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1 Introduction

We introduced the Pitman-closeness criterion for the evaluation of multivariate forecasts

(see Wenzel, 1998b) and derived optimal weight matrices for the combination of forecasts.

There we used real valued square matrices as weights, which is the most general case and is

called Strong Pitman-closeness. Now we also analyse the situation where the weight

matrices are assumed to be diagonal as well as the case where the weights for the

combination of the multivariate forecasts are restricted to be scalar. For this we define the

notions of Medium Pitman-closeness and the Weak Pitman-closeness. The denotations

Strong, Medium and Weak Pitman-closeness are close to those of the covariance

adjustment techniques presented by Troschke (1999a). Finally we calculate the different

combinations of forecasts for a German macro economic data set.
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2 The Pitman-closeness criterion

First we give a description of the problem as in Wenzel (1998b).

Assume that

( )′= k1 Y,...,Y:Y is a random vector to be forecasted (k≥2),

( )′= kii1i F,...,F:F are unbiased multivariate forecasts (i=1,...,n) for Y and

)FY,...,FY(: kiki11i ′−−=u is the error vector of  the i-th forecast method,

where ( )Σ,N~,...,: knn1 0uuu ⋅

′



 ′′= , .d.pΣ , and there exists a vector ui, without loss of

generality ni uu = , so that ( ) ])(,,)([Cov n1nn1
′′−′− − uuuu K is p.d.

Furthermore we are again giving the definition of the component-by-component Pitman-

closeness.

Definition 1. The forecast 1F is component-by-component Pitman-closer to a random

vector Y than the forecast 2F ( )21 FF ≠ if and only if

( ) { } .FFwhere,k,...,1j5.0FYFYP 2j1j2jj1jj ≠∈∀>−<−

The probability statement of Definition 1 is equivalent to

( ) { } .FFwhere,k,...,1j5.0uuP 2j1j2j1j ≠∈∀><

In the following we specify the calculation procedure of optimal weights in three

categories.

2.1 Strong Pitman-closeness

Here, the multivariate combination of forecasts are given as
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B IRk×k are matrices of weights,
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ki IB , and kI denotes the identity matrix.
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Using the definitions of Wenzel (1998b), where

( ) n,...,1s,rrs: == ΣΣ , ),(Cov: srrs uu=Σ ,

,1n,,1s,r,: nsnrnnrsrs −=Σ−Σ−Σ+Σ= KV

( ) ,: 1n,,1s,rrs −== KVV

( ) jinnnji ew ΣΣ −= and therefore  ( )ninnjji : ΣΣ −′=′ ew , j=1,..,k, i=1,..,n−1,

′



 ′′= −1n,j1jj ,,: www K ,

we get the following theorem.

Theorem 1. The Strongly Pitman-closest combination (component-by-component Pitman-

closest combination) of n multivariate forecasts for a random vector Y of dimension k

(k≥2) is given by the matrix of weights:

],[],,[: *
k

1
k

1str,opt
n

str,opt
1

opt,str IVWIVWAAA −− ′−′== K

where ),,(: k1 wwW K= ∼ (n−1)⋅k× k,

[ ] kk)1n(~,,: kk
*
k ×⋅−′= III K .

Proof: See Wenzel (1998b). ÿ

2.2 Medium Pitman-closeness

Here we use the restriction of diagonal matrices of weights, so
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Using again the component-by-component Pitman-closeness definition we get the next

theorem.
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Theorem 2. The Medium Pitman-closest combination (where the matrices of weights are

restricted to be diagonal matrices) of n multivariate forecasts for a random vector Y of

dimension k (k≥2) is given by the matrices of weights:  
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where med,opt),i(
jja is the i-th component of the vector 

11

1
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j

1
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′Σ
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(j=1,...,k) and jΣ denotes the

covariance matrix of the individual forecast errors of the j-th component and )1,...,1( ′=1 is

a vector of length n.

Proof: The proof is straightforward. Calculating the optimal weights for the j-th component

is equivalent to calculating the optimal univariate combination for this component, which is

described in Wenzel (1998a). ÿ

2.3 Weak Pitman-closeness

Here we concentrate on the combination of multivariate forecasts using scalar weights.

Thus a forecast combination is given by ∑
=

=
n

1i
iia a FF , ai∈IR , ∑

=
=

n

1i
i 1a . Obvious we cannot

use the definition of component-by-component Pitman-closeness to calculate optimal

weights for the combination. Therefore we define the Weak Pitman-closeness.

Definition 2. The forecast 1F is weakly Pitman-closer to the random vector Y than the

forecast 2F ( )21 FF ≠ if and only if
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The probability statement of Definition 2 is equivalent to
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With Definition 2 in mind it is possible to calculate a Weakly Pitman-closest forecast.



5

Theorem 3. The Weakly Pitman-closest combination (where the weights are restricted to be

scalar) of n multivariate forecasts for a random vector Y of dimension k (k≥2) is given by

the vector of  weights:
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~

denotes the vector )1,...,1( ′ of length k.

