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Abstract

We use Dynamic Bayesian networks to classify business cycle phases.

We compare classi�ers generated by learning the Dynamic Bayesian net-

work structure on di�erent sets of admissible network structures. Included

are sets of network structures of the Tree Augmented Naive Bayes (TAN)
classi�ers of Friedman, Geiger, and Goldszmidt (1997) adapted for dy-

namic domains. The performance of the developed classi�ers on the given

data was modest.

1 Introduction

Business cycle research attained new attention in the last two decades. Causes
were on the one hand that cyclical changes became more important relative to
growth in developed economies, and on the other hand new theories correspond-
ing to the course of and the reasons for cyclical developments as well as improved
facilities for the analysis of empirical developments and for testing complex sys-
tems of hypotheses. The new actuality of business cycle research can also be rec-
ognized by means of numerous publications (see e.g. Filardo 1994, Symposium
on Developments in Business Cycle Research 1996) and also by the immediate
discussion of new ideas in empirical business cycle analysis (see e.g. Council of
Economic Advisers 1994).

�This work has been supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs-

bereich 475.
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In the literature, business cycles are mainly treated as a univariate phe-
nomenon. Often business cycles are analyzed by univariate time series models
ignoring the interplay of di�erent economic variables thus missing the possible
advantages of multivariate analysis. Diagnoses and predictions based on multi-
stage linked models and not only on unlinked individual predictions can lead to
better predictive quality due to pro�t from aggregation because of mutual com-
pensation of errors. Furthermore a multivariate analysis of business cycles o�ers
the possibility of analyzing changes in form, structure, and duration of business
cycles, as well as in their causes. Of special interest is the multivariate characteri-
zation of the di�erent phases of a business cycle by more economic variables than
e.g. the Gross National Product (GNP) alone and an analysis of the in
uence of
these variables.

Probabilistic inference in Bayesian networks can be used to answer diagnostic
questions of in
uence and characterization of that kind (Pearl, 1988). It has also
been shown that Bayesian networks can be used successfully for classi�cation
(Friedman, Geiger, and Goldszmidt, FGG, 1997). Dynamic Bayesian networks
(Dean and Kanazawa 1988) can model the behaviour of business cycles as a
multivariate time series. So in this paper we learn structures of Dynamic Bayesian
networks on restricted sets of network structures (inspired by the TAN-classi�er
of FGG for non-dynamic domains) using the methods in Friedman, Murphy, and
Russell (FMR, 1998) for learning in dynamic domains. The data was delivered by
the RWI (Rheinisch-Westfaelisches Institut fuer Wirtschaftsforschung) in Essen,
Germany.

The paper is organized as follows: After this introduction, Section 2 reviews
the domain and the research questions we are interested in. A short description of
our data set is given here as well. In section 3 the basic notations and de�nitions
for Bayesian networks and Dynamic Bayesian networks used in this study are
introduced. Our main focus lies on Section 4 that comprises the speci�c task of
learning Bayesian network classi�ers and how it was transformed in this study.
Section 5 contains a subsumption of results and their ratings by the domain
experts. Finally in Section 6 we sketch our future research interests.

2 Domain and Data

Researchers from the RWI developed an econometric model for predicting im-
portant aggregates of the national accounts and also for simulating important
economic policies (Rau et al. 1977).

Motivated by the increasing interest in the cyclical dimension of short term
economic development, the RWI started looking at comparable cyclical phases in
the past, when analyzing the current stage and dynamics of the German economy.

Despite the conviction of the domain experts that business cycles have to be
understood as a multivariate phenomenon, they are mainly treated univariately.
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A �rst study by Heilemann and Muench (1996) obtained promising results with
respect to the advantages of a multivariate approach.

Within the Collaborative Research Centre (SFB475) at the University of Dort-
mund a cooperation started of the researchers of the statistical department and
the researchers of the RWI. The long term goal is to characterize business cycles
by the state of stylizing economic variables. The aim is to �nd a multivariate and
more comprehensive de�nition of business cycles as hitherto that can be widely
accepted. The weights of individual variables or groups of variables for the fore-
casts of business cycles shall be identi�ed as well as their stability over time and
in international comparison.

The potentials of Bayesian networks seemed promising here. Among other
desirable properties

� their representation of uncertainty in the domain matches the representa-
tion in the econometric model of the domain experts and

� they provide the researchers with a joint probability for the economic vari-
ables along with algorithms for probabilistic inference that can be used to
answer diverse questions of characterization and diagnosis.

