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Abstract

We propose a new information theoretically based optimization
criterion for the estimation of mixture density models and compare
it with other methods based on maximum likelihood and maximum
a posterio estimation. For the optimization, we employ an evolu-
tionary algorithm which estimates both structure and parameters of
the model. Experimental results show that the chosen approach com-
pares favourably with other methods for estimation problems with few
sample data as well as for problems where the underlying density is
non-stationary.

1 Introduction

The estimation of the probability density function (pdf) of a data generating
process given a �nite sample of observations is a very fundamental tool in
statistics. The reason to estimate the density is, essentially, twofold: �rstly,

�
email: Martin.Kreutz@neuroinformatik.ruhr-uni-bochum.de

��
email: reimetz@statistik.uni-dortmund.de

1



the density itself may be the subject of interest, or, secondly it may serve as a
base for other statistical tasks including data compression, classi�cation and
regression [4, 14, 16]. Over the last decades, a variety of methods have been
proposed in the �eld of statistics and arti�cial neural networks. However, the
task of density estimation still remains to be di�cult. This especially holds
for the estimation of probability distributions in the case of small sample
sizes or non-stationary distributions.

We are concerned with the case in which no prior knowledge about the
parametric form of the distribution can be assumed. As a general (semi-
)parametric model we consider �nite mixtures of normal densities. After a
short introduction to mixture models in Sec. 2, we address the problem of
model selection, which includes both the estimation of structure and param-
eters of the model.

If the underlying system is not completely described by the sample data,
additional conditions have to be imposed on model selection. A systemat-
ical method is the introduction of regularization terms in the optimization
criterion. In Sec. 3, we compare three di�erent methods to penalize the
log-likelihood function with a regularization term and discuss them in the
framework of penalized maximum likelihood estimation. A new information
theoretically based criterion will be proposed which has the appealing prop-
erty that no external regularization parameters are required.
The structure estimation problem as well as some of the regularization terms
lead to a non-di�erentiable objective function. Therefore, gradient-based
methods are not applicable and direct optimization procedures must be ap-
plied. Especially in the context of structure optimization evolutionary algo-
rithms (EAs) have been considered to be a very promising approach to deal
with these problems. In Sec. 4, we outline the employed EA. We show that
the proposed EA combined with the information criterion outperforms the
other presented methods.

2 Gaussian mixture models

Mixtures of densities have been considered as very general and computation-
ally e�cient semi-parametric models for density estimation.
They consist of a convex combination of m parametric component densities
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The vector of parameters ~� characterizing p̂ includes the weighting coe�cients
�i and the parameters �i of the component densities. In this article, we
employ �nite mixtures of normal densities:
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which have several appealing properties: they are universal in the sense that
they can approximate any continuous probability distribution [1] similar to
radial basis function networks [18]; they can cope with multi-modal dis-
tributions and their complexity can be easily adjusted by the number of
components.

3 Regularization

The method of maximum likelihood is widely used in statistical inference.
For continuous distributions the likelihood of a sample X = f~x1; : : : ; ~xNg is
de�ned by the joint density of X for the chosen probability density model
p̂(~xj ~�) (characterized by its parameters ~�). Assuming the ~xi to be iid. sampled

with pdf p(~xj~�) the log-likelihood function reads

`(~�) = log
NY
k=1

p(~xkj~�) =
NX
k=1

log p(~xkj~�): (5)

A maximum likelihood estimation corresponds intuitively to the most likely
model which would give rise to the data X. A commonly used estimation
method is the EM algorithm [8, 19] which is particularly useful for Gaussian
mixtures since both steps of the EM can be performed analytically. However,
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if functions of one or more continuous variables are involved, the principle
of maximum likelihood may be inadequate. In these cases the attempt to
maximize the likelihood may result in an in�nite value of the likelihood and
degeneracy of the model. In the context of Gaussian mixtures, Eq. (3), we
observe that the likelihood will be in�nite, if one of the density functions �i
collapses to a delta function placed on one data point. In structure optimiza-
tion of Gaussian mixtures, methods solely based on the likelihood, therefore,
tend to increase the number of component functions, place their centers on
the data points and minimize their widths. A general approach to trans-
form this ill-posed optimization problem into a well-posed problem is the
introduction of regularization terms which re
ect speci�c assumptions about
the density model. The aim is the simultaneous minimization of bias and
variance of the model which is possible in the case of in�nite data sets but
in practical applications leads to the bias-variance dilemma [9]. Essentially,
regularization reduces the e�ective degrees of freedom [17].

