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SUMMARY

In this paper we show that the recent notion of regression depth can be

used as a data-analytic tool to measure the amount of separation between

successes and failures in the binary response framework. Extending this al-

gorithm allows us to compute the overlap in data sets which are commonly

�tted by logistic regression models. The overlap is the number of observa-

tions that would need to be removed to obtain complete or quasicomplete

separation, i.e. the situation where the logistic regression parameters are no

longer identi�able and the maximum likelihood estimate does not exist. It

turns out that the overlap is often quite small.
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1 Introduction

Logistic regression is used to model the probability that an event occurs,

depending on a vector of explanatory variables, say xi = ( xi;1; : : : ; xi;p�1) 2

IRp�1. Often these events can be interpreted as success and failure. The

logistic model with an intercept term assumes that the responses yi are real-

isations of independent random variables Yi which are Bernoulli distributed

with success probabilities

�((xi; 1)�
0) 2 (0; 1) ; i = 1 ; : : : ; n: (1)

Here �(t) = 1 =[1 + exp(�t)] denotes the cumulative distribution function of

the logistic distribution, and � 2 IRp is unknown. Data sets analyzed with

such models have the form Zn = f(xi;1; : : : ; xi;p�1; yi); i = 1 ; : : : ; n g �IRp

where yi 2 f 0;1g for i = 1 ; : : : ; n . We will always assume that the design

matrix has full column rank.

The classical estimator of the unknown parameter vector is the maximum

likelihood estimator, c.f. Cox and Snell (1989). However, the maximum like-

lihood estimate of � does not always exist. Conditions for its existence were

investigated by Albert and Anderson (1984) and Santner and Du�y (1986).

They say that the data set is completely separated if there exists a vector

� 2 IRp such that

(xi; 1)�
0 > 0 if yi = 1 (2)

(xi; 1)�
0 < 0 if yi = 0 (3)

for i = 1 ; : : : ; n . A data set which is not completely separated isquasicom-

pletely separated if there exists a vector � 2 IRpnf0g such that

(xi; 1)�
0 � 0 if yi = 1 (4)

(xi; 1)�
0 � 0 if yi = 0 (5)

for all i and if there exists j 2 f 1; :::; ngsuch that (xj; 1)�
0 = 0. A data set is

said to have overlap if there is no complete separation and no quasicomplete
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separation. Albert and Anderson (1984) and Santner and Du�y (1986) show

that the maximum likelihood estimate of � exists if and only if the data set

has overlap. A geometrical interpretation of their result is that the maximum

likelihood estimate exists if and only if there is no hyperplane which separates

successes and failures, where the hyperplane itself may contain both successes

and failures.

From a robustness point of view, this yields a problem. Many robust esti-

mators are constructed such that outlying points are deleted or appropriately

downweighted. However, it can happen that the whole data set has overlap

but the reduced data set does not. In such a situation the robust estimator

applied to the whole data set does not exist, see K�unsch, Stefanski and Car-

roll (1989). The latter authors discuss the existence problem and note that

it arises regardless of the regression estimator being used, since it is linked to

the parametrization of the logistic regression model. In other words, when

the data have no overlap the parameters in the logistic model are not iden-

ti�able. K�unsch, Stefanski and Carroll (1989, p. 466) propose to use their

M-estimators with a series of di�erent tuning constants to study the impact

of outliers on the estimated parameter vector. The authors concluded that

" : : : it should be checked how close the data are to indeterminacy" and that

" : : : it would be interesting to have other criteria".

The aim of the present paper is to give an answer to these questions by

measuring the overlap. We denote by noverlap the smallest number of obser-

vations whose removal destroys the overlap of successes and failures. In a

logistic regression model, the overlap noverlap is the smallest number of obser-

vations that need to be removed to make the maximum likelihood estimate

nonexistent. In the same vein, denote by ncomplete the smallest number of

observations whose removal yields complete separation. In other words, this

is the minimal number of misclassi�cations in the training data for any linear

discriminant function. By de�nition, always noverlap � ncomplete.

This paper gives a procedure to determine noverlap, ncomplete, and the cor-
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responding set(s) of indices corresponding to these observations. Recently,

Rousseeuw and Hubert (1999) proposed the regression depth for linear re-

gression models. It will be shown that the regression depth can be used

to measure the amount of separation between successes and failures in data

sets which are commonly �tted by logistic regression models. Connections

between the regression depth and noverlap will also be investigated.