In this study Bayesian networks are used to classify phases of business cycles.
In future work these results will be compared with the results of other methods
applied to the problem.

2.1 Variables

The selection of predictor variables was carried out by our domain experts by
means of both theoretical deliberations and the "stylized facts" (Lucas 1983) of
the West German economy. A list of these variables is given in Table 1.

In the following sections a vector of these variables or the set of them will be
called stylized facts or Styfacts.

For the de�nition of the class variable Phase a four phase scheme is used:
upswing (1), upper turning point (2), downswing (3), and lower turning point
(4).

2.2 Training Data and Test Data

Our data set consists of quarterly measurements obtained over the period 1955/4
to 1994/4 without missing values. The data is not seasonally adjusted, but this
is balanced by the frequent use of growth rates with regard to the corresponding
quarter of the previous year (Heilemann and Barabas 1996, p.404). These 157
observations were classi�ed into business cycle phases by the domain experts
based on economic and heuristic considerations.
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Table 1: Predictor variables

Abbrevation Variable

GNP GNP, real (y)a

Consumption Private consumption, real (y)
Gov De�cit Government de�cit, percent of GNP
Earners Wage and salary earners (y)
Net exports Net exports as percent of GNP
Money M1 Money supply M1 (y)
Equipment Investment in equipment, real (y)
Construction Investment in construction, real (y)
Unit Labour Cost Unit labour cost (y)
GNP PD GNP price de
ator (y)
Consumer PI Consumer price index (y)
Short-I-Rate Short term interest rate, nominal
Long-I-Rate Long term interest rate, real

ay=yearly growth rate

We constructed the classi�cation rule without the last complete cycle and
classi�ed the remaining cases afterwards. This reduced the learning sample to
112 quarters that include 30 examples for phase 1, 18 for phase 2 , 38 for phase
3, and 26 for phase 4. The test data begins with examples for an upswing in
1983/4 and ends with an uncompleted upswing in 1994/4. There are 29 cases
of upswing, the upper turning point lasted 6 quarters, the downswing 9 quarters
and the lower turning point 1 quarter only.

Splitting the data in this speci�c manner into test and training set was mo-
tivated by the standard prognostic/forecast method for cyclical domains. It is
going to be the general setting for the evaluation of all methods that are going
to be compared in our future research.

Note, though, that there are antipodal interpretations of the results from such
a splitting by leaving-one-cycle out: On the one side it can be used to analyze the
speci�c properties of this business cycle compared to the others. On the other
side the predictive quality of the classi�ers is compared. The selected last cycle
is an extra challenge for any classi�ers: it includes the German reuni�cation in
1989 with its changes of the political and economical situation of Germany. Note
that nevertheless all data is based on the West German economy only.
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2.3 Discretizing

Being growth rates, stylized facts are naturally represented by continuous vari-
ables. However, in the analysis of business cycles discretization is of special in-
terest. It strongly in
uences the meaning of characterizations of di�erent phases
in rules like "when there is a medium rate of consumption and a low short term
interest rate then the current phase of the business cycle is with high probability
an upswing". Apart from theoretic exceptions1, classi�ers discretize the predictor
variables by separating their multidimensional space in subsets corresponding to
the di�erent classes. Thus discretization is either a part of the learning procedure
of the classi�er or it can be done previously.

We decided to prediscretize the data and not to use the advantages of methods
where the discretization is learned with the structure of the Bayesian network.
Such procedures could have been the multivariate method of Monti and Cooper
(1998) or the dual representation of Friedman, Goldszmidt, and Lee (1998). Par-
ticularly the latter would have been attractive for our purposes, because it con-
siders the classi�cation task. But with only 112 training cases it seemed unrea-
sonable to use it.

A univariate discretization was performed with the FUSINTER method of
Zighed, Rakotomalala, and Rabaseda (1996). In their paper the authors showed
that the results of their method are very close to those of the standard method
of Fayyad and Irani (1993). It is a bottom-up strategy that uses an information-
gain criterion for the decision on a new split. To avoid over-splitting, the criterion
penalizes low numbers of examples in the new intervals. As these numbers are
used to estimate the probabilities of belonging to a class related to the de�ned
intervals, this is considered to be a desirable property when the discretized data
is going to be used for learning a Bayesian network. For our calculations, we used
the free software SIPINA W c
 v2.0 (Zighed and Rakotomamala 1997).

