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Abstract

We consider the problem of finding D-optimal designs for estimating the coefficients in a
weighted polynomial regression model with a certain efficiency function depending on two
unknown parameters, which models the heteroscedastic error structure. This problem is
tackled by adopting a Bayesian and a maximin approach, and optimal designs supported
on a minimal number of support points are determined explicitly.

Keywords and Phrases: mazimin optimality, Bayesian optimal designs, efficiency function,

parameter estimation, Jacobi polynomials

AMS Subject Classification: 62K05, 33C45

1 Introduction

Consider the problem of designing a regression experiment with polynomial mean and het-
eroscedastic error structure. In most circumstances, the exact variance function will not be
available in advance but it is possible to specify its general structure apart from a finite num-
ber of parameters. This leads to the following model setup for the response Y at a certain level

of the independent variable x assumed to lie in a given design space Y,

ELY (#)] = S, Varly (0] = 575,

(L.1) Y(z) = kz:;’Ykl"k + \/ﬁ ;
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where vI' = (7g,...,7,) denotes the vector of the parameters of interest and o is a positive
constant. For different observations the errors € are assumed i.i.d. and standard normal. The
function A(x, 1), which is proportional to the inverse of the variance function, is commonly
called efficiency function in the design literature [see Fedorov (1972)]. So there are two sets
of parameters in the model, the parameters, which are summarized in the vector v and are of
primary interest and furthermore the nuisance parameters in the vector ¢/, which model the
uncertainty of the experimenter about the heteroscedastic error structure.

The efficiency function to be considered in the following was first discussed in Antille, Dette
and Weinberg (2002). These authors considered the design space x = IR and the efficiency
function

(1.2) Mz, 9) = (1 +2%)*™ exp(28 arctanz), a<-n-—1, B € IR,

which gives some kind of U-shaped dependency of the model variance on x, and determined
the locally D-optimal design &, s in the sense of Chernoff (1953). The specific case =0, a <
—n — 1 corresponds to a rational regression model and locally D-optimal designs for this model
were determined by Dette, Haines and Imhof (1999). Locally optimal designs have been critized
by numerous authors because of their lack of robustness against misspecifications of the initial
parameter ¥ = (o, ) [see e.g. Chaloner and Verdinelli (1995)].

It is the purpose of the present paper to design an efficient experiment for the estimation of
the parameter vector v in the model (1.1) with efficiency function (1.2) that is robust against
misspecifications of the unknown value of ¢, because such misspecifications can result in an
inefficient parameter estimation and therefore severe inaccuracies in the subsequent data anal-
ysis. We define robust optimality criteria in the Bayesian and maximin sense based on the
D-optimality criterion more formally in the next section. Our methology enables us to find
such designs supported on a minimal number of support points. In most cases the designs can
even be derived analytically, sometimes they must be determined numerically though. The main
results of this study are given in section 3 while section 4 contains some of the corresponding
proofs.

2 Standardized maximin and Bayesian optimal designs

Throughout this paper we consider approximate designs &, i.e. a design £ is treated as a proba-
bility measure with a finite number of support points in the design space x, where the relative
number of measurements in each design point is approximately equal to the corresponding
mass. Given a design ¢ and a fixed value of 9, the 7, j th component of the information matrix
of € in the heteroscedastic polynomial regression model for the parameter v can be specified by

M(f,ﬁ)m:/)\(x,ﬁ)xiﬂdf(x), ii=0.. .. .n

X

[see Atkinson and Cook (1995)]. This matrix describes a measure for the information contained
in the design £ to estimate the parameter vector 7 in the model (1.1). The widely used D-
optimality criterion, which maximizes the determinant of the information matrix, yields a
design depending on the unknown parameter ¢, given below in Lemma 2.1. This means that



the D-optimal design is local in the sense of Chernoff (1953) and particularly not robust against
misspecifications of the nuisance parameters.