2 Regression depth

In a linear regression model the data set is of the form Zn = f(xi;1; : : : ; xi;p�1;

yi); i = 1 ; : : : ; n g �IRp. Denote the x�part of each data point by xi =

(xi;1; : : : ; xi;p�1) 2 IRp�1. The aim is to �t yi by an a�ne hyperplane in IRp,

i.e. by

g((xi; 1)�
0) = �1xi;1 + : : :+ �p�1xi;p�1 + �p (6)

where � = ( �1; : : : ; �p) 2 IRp. In this setting, Rousseeuw and Hubert (1999)

gave the following two de�nitions.

De�nition 2.1 A vector � = ( �1; : : : ; �p) 2 IRp is called a non�t to Zn i�

there exists an a�ne hyperplane V in x�space such that no xi belongs to V ,

and such that the residual ri(�) = yi� g((xi; 1)�
0) > 0 for all xi in one of its

open halfspaces, and ri(�) < 0 for all xi in the other open halfspace.

De�nition 2.2 The regression depth of a �t � = ( �1; : : : ; �p) 2 IRp rela-

tive to a data set Zn � IRp is the smallest number of observations that need

to be removed to make � a non�t in the sense of De�nition 2.1. Equivalently,

rdepth(�; Zn) is the smallest number of residuals that need to change sign.

The regression depth of a �t is invariant with respect to monotone trans-

formations, in the sense that one can replace yi by h(yi) where h is a strictly

monotone function if the link function g is replaced by h � g at the same
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time. (This is true because the regression depth only depends on the ex-

planatory variables xi and the sign of the residuals ri(�).) This invariance

property does not hold for the objective function of most regression estima-

tors, such as least squares, least absolute values, and least trimmed squares

(Rousseeuw, 1984).

Let us now consider the case of logistic regression for binary response

variables. The regression depth can be de�ned for data sets usually analyzed

via logistic regression in the same way as given above, if the cumulative

distribution function � of the logistic distribution is used instead of g.

From De�nition 2.2 it follows for logistic models that the regression depth

of a �t � relative to Zn is equal to the regression depth of �� relative to the

data set f(xi;1; : : : ; xi;p�1; 1� yi); i = 1 ; : : : ; n g. Hence, the regression depth

is invariant with respect to di�erent codings of the binary response variable.

Let us illustrate the de�nition of the regression depth by an arti�cial data

set with two explanatory variables x1 and x2 and an intercept term:

X =

0
B@
�1:5; �1; 0; 0; 1; 1; 2; 3; 3; 3:5

0; 3; 1; 2; 2; 4; 2; 1; 3; 4

1
CA

0

; (7)

y = (0 ;�; 0; 0; 0; 0; 1; 1; 1; 1)0 : (8)

If the data point y2 denoted by � in (8) is a failure, i.e. y2 = 0, then the

sets fyi = 0; i = 1 ; : : : ; n gand fyi = 1; i = 1 ; : : : ; n gcan be separated by an

appropriate hyperplane, which is indicated as a line in Figure 1, and hence

noverlap = ncomplete = 0. The maximum likelihood estimate of � does not exist

in that case, due to complete separation.

If the data point denoted by � in (8) has y2 = 1, then the sets fyi = 0; i =

1; : : : ; n g and fyi = 1; i = 1 ; : : : ; n gcannot be separated by a hyperplane,
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and noverlap = ncomplete = 1. In that case, the maximum likelihood estimate

of � does exist.
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Fig. 1. Top view of a data set with explanatory variables x1 and x2

where yi = 0 or yi = 1. If the point indicated by the asterisk has yi = 0

then the straight line completely separates the successes and failures.

Figure 2 plots the response yi versus the linear combination xiu
0 where

u 2 IRp�1 is some direction. If the point denoted by * in Figure 1 has

y2 = 1 it yields the point A in Figure 2. Then there is overlap, and the

dashed line shows the MLE �t of the logistic regression. But if the point *

has y2 = 0 we obtain the point B instead of A, and then there is complete

separation. In that case the MLE estimate of � does not exist. The dotted

line shows the �tted curve after stopping an iterative MLE algorithm due to

non-convergence. The vertical line separates the 0's and 1's in this plot. Of

course, for higher-dimensional xi it becomes harder to determine the overlap,

and we will construct an algorithm to do so.
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Fig. 2. Side view of the data set in Fig. 1 according to some direction u.