3 Notation and Basic De�nitions

3.1 Bayesian Networks

Let ~X = ( X1; :::; Xn) be a vector of real random variables from a domain U =

fX1; :::; Xng. A very general probability space for ~X is denoted by (IRn;Bn; PB),
where IRn is the set of n-dimensional vectors of real numbers, Bn is the Borel set
of IRn, and PB is a probability function with domain Bn.

A pair B = ( G;PB) is a Bayesian network of this model, if

1. G := (U; E) is a directed acyclic graph (DAG) over U and the set E of
directed edges and

1e.g. the classi�cation of the reell numbers into the set of real numbers without the rational

numbers IRnIQ and the rational numbers IQ
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2. the structure of the graph G re
ects the independence assumptions of the
distribution PB. That is for all i; i = 1 ; :::; n:

(a) Xi is independent of all its non-descendants given its parents �i in the
Graph G.

(b) There is no real subset �0
i 2 �i for which (a) is true.

By the so-called directed Markov property 2.(b) the joint distribution PB can
be factorized as follows:

PB(X1; :::; Xn) =
nY
i=1

PB(Xij�i): (1)

Another independence relation on U follows directly from the de�nition of a
Bayesian network:

� For all Xi 2 U : Xi is - conditioned on a set of variables called the Markov
blanket of Xi - independent of all other variables in U.

� The Markov blanket �(Xi) consists of the parents of Xi, its children, and
its children's parents.

For classi�cation tasks the domain is U = fC;A1; :::; Ang, where C is the
class variable and A = fA1; :::; Ang is the set of attributes that are used as
predictor variables. For the task at hand C = Phase and A = Styfacts. Of
special interest is the conditional distribution of C given A, PB(CjA1; :::; An) =
PB(CjAi1; :::; Aik) with fAi1; :::; Aikg = �(C) � U.

In the following, we restrict our interest on domains, where ~X is a n-dimen-
sional discrete vector. Without loss of generality, we can assume that ~X 2 INn,
where INn is the set of n-dimensional vectors of natural numbers. Let Mi =
f1; :::; rig represent the �nite set of possible values of Xi, and M�i = f1; :::; qig
represent the �nite set of possible combinations of values that the parent set �i

of Xi can take (given a DAG G).
Then the corresponding probability space of a Bayesian network (G;PB) on

U is given by
(M;A(M); PB) (2)

with M �M1 �M2 � :::�Mn � INn, the product of the sets of possible values
for Xi; i = 1 ; :::; n,A(M) is the collection of all possible subsets of M, and PB is
a probability function with domain A(M). Actually, because of the factorization
in (1), PB represents a collection of products of local distributions:

For each instantiation of �i = j 2 f 1; :::; qig the distribution PB(Xij�i = j)

is a multinomial distribution with parameter vector ~�ij = f�ij1; :::; �ijrig. Let

�i = ~�i1; :::; ~�iqi denote the parameters for the set of multinomial distributions for
node Xi; i = 1 ; :::; nand let �B = f�i; i = 1 ; :::; ngdenote the parameters that
are needed to encode the probability PB of the Bayesian network (G;PB).
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3.2 Learning Bayesian Networks

Expressed in the language of statistical decision theory, learning a Bayesian net-
work B 2 B from observed data d = f~x1; :::; ~xNg 2MN means to �nd the "best"
decision function f 2 F :MN ! B in an admissible set of decision functions F .
A decision function f assigns to any possible d 2MN a Bayesian network B out
of a (possibly restricted) set B = f(G;PB); G is DAG overUg.

When learning a Bayesian network from discrete data d, it is commonly as-
sumed that d is the realization of a multinomial sample from a population with
distribution PB 2 PB, where PB is the set of all distributions on A(MN) that can
be described by a Bayesian network on U. That is, ~x1; :::; ~xN are assumed to be
realizations of random variables ~X1; :::; ~XN that are independent and identically
distributed (i.i.d) according to some PB 2 PB.

There are a lot of ways to de�ne what can be considered to be the "best"
decision function. In learning Bayesian networks the common approaches are
based on scoring functions s :MN �B! IR that give an evaluation on how well
a given network B 2 B matches the data d 2 M

N . Given a scoring function,
the best decision function is the one that assigns to each d 2 M

N the network
B 2 B that maximizes this scoring function: fopt(d) := argmaxB2B(s(B;d)).