There are two (in some sense related) non-sequential approaches to construct robust optimality
criteria, the Bayesian and the maximin procedures, which will be discussed in the following. On
the one hand, it can be reasonable to assume that some prior knowledge about the parameter
¥ is available in advance, which can be specified by a probability distribution. In such cases it
makes sense to choose a design that maximizes a function of the determinant of M (&, ) after
averaging out the plausible values of ¥ by a prior distribution 7. Since the use of standardized
criteria is recommended to avoid different scaling [see Dette (1997)] this leads to a Bayesian
design criterion based on the D-efficiencies

M (€, 9)| >/
[M(&,9)] ’

where &y denotes the locally D-optimal design for the parameter v. The criterion function
U, (&) is then defined as

o) 06— [ [ (s oy dw)r, oo

effp(¢,7) = <

|M(€'19719

and a Bayesian-W¥,-optimal design § with respect to the prior 7 maximizes this expression over
the set of all approximate designs on the design space x [see Dette and Wong (1996)].

If — in contrast — the aim is to protect the design of the experiment against the worst possi-
ble case it is reasonable to maximize the minimal D-efficiency, which yields the standardized
maximin D-optimality criterion

1/(n+1)
o w0t (W) |

[see Miiller (1995) or Imhof (2001)]. Throughout this paper we call a design maximizing the
above function W_-optimal (with respect to ©), where © denotes the region in which ¥ can
vary. Note that the standardized maximin criterion is obtained in the limit as p — — oo from
the Bayesian criterion so the notation ¥_, is consistent with the above definition. Moreover,
the classical Bayesian D-optimality criterion [see e.g. Chaloner and Larntz (1989)]

Wy (£) = exp / log [M(€, 9)]| dr (0)

is received in the limit as p tends to zero.
In order to simplify our statements of the main results it is helpful to identify each prior
distribution 7 with an associated prior 7 defined by

drn = |M (&, 0)| Y dr,



where we replaced p/(n+ 1) by ¢. Hence an equivalent formulation for (2.1) is to find a design
¢ maximizing the function

(23 @, (6) = [ [nreopao|’, —x<qa<o

where Wo(€) = Uy(€). To compute di for a given prior dr it is necessary to calculate the
value of the determinant |M (&, )| for the currently considered efficiency function (1.2). The
locally D-optimal design &y and the corresponding value of the determinant are given in the
following Lemma. Throughout this paper Pr(ffr’ly) (z) denote the (n + 1)th Jacobi polynomial
with parameters (u,v).

Lemma 2.1.

(i) The locally D-optimal design &, for the weighted polynomial regression model of degree
n with design space x = IR, efficiency function

(14 2*)**texp(24 arctan )
and a < —n — 1 is the uniform distribution on the (n+ 1) zeros of the Jacobi polynomial

P i),

(1) The value of the determinant of the corresponding information matriz is given by

no (g 4 )2 + 52)*H exp(26 arctan (=2 ))

Mg, _ g T 57 BAYET
| (6 75,0[,6” Jl_Jl:] Jl_Jl: (—20! _ (n+] + 1))2a+n+]+1

The proof of part (i) is given in Antille, Dette and Weinberg (2002), whereas the proof of part
(ii) is deferred to the appendix.

Some Jacobi-polynomials of lower order degree are given in the following table for the sake of
completeness.

PéiTiﬂ:a—iﬁ) (’L.’L‘)

i[f+ (a+1)x]

2 -20—-28% - 23+ 20) Bz — (24 a) (3 + 2a)z?]

ZBBa+2(4+6%) +3(2+ )3+ a+26%)x + 3(2+ a) (5 + 2a) fa?
+(2+a)(B+a)(5+2a)2”]

[NCR N el ]

Table 2.1. The Jacobi polynomials in Lemma 2.1.



3 Main results

We are now ready to state our main results. The following Theorem gives the Bayesian-¥,,-
optimal (n 4 1)-point design in the settings of (1.1) and (1.2) for all —oo < p <0.