The asterisk in Fig. 1 corresponds either to point A or to point B.

3 Computing the overlap

There exists a simple connection between regression depth and complete sep-

aration. For a data set Zn = f(xi;1; : : : ; xi;p�1; yi); i = 1 ; : : : ; n gwith binary

yi we can consider the horizontal hyperplane given by �� = (0 ; : : : ;0; 0:5).

Then �� is a non�t i� ncomplete = 0, and more generally ncomplete = rdepth(��;

Zn). This implies that ncomplete can be computed with an algorithm for the

regression depth of a given hyperplane. For p = 2 the latter can be com-

puted by the O(n log(n)) time algorithm of Rousseeuw and Hubert (1999).

For p � 3, Rousseeuw and Struyf (1998) constructed a fast approximation

algorithm for the regression depth.

For noverlap we cannot use the regression depth algorithms as they are, but

we have constructed analogous algorithms for this case.

7



Some modi�cations of these algorithms can substantially reduce the com-

putation time for data sets with a large number of ties, which is a common

situation for binary regression models. Our algorithm consists of the follow-

ing major steps.

1. Read the data set Zn = f(xi;1; : : : ; xi;p�1; yi); i = 1 ; : : : ; n g �IRp,

where yi 2 f 0;1g, i = 1 ; : : : ; n . Standardize thex�variables.

2. Determine the number of di�erent points (xa
j;1; : : : ; x

a
j;p�1; y

a
j ) in Zn, say

na. For each j 2 f 1; : : : ; nag count the number tj of tied data points,

hence n =
Pna

j=1 tj. From now on we will work with the aggregated

data set Za
n = f(xa

j;1; : : : ; x
a
j;p�1; y

a
j ; tj); 1 � j � nag.

3. If p = 2, apply the exact algorithm for noverlap (or ncomplete) to the

aggregated data set. Go to Step 7.

4. If p > 2, use the approximation algorithm based on projections. De�ne

the number NITER of subsamples to be drawn. Initialize the ran-

dom number generator. Set NSIN=0, ITER=1, and noverlap = n (or

ncomplete = n).

5. Draw a random subsample of size p� 1 from Za
n. If the f(x

a
j;1; 1)

0; : : : ;

(xa
j;p�1; 1)

0g are linearly dependent (i.e. not of full column rank), set

NSIN=NSIN+1 and draw the next random subsample. Else go to Step

6.

6. Project all xa
j on the direction u orthogonal to the hyperplane given

by the subsample. Aggregate the two-dimensional data set f(xa
ju

0; yj);

j = 1 ; : : : ; nag and the corresponding counts tj as de�ned in Step 2

and count the ties. Compute the two-dimensional noverlap. If it is less

than the current value of noverlap, update the latter (or the same with

ncomplete). Set ITER=ITER+1. If ITER > NITER go to Step 7, else

go to Step 5.
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7. Output the resulting noverlap (or ncomplete), the corresponding direction

u, and for p > 2 the number NSIN of singular subsamples that were

encountered.

The actual implementation is available from the �rst author at

A.Christmann@hrz.uni-dortmund.de .

4 Examples

In this section we consider some data sets commonly used as test data in

logistic regression. The values of ncomplete and noverlap were computed by the

algorithm of Section 3, and are given in Tables 1 and 2. These tables also list

the indices of important cases whose deletion would destroy the overlap, the

computing times (on a Pentium PC with 166 MHz), and the trial number of

the �rst occurrence of the �nal value of ncomplete or noverlap. We checked our

results by �rst trying 104 subsamples and then 105 subsamples. For the data

sets considered here, the �nal result was obtained already for 104 subsamples.

The e�ort to compute ncomplete or noverlap was small to moderate, with com-

putation times ranging between 2 seconds and 6 minutes. The computation

time increases approximately linearly with the number of subsamples being

drawn.