An ad-hoc scoring function is based on the maximum-likelihood principle: the
log-likelihood s(B;d) := LL(Bjd) = logPB(d). But the number of parameters
(here and in the following used to measure the complexity) that are necessary to
encode PB 2 PB can be very large depending on G. Thus an application of the
maximum-likelihood principle might lead to an over�tting and thus to Bayesian
networks that match the given data well, but have low predictive quality for new
cases. Therefore, a penalty in the scoring function for the complexity of B 2 B
is needed.

The scoring functions that are most frequently used to learn Bayesian net-
works ful�ll this condition: the MDL scoring function (Lam and Bacchus 1994)
and the BDe scoring function (Heckerman, Geiger, and Chickering 1995) combine
the likelihood with some penalty relating to the complexity of the model. The
MDL scoring metric is based on the principle of Minimum description length.
The BDe scoring function evolves from the search for a network with largest
posterior probability given priors over network structures G and parameters �B.

The derivations of these scoring functions as well as the log-likelihood rely
on the assumption that ~x1; :::; ~xN are realizations of random variables ~X1; :::; ~XN

that are i.i.d. according to PB. The following factorization is used:

P ( ~X1; :::; ~XN) =
NY
t=1

PB( ~Xt) =
NY
t=1

nY
i=1

PB(Xitj�it): (3)

But of course the required independence assumption for this factorization does
not match the assumption that ~x1; :::; ~xN is the realization of a multivariate time-
series ~Xt at the discrete time-points t = 1 ; :::; N. But as this is the appropriate
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assumption for the data at hand: ~xt := (phase; styfacts)0t; t = 1 ; :::;112 we need
to use dynamic Bayesian networks.

3.3 Learning Dynamic Bayesian Networks

In their paper FMR show how the independence assumption of ~X1; :::; ~XN can
be replaced by the assumption of an underlying stationary Markovian process for
~Xt; t = 1 ;2; 3; :: in the derivation of scoring functions.

The assumption of a stationary Markovian process allows for the following
factorization of the joint distribution for a �nite sequence ~X1; :::; ~XN of the pro-
cess:

P ( ~X1; :::; ~XN) = P ( ~X1)
NY
t=2

P ( ~Xtj ~Xt�1): (4)

A Dynamic Bayesian network of a discrete stationary Markovian process ~Xt 2
M; t = 1 ;2; 3; :: is de�ned by:

� a prior network B1 with a corresponding probability space (M;A(M); P1)

for initial states ~X1, where P1 is the initial distribution of the Markovian
process and

� a transition network B with a corresponding probability space (M2;A(M2),

P ~Xj ~X
�1
) for a random vector of transitions ( ~X�1; ~X)0, where P ~Xj ~X

�1
is the

transition probability of the Markovian process.

The set of transition networks is denoted by B!. Note that in a transition
network variables of the time-slice "-1" have no parents: �i;�1 = ;; i = 1 ; :::; n.

The factorization in equation (4) can be used to derive analogs of the MDL,
BDe, and log-likelihood scoring functions for learning Dynamic Bayesian net-
works. FMR show that the task of learning a Dynamic Bayesian network can be
divided in two separate steps. That is, we learn a Dynamic Bayesian network by
learning two (standard) Bayesian networks:

1. The prior network B1 has to be learned with a sample d = fx11; :::; x1Mg.
This learning needs multiple observations of time series sequences xt; t =
1; :::; Nm with length Nm; m = 1 ; :::;M, respectively.

2. In another step, a transition network B onU = fX1;�1; :::; Xn;�1 , X1; :::; Xng
has to be learned under the restriction that B 2 B! . The learning set is
built from an observation of the time series

d = f~x11; :::; ~x1N1 ; :::; ~xbfM1; :::; ~xMNM
g

by concatenating all pairs of consecutive observations (~xm(t�1); ~xmt)
0, t =

2; :::; Nm,m = 1 ; :::;M. That is, we generate a new datavector ~d by

~d = f(~x�1; ~x )
0
l; l = 1 ; :::; L; L=

PM

m=1
Nm �Mg :
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3.4 Classi�cation of Business Cycles

Classi�cation of the phases of business cycles (apart from time point t=1) will
be based on the estimated conditional distribution

P̂B(PhasejPhase�1; Styfacts�1; Styfacts)

of the learned transition network B 2 B!. Time-point t = 1 is of no special
interest, thus it su�ces to learn a transition network that is useful for the clas-
si�cation of Phase. The training data d = f(phase; styfacts)0t; t = 1 ; :::;112g is
therefore converted into

~d = f(phase�1; styfacts�1; phase; styfacts)
0
t; t = 2 ; :::;112g :

Assuming for the economic variables an underlying stationary Markovian pro-
cess is closer to the demand of the domain than the independence assumption
in (3). It should be kept in mind though that particularly the assumption of
stationarity is also questionable.