In the remainder of this section we review two commonly used regular-
ization methods and propose a new method which is based on the relation
between the log-likelihood and the Shannon entropy.

3.1 Roughness penalties

A sensible choice for regularization is to demand a smooth density model. A
common choice of a smoothness functional J(~�) is the integral of the squared
second derivative

J(~�) =

+1Z
�1

p00(xj~�)2 dx; ~x 2 IR ; (6)

which has an appealing interpretation as the global measure of curvature of
p and can be viewed as a special form of a Tikhonov regularizer [25].

Similar terms have been used in the context of penalized maximum like-
lihood estimation [11, 23]. The employed terms were derived only for uni-
variate densities. The multivariate case has been treated in the context of
arti�cial neural networks [2, 3]. In this approach, however, the integral in
Eq. (6) was approximated by the sum over the training sample leading to
a data-dependent smoothness functional. Furthermore, the o�-diagonal ele-
ments of the Hessian matrix were discarded. In [15] the integral in Eq. (6)
has been extended to the multivariate case and solved analytically. Hence,
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the complete objective function reads

F (~�) = `(~�)� 
 J(~�) : (7)

The smoothing parameter 
 controls the relative in
uence of both criteria.
However, due to the introduction of J(~�) the M-step in the EM algorithm is
no longer analytically tractable. Heuristic methods [10, 24] turned out to be
numerically instable. Hence, we use a quasi-Newton optimization method in
the M-step in order to be still able to apply the EM algorithm.
Another heuristic approach is to use arti�cial noise during the estimation.
In the limit of an in�nite sample and under a quadratic approximation this
corresponds to a special Tikhonov regularization [20, 5]. In each E-step of
the EM the whole sample is corrupted by additive normal distributed noise
with variance �2 which takes the role of the smoothing parameter 
. In this
case the standard EM can be used without any change. However, the choice
of the right smoothing parameter still poses a di�cult problem.

3.2 Entropy based regularizations

Another sensible measure has been proposed by the authors and is based on
the following consideration: Let p(~x) denote the true density and p̂(~x) the
estimation of p, respectively. In the case of a continuous distribution with
an in�nite sample the log-likelihood reads:

`(~�) =

+1Z
�1

� � �
+1Z
�1

p(~x) log p̂(~xj~�) d~x ; ~x 2 IRn ; (8)

If the estimation p̂ coincides with p the log-likelihood is just the negative of
the Shannon entropy H [7]:

p̂ = p ) `(~�) =

+1Z
�1

� � �
+1Z
�1

p(~x) log p(~x) d~x = �H(p(~x)) : (9)

The Shannon entropy is a measure of the uncertainty of a random variable
and can also be considered as a measure of \disorder" of a probability distri-
bution. Maximization of the entropy represents the minimization of the bias
in the choice of the model. In the case of an uniform distribution the entropy
reaches its maximum, which corresponds to the fact that instances of an
uniformly distributed random variable do not show any order or structure.
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On the other hand the entropy attains its minimum for a peaked distri-
bution since such a distribution is highly ordered: all probability mass is
concentrated in only one peak This relation between the log-likelihood and
the Shannon entropy leads directly to a new optimization criterion which
provides a tradeo� between underestimation which corresponds to a low log-
likelihood and overestimation which corresponds to a low entropy:

Q(~�) =
1

N

NX
k=1

log p̂(~xkj~�) +H(p̂(~xj ~�)) : (10)