Finney (1947) lists the vaso constriction data set about a controlled exper-

iment to study the e�ect of the rate and volume of air on a transcient re
ex

vaso-constriction in the skin of the digits. Pregibon (1981) uses this data

set to illustrate his diagnostic measures for detecting outlying observations

and quantifying their impact on various aspects of the maximum likelihood

�t. We use this data set with the same explanatory variables log(rate) and

log(volume). Pregibon (1981) shows that cases 4 and 18 are outlying and

that both have a large impact on the MLE �t. Both cases are downweighted

by the M-estimators in K�unsch, Stefanski and Carroll (1989, p. 465). We

�nd noverlap = ncomplete = 3 in Tables 1 and 2. The well-known outliers 4 and
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18 stick out in Figure 3a.

Table 1: The number ncomplete for several data sets.

Data set (n; p) ncomplete important number of samples trial

cases 10; 000 100; 000 number

Vaso constriction (39; 3) 3 4,18,29 or 4,18,24 2 sec 23 sec 36

Cancer remission (27; 7) 3 7,23,24 8 sec 86 sec 2472

Food stamp (150; 4) 17 5,22,40,44,51,66, 8 sec 89 sec 223

73,79,95,103,106,

109,113,120,135,

137,147

IVC (3200; 5) 458 not given 8 sec 75 sec 7705

Hemophilia (52; 3) 0 � 3 sec 31 sec 9

Birth weight (189; 11) 47 not given 37 sec 371 sec 5253

Table 2: The number noverlap for several data sets.

Data set (n; p) noverlap important number of samples trial

cases 10; 000 100; 000 number

Vaso constriction (39; 3) 3 4,18,29 or 4,18,24 2 sec 23 sec 36

Cancer remission (27; 7) 3 7,23,24 or 2,8,15 8 sec 86 sec 274

Food stamp (150; 4) 6 22,66,103, 9 sec 88 sec 5

120,137,147

IVC (3200; 5) 213 fxi;4 = 1 and yi = 0 g 7 sec 75 sec 20

Hemophilia (52; 3) 0 � 3 sec 31 sec 9

Birth weight (189; 11) 5 13,51,93,102,106 37 sec 374 sec 4

The cancer remission data set taken from Lee (1974) consists of patient

characteristics. Cancer remission is the response variable. We �nd noverlap =

ncomplete = 3. Case 24 seems to be somewhat extreme in Figure 3b.
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Figure 3: Plot of yi versus xiu
0 with u yielding the smallest ncomplete for (a)

the vaso constriction data; (b) the cancer remission data; (c) the food stamp

data; and (d) the hemophilia data. If one would remove the points marked

as triangles, the data would be completely separated.
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K�unsch, Stefanski and Carroll (1989) and Carroll and Pederson (1993)

investigate the food stamp data set using M-estimators. Some observations

were strongly downweighted. Case 5 is isolated in the design space, and

appears to be an outlier in the y�direction. Case 66 is somewhat outlying

too. K�unsch, Stefanski and Carroll (1989) concluded that " : : : it should be

checked how close the data are to indeterminacy". For the food stamp data

set we �nd noverlap = 6 and ncomplete = 17. Our approach draws the data

analyst's attention to the same two cases 5 and 66 in Figure 3c.

Jaeger et al. (1997, 1998) carry out an in vitro experiment to study possible

risk factors of the thrombus-capturing e�cacy of inferior vena cava (IVC)

�lters. We focus on the study of a particular conical IVC �lter, for which the

design consisted of 48 di�erent vectors of the form (xi;1; xi;2; xi;3; xi;4). For

each vector there were mi replications with mi 2 f 50;60; 90; 100g, yielding a

total of n = 3200. The IVC data set is listed in Table 3 in aggregated form.

The explanatory variables are: thrombus diameter xi;1 (continuous, 1.5mm

to 8.5mm), inferior vena cava diameter (discrete; [xi;2 = 0 ; xi;3 = 0] if 20mm;

[xi;2 = 1 ; xi;3 = 0] if 24mm; [xi;2 = 0 ; xi;3 = 1] if 28mm), and thrombus length

(discrete; xi;4 = 0 if short; xi;4 = 1 if long). The IVC data set has many ties.