4 Learning Bayesian Network Classi�ers

In this Section, we start by giving an outline of the approach (4.1). We motivate
and describe the details in the subsections that follow: In 4.2 we brie
y introduce
the TAN classi�ers of FGG and in 4.3 we present the restricted sets of network
structures based on those of TAN classi�ers adapted for dynamic domains. Subse-
quently, we discuss the application of the outlined method for learning classi�ers
for the phases of German business cycles in subsection 4.4. Finally in subsection
4.5 we describe the di�erent search strategies we pursued to learn classi�ers on
the given training set.

4.1 The Basic Approach

To learn the structure of transition networks we used the well-known K2-Algorithm
of Cooper and Herskovits (1992) on di�erent sets B of admissible network struc-
tures. As in its original form the �t of a network B to the data was evaluated
by the log-likelihood LL(Bjd) as scoring function. For the calculations, we used
the free software INES (Borgelt, Kruse and Lindner 1995).

To estimate the parameters �B once the structure is learned, we did not
use the maximum-likelihood estimator, though this would maximize our scoring
function. The maximum-likelihood estimators ~�ijl for l = 1 ; :::; ri; j = 1 ; :::; qi; i =
1; :::; n; are given by

~�ijl =

(
0; Nij = 0
Nijl

Nij
Nij > 0

(5)
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where Nijl is the number of cases in the sample with Xit = l and �it = j; t =
1; :::; N and Nij :=

Pri
l=1Nijl; j = 1 ; :::; qi; i = 1 ; :::; n.

Instead, following FGG, we used a smoothed variant

�̂ijl =
Nijl + 5Nil

N

Nij + 5
(6)

with Nil :=
Pqi

j=1Nijl; l = 1 ; :::; ri; i = 1 ; :::; n.
Only when Phase�1 is parent of Phase no smoothing was performed: zero

estimates �̂(PhasejPhase�1) = 0 capture a true feature of the domain. The
phases of a business cycles have to follow the pattern :::4 ! 1 ! 2 ! 3 ! :::.
Thus, if �(PhasejPhase�1) 2 �B, this parameter was estimated according to
(5).

The smoothing can be interpreted as Dirichlet priors on f�ij1; :::; �ijri�1g with

parameters pijl =
Pqi

j=1
Nij

N
for all l = 1 ; :::; ri� 1 and equivalent sample size 5 for

j 2 1; ::; qi and i = 1 ; :::; n(see Heckerman, Geiger, and Chickering 1995). The
equivalent sample size N 0

e is a measure for the uncertainty in the prior: It is the
same as the posterior Dirichlet distribution that results from an uninformative
prior over [0,1] and N 0

e cases with frequencies pijl, l = 1 ; :::; ri� 1, j 2 1; ::; qi and
i = 1 ; :::; n.

Because of our small training set, smoothing was crucial: Not only we would
otherwise encounter unreliable estimates but also many of them would be zero.
Any combination of values of the predictors not included in the training set could
not be classi�ed by an unsmoothed classi�er.

4.2 TAN Classi�ers

The log-likelihood is in general unwarranted as a scoring function to guide the
learning process of Bayesian network structures. It favors complete structures
because of having no feature to avoid over�tting. But the two commonly used
scoring functions MDL and BDe that include penalty terms for the complexity
of the Bayesian network are not appropriate for the classi�cation task (FGG).
These scoring functions measure the likelihood that the data was generated from
a Bayesian network B considering the joint distribution PB(C;A1; :::; Am) of that
Bayesian network. They penalize the complexity of the whole structure. The
target �t in a classi�cation task though should be that of the data with the
conditional distribution of PB(CjA1; :::; Am). The complexity of the classi�er is
evaluated more appropriately by the number of parameters of this conditional
distribution.