Proof: If we compare two forecast combinations we have to find the vector a so that for any

vector b )1band(
n

1i
i∑

=
=≠ ba the inequality

5.0ubuaP
k

1j

n

1i
jii

k

1j

n

1i
jii >










< ∑∑∑∑

= == =

⇔ 5.0

uuu

uuu

uuu

uuu

P

knn2n1

1k2111

knn2n1

1k2111

>
































+++

+++
′<

















+++

+++
′

K

M

K

K

M

K

ba holds.

The covariance matrix of the vector with the sums of the s’u ji is sumΣ and therefore, using

the conclusions as in Wenzel (1998a) we get the optimal weight vector given in the

statement above.

ÿ

2.4 Remarks

Consulting the paper of Troschke (1999a) we can see that the Strongly and Medium

Pitman-closest combinations are equivalent to the combinations resulting by the

corresponding covariance adjustment techniques. Therefore we use the same denotations,

which are Strong Pitman-closeness and Medium Pitman-closeness. The Weakly Pitman-

closest combination differs from the result of the weak covariance adjustment technique

because of the problem of defining a closeness criterion for this case. We have to remark

that Weak Pitman-closeness is a criterion using the absolute of the sum of errors, which is

not really reasonable for the comparison of forecasts. Obviously, the Strongly Pitman-

closest combination is component-by-component Pitman-closer to Y than the Medium

Pitman-closest combination and the Weakly Pitman-closest combination and likewise the
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Medium Pitman-closest combination is component-by-component Pitman-closer to Y than

the Weakly Pitman-closest combination.

3 Analysing German economic data

Klapper (1998) investigated German macro economic data and analysed different

univariate combination techniques. In another article he also used a multivariate rank

approach for the combination of the individual forecasts (Klapper, 1999). We derived the

Pitman-closest combinations for this problem where we assumed that the errors are

normally distributed with zero mean. Using only a ten years history for estimating the

covariance matrix (by the usual ML-estimator) we have the problem of a singular matrix V.

In the calculation of the Strongly Pitman-closest combination we therefore use the Moore-

Penrose-Inverse +V instead of 1−V but then the result depends on which of the individual

forecasts is defined as nF . The order of the other forecasts does not influence the result. A

comprehensive discussion of this can be found in Troschke (1999b).

In the following table we present the Root Mean Square Errors (RMSE) and the Mean

Absolute Deviations (MAD)  of the special combinations relative to the RMSE and the

MAD of  the simple average of the individual forecasts.

Table 1: RMSE and MAD of the special combinations relative to the RMSE and MAD of
the simple average forecast.

GDP Priv.
Cons.

Publ.
Cons.

Export Import Cons.
Prices

SPCOECD 1.37
1.37

1.54
1.70

1.11
1.02

1.64
1.60

1.13
0.93

2.50
2.16

SPCWSI 1.37
1.27

1.16
1.16

1.43
1.18

1.37
1.31

0.85
0.83

2.72
2.32

SPCSVR 1.41
1.44

1.27
1.35

1.14
1.13

1.36
1.38

0.97
1.00

2.43
2.29

SPCAWF 1.19
1.15

1.36
1.30

1.36
1.12

1.38
1.23

0.96
0.92

2.62
2.49

SPCIFW 0.79
0.79

1.40
1.47

1.30
1.23

1.04
1.01

0.72
0.70

2.52
2.26

SPCIFO 1.26
1.14

1.01
0.99

1.00
0.90

1.36
1.28

0.98
0.91

2.86
2.92

SPCDIW 1.61
1.61

1.55
1.84

1.34
1.20

1.49
1.46

0.99
0.96

3.24
3.29

MPC 1.83
1.47

1.75
1.92

2.51
1.87

2.32
1.95

1.45
1.31

1.80
1.68

WPC 2.71
2.00

2.69
2.61

4.35
3.02

2.19
1.93

1.54
1.39

4.42
3.92

SPCname: Strongly Pitman-closest combination with Fn=name
MPC: Medium Pitman-closest combination
WPC: Weakly Pitman-closest combination
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At first we can see that only in 7 of the 54 cases a Pitman-closeness combination performs

better than the simple average (in the sense of the RMSE; 9 of 54 in the comparison of the

MAD‘s). Therefore we can say that for this special data the multivariate combinations

analysed here do not perform very well.

Furthermore the Strongly Pitman-closest combinations always outperform the Weakly

Pitman-closest combination. Except for the variable Consumer Prices, where they perform

worse in all cases, they always dominates the Medium Pitman-closest combination (there is

only one further case where a Strongly Pitman-closest combination has a larger MAD).

This indicates that one should use multivariate combination techniques instead of univariate

combinations of forecasts. At last, we see that the Medium Pitman-closest combination is

always better than the Weakly Pitman-closest combination.

5 Conclusions

We defined the Pitman-closeness in three categories, called Strong, Medium and Weak

Pitman-closeness. We compared the quality of these techniques by using German economic

data. The theoretical conclusions that the Strongly Pitman-closest combination performs

best and the Weakly Pitman-closest combination performs worst are underlined by this

example. Finally, we have to remark that in some cases, especially for the variable Import,

the Strongly Pitman-closest combiantions performs very well in comparison to the simple

average forecast, whereas for the variables Consumer Prices and Export the simple average

outperforms all other combination techniques. Consequently further research is needed in

which situations Pitman-closeness strategies are appropriate and when one should use

simple combination techniques like e.g. the arithmetic mean.
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