In this sense the criterion Q(~�) accounts for what is called the bias variance

dilemma (which can only be escaped in the limit of an in�nite sample) [9, 13].
This criterion includes a very intuitive regularization imposed by the

Shannon entropy. Overspecialized solutions would increase the log-likelihood
but, on the other hand, would decrease the Shannon entropy. This criterion
can be viewed as a penalized maximum likelihood criterion. In the Bayesian
sense this corresponds to a maximuma posteriori estimation with an entropic
prior [12]. However, in all these approaches some kind of regularization pa-

rameters must be set. This is not necessary if we use the new criterion Q(~�)
in Eq. 10.
Another objective may be the minimization of the absolute value of Q(~�). In

contrast to the log-likelihood which may reach in�nity the criterion jQ(~�)j
possesses a lower bound. In this paper, we pursue the penalized maximum
likelihood approach.

It is not possible to solve the entropy integral analytically for Gaussian
mixtures. Therefore, it must be approximated by e.g. Monte Carlo sam-
pling. This fact renders maximization methods like gradient descent or EM
algorithms computationally ine�cient. On the other hand, since direct op-
timization methods like EA only rely on the value of the objective function,
they provide a well suited framework for optimizing non-di�erentiable and
noisy functions.

4 Evolution of Gaussian mixtures

Two di�culties arise in the context of model estimation: �rstly, the opti-
mization of both structure and parameters of a model is carried out in a
search space which is generally non-di�erentiable and multi-modal, and sec-
ondly, as shown in Section 3, the introduction of regularizations may lead to
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complicated and noisy optimization criteria. Evolutionary algorithms have
been considered to be a promising method for dealing with this class of op-
timization problems [26]. However, the representation of solutions and the
corresponding evolutionary operators have to be chosen carefully and in gen-
eral depend on the problem. We will not be able to discuss the speci�c EA
in detail, refer to [15], but point out some conditions, which lead to speci�c
operator settings.

The parameters �i of each component are encoded directly in the genome.
In the context of recombination the problem of competing conventions [21]
arises: Due to the invariance to permutations of the components distinct
genomes map to functionally equivalent phenotypes (models). This problem
is circumvented by using a crossover operator which samples the crossover
points in the input space, see Fig. 1 rather than on the position in the
genome (a similar operator has been proposed in the context of evolutionary
optimization of radial basis function networks [6]).

Several mutation operators for structure modi�cation of the model have
been considered. A very straightforward choice are simple insertion and
deletion operators. However, the insertion and deletion of components in the
model can be very disruptive and violate the principle of a strong causality
in EAs [22]. In order to minimize these e�ects and to better control the
impact of mutation, we employ special merge and split operators which try
to increase and decrease, respectively, the number of components while at
the same time keeping the e�ect of mutation as small as possible, see Fig. 2.
Details of these operators are discussed in [15].
For the optimization of Gaussian mixtures we employ the operators depicted
in Figs. 1 & 2. All operators are followed by a local adaptation of the model
parameters which is performed by a single EM iteration. This means, es-
sentially, that undirected structure variations are followed by directed (with
respect to the log-likelihood) parameter mutations. In order to be applica-
ble the EM has to act on the unregularized likelihood surface, whereas the
EA selects solutions according to the regularized objective function. Since
an EM step usually contains a signi�cant component in the direction of an
regularized optimum, see Fig. 3, the EA will be able to locate these optima.
This separation between the selection and adaptation process makes it possi-
ble to combine complicated, non-di�erentiable and noisy objective functions
with fast local estimation methods.
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Figure 1: Crossover operator: The portions of mixture components of both
parents lying in the crossover section are exchanged.

Figure 2: Mutation operator: A randomly selected component is split into
two new components (left), two mixture components are merged together to
form a new component (right). Both operators try to keep the change in the
model and therefore the impact of mutation as small as possible.