To our knowledge, a computationally feasible scoring function that learns an
optimal Bayesian network classi�er in the set of all possible network structures
over U has not been developed yet. The idea of the TAN method of FGG is to
restrict the search on networks with a certain structure: The edges of a naive
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Bayes classi�er are prescribed, that is the class variable is forcibly a parent of
every attribute. Additionally there are possible edges between the attributes but
maximally one more parent for each. Within this type of Bayesian networks
- denoted in the following by BT - they show that the optimal classi�er with
respect to the log-likelihood as scoring function can be e�ciently found.

4.3 (S)TAN classi�ers for Dynamic Domains

The TAN method for transition networks on a domain of variables

U = fC�1; A1;�1; :::; An;�1; C; A1; :::; Ang

could be extended in the following way:
On the subset fC;A1; :::; Ang of variables in the actual time-slice the orig-

inal TAN Models are learned. Any information from the preceding time-slice
passes through C. That is, only C can have (maximally two) parents from
fC�1; A1;�1; :::; An;�1g (see Figure 1). A set of Bayesian networks, satisfying these
restrictions will be represented by BT

2;!.

Transition (S)TAN: �C

C

A1 A2 A3 ... An

?

��������

�
�

�	 ?

HHHHHHHj

& %
�

&%
�

- -

Figure 1: Example for the structure of a transition (S)TAN classi�er.

Particularly when �C = C�1 these "transition TAN classi�ers" have a struc-
ture that corresponds to the structure of the transition network of a Hidden
Markov model (Rabiner and Juang 1993), when this is represented as a Dynamic
Bayesian network with observation variable O := (A1; :::; An)

0. This might be
suitable for many domains. In our domain this gives phases of business cycles
a convenient interpretation as states of some underlying process that in
uences
the behaviour of economic variables.

As we used the K2-algorithm for learning network structures and not the
optimal one for the TAN classi�ers, we name those classi�ers learned on BT

2;!

"sub-optimal" TAN classi�ers, abbreviated as "STAN".
We did not consider another TAN-inspired classi�er for dynamic domains that

includes no search for the structure. The corresponding networks would be given
some kind of "Rake structure" (see Figure 2), where each attribute Ai; i = 1 ; :::; n
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has �i = fC;Ai;�1g as parents. It might be interesting to investigate their
behaviour though, as this structure ensures that all variables of the transition
network are in the Markov blanket of C, and it might be a suitable way to model
the (main) dependencies on fA1;�1; :::; An;�1; A1; :::; Ang.

RAKE: C�1

C

A1 A2 A3 ... An

A1;�1 A2;�1 A3;�1 ... An;�1

?

��������

�
�

�	 ?

HHHHHHHj

6 6 6 6

Figure 2: Structure of a RAKE classi�er.

4.4 STAN Models for the Speci�c Task

The restricted set BT
2;! of transition STAN classi�ers can result in a raise of the

complexity of the learned classi�er, when it is compared with the complexity of
networks learned with the MDL- or BDe-score on the set B of all networks on
U. The reason is that for all B 2 BT

2;! the set fA1; :::; Ang � �B(C), where as

the Markov blanket � ~B(C) of a network ~B that got learned with the MDL or
BDe score might be smaller. This reduces the number of parameters needed to
encode P ~B(Cj� ~B(C)).

By forcing the Bayesian network to include all arcs of the naive Bayesian
classi�er we make sure that all stylized facts will be used for classifying the phase
of the business cycle. A possible drawback is that no implicit feature selection
takes place. This is not so relevant in our analysis because heavy feature selection
has already been carried out by our experts. An analysis on the importance of
certain stylized facts for the classi�cation can be performed with the estimated
conditional probability of the Bayesian network.

But as the training data is very sparse, the forced complexity of PB(Cj�B(C))
for B 2 BT

2;! might lead to an over�tting. Thus we decided to compare the STAN
classi�ers with classi�ers based on Bayesian networks that were learned on the
set B2 of networks, where each node can have a maximum number of two parents.
The log-likelihood was used as scoring function. Note that BT

2;! � B2.
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4.5 The Search Strategies

Three basic strategies were pursued: In the �rst one the classi�cation rule is built
on all variables of the preceding time slice and all variables of the actual one. In
the second strategy Phase�1 is not included, because when we want to classify
the phase of an actual business cycle, Phase�1 is not necessarily known. In what
phase the business cycle was in a certain quarter is classi�ed best by the experts
when the whole cycle is completed. The last strategy does not use any information
from the preceding time slice. That is we ignore the time dependence in the
domain to learn a Bayesian network as if we had an identically and independently
distributed sample from some joint distribution PB(Phase; Styfacts).