We �nd ncomplete = 458. It is interesting to note that there is no overlap if

the noverlap = 213 cases with xi;4 = 1 and yi = 0 are dropped, where long

thrombi were investigated and failures were observed.

Hermans and Habbema (1975) investigate a data set with 30 women known

to be non-carriers of hemophilia and 22 women who are carriers of hemophilia.

There are two continuous explanatory variables. The data set is completely

separated and we �nd ncomplete = noverlap = 0 in Figure 3d.

Hosmer and Lemeshow (1989) give a data set on 189 births at a US hospi-

tal. There are 10 explanatory variables, and low birth weight is used as the

binary response variable. Our algorithms �nd ncomplete = 47 and noverlap = 5,

the latter being surprisingly low.
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Table 3: Inferior vena cava (IVC) data set, where mj is the number of

replications in each design point, with
P

yj successes and mj�
P

yj failures.

xj;1 xj;2 xj;3 xj;4

P
yj mj xj;1 xj;2 xj;3 xj;4

P
yj mj

1.5 0 0 0 16 90 5.5 0 0 0 84 90

1.5 0 0 1 74 100 5.5 0 0 1 97 100

1.5 1 0 0 5 50 5.5 1 0 0 37 50

1.5 1 0 1 36 50 5.5 1 0 1 41 50

1.5 0 1 0 3 50 5.5 0 1 0 40 50

1.5 0 1 1 30 60 5.5 0 1 1 40 60

2.5 0 0 0 24 90 6.5 0 0 0 89 90

2.5 0 0 1 95 100 6.5 0 0 1 98 100

2.5 1 0 0 4 50 6.5 1 0 0 48 50

2.5 1 0 1 38 50 6.5 1 0 1 42 50

2.5 0 1 0 5 50 6.5 0 1 0 40 50

2.5 0 1 1 51 60 6.5 0 1 1 51 60

3.5 0 0 0 52 90 7.5 0 0 0 89 90

3.5 0 0 1 95 100 7.5 0 0 1 97 100

3.5 1 0 0 18 50 7.5 1 0 0 49 50

3.5 1 0 1 42 50 7.5 1 0 1 49 50

3.5 0 1 0 25 50 7.5 0 1 0 47 50

3.5 0 1 1 52 60 7.5 0 1 1 53 60

4.5 0 0 0 80 90 8.5 0 0 0 90 90

4.5 0 0 1 95 100 8.5 0 0 1 99 100

4.5 1 0 0 23 50 8.5 1 0 0 48 50

4.5 1 0 1 38 50 8.5 1 0 1 49 50

4.5 0 1 0 22 50 8.5 0 1 0 47 50

4.5 0 1 1 46 60 8.5 0 1 1 59 60
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5 Summary

There is an interesting relation between the notion of regression depth in-

troduced by Rousseeuw and Hubert (1999) and the notion of separation de-

veloped by Albert and Anderson (1984) and Santner and Du�y (1986). The

latter authors investigate conditions under which the maximum likelihood

estimate of � exists, in a logistic regression model with an intercept term.

They showed that if the data set is completely or quasicompletely separated,

then the maximum likelihood estimate of � does not exist. If the data set has

overlap, then the maximum likelihood estimate of � exists and it is unique.

In the present paper algorithms are proposed to determine noverlap, the small-

est number of observations whose removal would destroy the overlap. In our

terminology, having overlap means that noverlap > 0. The examples in Table

2 illustrate that noverlap is often quite small, especially in higher dimensions,

so that the result of a logistic regression often depends crucially on only a

few observations.

If the assumptions of a logistic regression model for binary response vari-

ables are valid, it holds for any parameter vector � 2 IRp that

P�(ncomplete = 0) � P�(allYi = 0) + P�(allYi = 1)

=
nY

i=1

[1� �((x; 1)�0)] +
nY

i=1

�((x; 1)�0) > 0 :

This is why there are no estimators that always have a high �nite-sample

(replacement) breakdown value in the sense of Donoho and Huber (1983) for

logistic regression with binary response variables, c.f. Christmann (1994).

The algorithm for noverlap is also useful in other regression models with

binary response variables. For instance, the probit model uses the cumulative

distribution function � of the standard normal distribution instead of � in

(1), and noverlap has the same importance as in logistic regression.
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