5 Experimental results

In order to assess the performance of the proposed method, we employed the
EA combined with the information criterion to density estimation problems.
The �rst task was a density estimation problem with few sample data. The
sample was generated from a normal distribution with � = 1 =16 along a ring
with radius r = 1, see Fig. 4 (left). The sample size for both training and
test data set was 500.

In order to give an impression of the e�ect of roughness penalties, we
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µ16

µ17

Figure 3: The solid line shows the development of two parameters �16 and �17
of a Gaussian mixture with 20 kernels during a penalized maximumlikelihood
estimation using the roughness functional J(~�). The dashed lines show the
direction of the corresponding unregularized EM steps.

Figure 4: (left) The original density p(~x), (middle) the estimated density
using the information criterion Q. (right) The estimated density using 
 =
0:001, which corresponds to a \typical" value from the plateau in Fig. 5(left)

compared both regularization methods described in Sec. 3.1, see Fig. 5.
Note, that both methods depend on a regularization parameter.

The information criterion Q does not depend on any regularization pa-
rameter. Fig. 6 shows the development of the negative log-likelihood divided
by the sample size (training and test) and the entropy during the course of
evolution. If no regularization is used the EA produces over-specialized so-
lutions with a poor performance on the test sample, see Fig. 6 (left). With
the information criterion the negative log-likelihood on both samples and the
entropy remain in the same range. No over�tting can be observed while the
performance on the test sample is better than the best performance obtained
with an unregularized maximum likelihood estimation. The negative likeli-
hood on the test set (ca. 1260) is higher than for all but the best choices
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Figure 5: (left) Regularization with a roughness penalty, (right) regulariza-
tion with noisy training samples. In both cases the log-likelihood of the
training sample (solid line) and the test sample (dashed line) is shown for
di�erent values of the respective regularization parameter. All results are
averaged over 100 runs.

of the regularization parameters. Only the best regularized results, Fig. 5,
reach roughly the same value. The �nal estimate is depicted in Fig. 4 (right).
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Figure 6: (left) Evolution of a Gaussian mixture without any regularization,
(right) using the information criterion. The solid line shows the log-likelihood
of the training sample and the dotted line the log-likelihood of the test sam-
ple, respectively. For comparison the entropy is shown by the dashed line.

For the second task we applied our method to the estimation of a non-
stationary density. Especially for non-stationary densities, it can be di�cult
to identify one regularization parameter which results in the optimal likeli-
hood on the test set for all possible densities during the estimation. Since
the proposed method is independent from any regularization parameters, it
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is particularly applicable to case where the density is non-stationary. The
EA was used to �t the Gaussian mixture model to a normal density with
� = 1 =16 along a ring with radiusr 2 [1; 2] while the radius is changing over
time: The radius r describes one period of a sine wave over the interval of
1000 generations with rmin = 1 and rmax = 2, respectively. As depicted in
Fig. 7 the EA is able to follow the distribution.
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Q(  )θ
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Figure 7: The plot shows the information criterion Q evaluated on the test
sample over the course of evolution. For the optimal model Q would be zero,
see dotted line. The three small plots above the main plot are snapshots
taken from the EA with operator-adaptation at generation 250, 500 and 750,
respectively. All values are averaged over 16 runs and 10 generations.

Since Q must be evaluated by stochastic methods like Monte Carlo sampling
the curve in Fig. 7 exhibits rather large 
uctuations. This can be avoided by
increasing the number of Monte Carlo samples.

6 Conclusion

We compared di�erent regularization methods in the context of structure
and parameter optimization of density estimation models. Most of them
depend on additional parameters which have a strong impact on the per-
formance of the method. We proposed an optimization criterion which was
inspired by the relation between the log-likelihood and the Shannon entropy.
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The criterion can be interpreted as a maximum a posteriori criterion with
an entropic prior. However, it does not depend on any additional parame-
ters. An evolutionary algorithm was applied to the optimization of structure
and parameters of Gaussian mixture models in conjunction with the pro-
posed information criterion. Experiments with density estimation problems
with small sample sizes as well as with non-stationary distributions show the
superiority of the new criterion.
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