The main classi�cation approaches and their abbreviations are:

1. Strategy:
U = fPhase�1; Styfacts�1; Phase; Styfactsg

{ TRANS: B 2 B2;!, the set transition networks with a maximum num-
ber of two parents, and s = LL(Bjd). Smoothed parameter estimates
apart from �̂(PhasejPhase�1).

{ STAN1: B 2 BT
2;!, s = LL(Bjd), �(Phase) � f Phase�1; Styfacts�1g.

Smoothed parameter estimates apart from �̂(PhasejPhase�1).

2. Strategy:
U = fStyfacts�1; Phase; Styfactsg

{ PRED: B 2 B2;!, s = LL(Bjd). Smoothed parameter estimates.

{ STAN2: B 2 BT
2;!, s = LL(Bjd), �(Phase) � f Styfacts�1g. Smoothed

parameter estimates.

3. Strategy:
U = fPhase; Styfactsg

{ BN: B 2 B2, s = LL(Bjd). Smoothed parameter estimates.

{ STAN3: B 2 BT , s = LL(Bjd). Smoothed parameter estimates.

{ NBAY: The naive Bayes classi�er. No scoring function is needed.
Smoothed parameter estimates.

4.6 Finding an ordering

The K2-algorithm needs an ordering on the variables. Searching in the set of
transition networks B! induces a partial ordering where fPhase�1 , Styfacts�1g
comes before fPhase; Styfactsg. Also, no ordering has to be found on fPhase�1 ,
Styfacts�1g. Thus an ordering on fPhase; Styfactsg is needed that is useful for
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the classi�cation task and helps to �nd a good representation of the correlation
between the stylized facts.

In all STAN classi�ers Phase precedes all attributes in the ordering. For the
learning of networks within B2 this is a reasonable position, as it maximizes the
number of possible directed links of the class variable Phase with its predictors.

To �nd an ordering within the group of stylized facts we performed an analysis
on their rank correlations. The more signi�cant correlations were found between
an attribute and the others the earlier it was placed in the ordering. Analogous
to the argumentation to set Phase on the �rst place this procedure ensures that
an attribute that correlates with many of the other attributes can have many
directed links with the other variables.

4.7 Interpretation as Bayesian Learning

The domain experts did not give priors on the network structures nor on cer-
tain parameters. When our procedure nevertheless is interpreted as a Bayesian
approach to learn, the following assumptions (see Heckerman, Geiger, and Chick-
ering 1995) were made: parameter independence and parameter modularity, an
uninformative prior over di�erent sets of admissible network structures, and an
informative prior over the parameters for the smoothed estimation.

The assumption of a multinomial sample on U = fPhase , Styfactsg was re-
placed by the assumption of an stationary Markovian process underlying f(Phase ,
Styfacts)0t; t = 1 ; :::;112g.

5 Results

In Figures 3, 4, and 5 one can see the learned structures from the di�erent clas-
si�cation approaches. Only the subgraph of G on the Markov blanket �(Phase)
is presented there. In the complete graph of TRANS and PRED all attributes in
the present time-slice selected its predecessor as parent. This indicates that the
"Rake classi�ers" (Figure 2) might be interesting.

In the STAN1 classi�er and the TRANS classi�er one can see that once
Phase�1 is in the set of possible parents of Phase the algorithm will not in-
clude any of the other variables additionally.

Comparing STAN1 and STAN2 the results show that the transition parents of
Phase that replace Phase�1 are Short-I-Rate�1 and Earners�1. This matched
the prior assessment of the importance of these two variables by the domain
experts.

Phase proved to be quite a good summarizing variable within a time-slice:
In the BN classi�er only the four variables Construction, Long-I-Rate, Gov-
Deficit, Net exports do not include Phase in their set of two parents and are
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not members of the Markov blanket of Phase. These variables are commonly
considered to be of minor in
uence on the classi�cation of Phase.

Table 2: Error Rates

Model Training set Test set
Strategy 1 with Phase�1
SIMPLE 19.8 % 11.1 %
STAN1 4.5 % 35.6 %
TRANS 18.9 % 44.4 %
Strategy 2 with Styfacts�1
STAN2 7.2% 68.9 %
PRED 30.9 % 66.7 %
Strategy 3
STAN3 9.9 % 71.1 %
BN 9.9 % 60 %
NBAY 38.7 % 60 %

Only the classi�ers of the same strategy should be compared with respect
to their error rates as they can be used on di�erent levels of information. For
strategy 1 we added in Table 2 the classi�er "SIMPLE" that says the business
cycle is in the same phase now as in the last quarter. This is considered to be a
proper benchmark for any classi�er using Phase�1. One can see that STAN1 out-
performs the SIMPLE classi�ers clearly on the training set whereas the TRANS
classi�er is only slightly better. But on the test set the misclassi�cation rate is
more than three times higher for both of them.

