are a good indicator of nonnormality, but a bad estimator of the

true densities of returns. If a good estimator of the return density is used, the

peak in the empirical density is no longer a reliable indicator of nonnormality.

3



2 Normalisation with non-existing second mo-

ments

First, we consider the e�ect of dividing the raw data by their empirical standard

deviation when the population second moment is in�nite. Figure 2 shows the

estimated density of n = 100 independent symmetric stable random variables,

X1; : : : ; X100, with location parameter 0, scale parameter 1 and characteristic

exponent (tail index) � = 1 :5 (the stable variates were generated along the

lines of Chambers et al., 1976). With a sample of that size, the peak of the

empirical density is 0.557 - slightly higher than that of the standard normal

distribution. The density estimate was obtained by averaging 500 empirical

densities, each obtained by a non-parametric kernel-estimate with a biweight-

kernel and a bandwidth of 0.7 (for details see e.g. Silverman, 1986).

Figure 2: Standard normal distribution versus

standardized empirical stable distribution with sample size n = 100

The peak increases rapidly as sample size increases (�gure 3), surpassing the

standard normal peak by ever wider margins.
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Figure 3: Standard normal distribution versus standardized

empirical stable distribution with sample size n = 1000, 5000 and 10000

However, quite a di�erent scenario emerges when standardisation is done dif-

ferently. Figure 4 shows the corresponding empirical density of independent

symmetric stable random variables for sample size 10000, where the variates

were divided by their empirical interquartile range rather than by their em-

pirical standard deviation. Contrary to �gure 3, the peak is now only slightly
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above the normal peak, and at the same hight as for smaller sample sizes (the

respective �gures for n = 100, n = 1000 and n = 5000 are virtually identical

to �gure 4 and are therefore not explicitely given here).

Figure 4: Standard normal distribution versus standardized

stable distribution, n = 10000

3 Application to German stock returns

Next we consider di�erent standardisations of "real" data. Figures 5, 6 and

7 show the empirical density of n = 7993 daily returns of the German stock

price index DAX, from Jan. 4, 1960 to Jan. 31, 1992. In �gure 5, returns

are standardised by the empirical standard deviation, in �gure 6, returns are

standardized to have an interdecile range of 2.564 and in �gure 7, returns

are standardized to have an interquartile range of 1.35 (the interdecile and

interquartile ranges, respectively, of the standard normal distribution).
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Figure 5: Standard normal distribution versus DAX returns

(normalisation with empirical standard deviation)

Figure 6: Standard normal distribution versus DAX returns

(normalisation with interdecile range)

The �gures show that higher-than-normal peaks are an artifact of the standard-

isation procedure: The conventional standardisation based on sample standard
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deviation produces a peak well above the normal (�gure 5), but when the in-

terdecile range is used for standardisation, the peak is getting smaller (�gure

6), and it falls below the peak of the standard normal when the interquartile

range is used (�gure 7).

Figure 7: Standard normal distribution versus DAX returns

(normalisation with interquartile range)

4 Conclusion

This note has shown that the peaks of empirical densities of stock returns are

as much a function of the particular standardisation procedure as of the data

itself, and that judging "perverse return behaviour" by the peaks is only valid

when returns are standardized by empirical standard deviations.

8



References

Bachelier, L. (1900): "Th�eorie de la sp�eculation." Annales de l' �Ecole Nor-
male Sup�erieure 17, Ser. 3, 21 - 86.

Chambers, B.W.; Mallows, C.L. and Stuck, B.W. (1976): "A method
for simulating stable random variables." Journal of the American Statis-
tical Association 71, 340 - 344.

Granger, C. and Orr, D. (1972): "In�nite variance and research strategy
in time series analysis." Journal of the American Statistical Association
67, 275 - 285.

Mandelbrot, B. (1963): "The variation of certain speculative prices." Jour-
nal of Business 36, 394 - 419.

Pagan, A. (1993): Discussion of D.J. Du�e and R. Engle: "Finance and
ARCH", ESEM 1994, Uppsala.

Pagan, A. (1996): "The econometrics of �nancial markets." Journal of Em-
pirical Finance, Vol. 3, No. 1 ........

Silverman, B.W. (1986): Density estimation for statistics and data analysis,
Chapman and Hall, London.

9