When only the misclassi�cation rate on the test set is considered, the be-
haviour of the classi�ers of strategy 2 or 3 is disastrous. On the training set the
STAN classi�ers are the best but the antipode is true on the test set. This could
be a matter of over�tting, but a deeper look at the progression of the predic-
tions over time (Figures 6, 7, and 8) gives license for another interpretation: the
STAN classi�ers of Strategy 2 and 3, and the BN classi�er show a reasonable
behaviour by signalizing two cycles in the quarters from 1983/4 to 1994/4. The
domain experts were not really taken aback from that. There are discussions
among economists whether the quarters 1984/1 to 1986/1 are to be considered as
the valley in the plateau of an upswing or whether two cycles should be classi�ed
(see e.g. Tichy 1994).

In the quarters around the German reuni�cation 1989 all our classi�ers ran
into problems. The following downswing from 1992/1 to 1994/1 is not captured
by the STAN classi�ers and the BN classi�er. They all indicate an earlier change
into phase 4 (the lower turning point) than the experts. Only the predictions of
TRANS classi�er matched the experts classi�cation there. The PRED and the
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NBAY classi�er show a comparable behaviour on the test set by omitting phase
2 completely and overemphasizing phase 3.

Summarizing, the STAN classi�ers and the BN classi�er do not mirror the
classi�cation of the experts on the test set. But di�erently from the other clas-
si�ers, their classi�cation corresponds to a reasonable cyclical behaviour apart
from the quarters around the german reuni�cation.

We performed a �rst analysis of the in
uence of attributes on the classi�ca-
tion. Pie charts of the estimated distribution P̂B(PredictedClassjAi = j); j =
1; :::; qi; i = 1 ; :::; nwere a helpful tool to discuss the importance of di�erent eco-
nomic variables. A di�culty arose with the interpretation of the division of the
values of the variables low, (medium, and) high by the discretization: There is
still a trend in the stylized facts over time, so that this division is questionable.
The trend and the resulting problem for the discretization can also be one of the
reasons for the bad performance on the test set.

But nevertheless, our results made domain experts very much interested in
future applications of Bayesian networks for the analysis of economic data.

6 Further research

The �ndings and the facilities for interpretation of this analysis will be compared
with those of other methods (Linear and Quadratic Discriminant analysis, CART,
Support Vector Machines, univariate time-series analysis, Neural Networks) on
the same data.

As the discretization is important, improvements will be hoped for by per-
forming it on de-trended data. The sparsity of the data limited the methods for
analysis. To solve this problem, a new data set will be installed with monthly
data of variables that are comparable to the set at hand.

Finally, we envisage an analysis with Hidden Markov models to verify the four
phase scheme of German business cycles and an analysis with "Rake classi�ers"
(Figure 2).
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Figure 3: Structures of the learned STAN classi�ers. The inner edges form the

required skeleton from the naive Bayes classi�er, the edges on the left and right

side are correlation edges between stylized facts, and edges at the top are transition

edges learned in strategy 1 and 2 respectively.
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Figure 4: Structure of the learned BN classi�er.

TRANS: Short-I-Rate�1 Phase�1

Short-I-Rate Phase

?

�

?

PRED: Short-I-Rate�1 Earners�1

Short-I-Rate Phase

XXXXXXXXXXz
?

�

?

Figure 5: Structures of the learned TRANS and PRED classi�er.
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Figure 6: Performance of classi�ers of Strategy 1 on the test set. The classi�cation
was carried out: by experts (� ), with STAN1 (+), and with TRANS (�).
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TAN2 classifier
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PRED classifier
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Figure 7: Performance of classi�ers of Strategy 2 on the test set. The classi�cation
was carried out: by experts (� ), with STAN2 (+), and with PRED (�).

22



TAN3 classifier
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NBAY classifier
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Figure 8: Performance of classi�ers of Strategy 3 on the test set. The classi�cation
was carried out: by experts (� ), with STAN3 (+), with BN (�), and with NBAY
(r).

23