Theorem 3.1. Let x = IR, © C (—o00,—n — 1) X IR and the efficiency function \(x,«, ) =
(1+2%)* L exp (28 arctan x). Let furthermore  be a given prior on © with finite first moment,
7 its associated prior and ¢ = p/(n+ 1), —oo < ¢ < 0, with the assumption that

/ elatay+28a2 gz (0 B) < 00 Vy,z € R.
5

Define the functions

Jo(a + 1) eletDavt28ezdz (o, B)
f@ e(a+1)‘1y+2[3qzd7~r(a7 6)

f@ B eletDayt260z gz (o )
f@ e(a+1)‘1y+2ﬂqzdﬁ-(a, 5) :

Fi(qy,qz) =

Fy(qy,qz) =
Then the Bayesian-V,-optimal (n + 1)-point design with respect to the prior ™ has equal mass

at the zeros of the Jacobi polynomial

F _14i R F iR .
PTE+11(qy,qZ) +i F2(qy,92),F1(qy,q2)—1—i 2(!11/,qZ))(m)7

where (y, z) is a solution of the simultaneous equations

n+1

y =2(n+1)log2+ ) {log ((Fl(qy, qz) — 1+ j)° + F3 (qu, qZ))
7=1
—2log (2F1(qy, gz) —1+n +j)}
(3.1)
n+1
—1F5(qy, ¢2)
z = arctan - ).
; (Fl(qy,qz)—lJrJ)

Example 3.2.

(i) The case p = 0 corresponding to the classical Bayesian-D-optimality criterion is of par-
ticular interest. In this case we have Fi(qy,qz) = E;[a] + 1, Fy(qy,qz) = E;[f] and
the Bayesian D-optimal design is given by the uniform distribution on the roots of the

polynomial
Erlal+iEx B, Exla]+iE B .



(i) If one of the parameters can be assumed as known the representation for the solution in
Theorem 3.1 simplifies substantially. For example, if 7 = 7T; ® 7y is a product measure
where 7y is a Dirac measure at the point fy, then Fy(qy, qz) = By,

Jolo+ Vel Dwds (o)

Fi(qy) = Fi(qy, q2) = fe el v dr ()

does not depend on z, and y is the solution of the equation

y=2(n+1)log2+ Z{log((Fl(qy) —1+47)*+ ;) — 2log(2Fi(qy) — 1 +n +J’)}-

i=1
The W,-optimal design is a uniform distribution at the roots of the polynomial

Pélill(lly)—l-l-iﬂo,ﬂ(qy)—l—iﬁo)(ix)‘
In particular, if Sy = 0 we obtain robust optimal designs for the heteroscedastic polyno-
mial regression model considered in Dette, Haines and Imhof (1999).

The corresponding maximin result is given in the Theorem below.

Theorem 3.3. Assume that x = IR, © a compact and convex subset of (—oo, —n—1) x IR with
boundary T = 0O and consider the efficiency function \(z, o, ) = (1+z%)** exp (23 arctan ).
Then the ¥ _ o -optimal (n+1)-point design with respect to © is unique and given by the uniform
distribution on the components of the vector (x7f,..., x5, ,)" € R™ !, where a7 < ... < x},,
maximize the function

n+1 el ; a+n+j
h(x Tp) = min |:{2_(n+1)(2a+n+2) H (1+ )" (=20 — (n + j + 1))t
1ye-+yLp oy Ry 2\atj
(af)er P 7 (4 7)* + 5?)
w1 3 1)
X H (x —xj)2Uexp <2B<arctan(3:j) — arctan <a—|—j)))} ]
1<j<k<n+1 j=1

There are two special cases of the settings in Theorem 3.3 with more explicit results. If one of
the variables at a time can be assumed to be known we get the following.

Theorem 3.4. Assume that the assumptions of Theorem 3.3. are satisfied.

(1) If the value of « is known and 8 lies in some interval [y, B3] C IR, 1 < (o, then the
U _-optimal (n + 1)-point design with respect to © is given by the uniform distribution
on the (n + 1) zeros of the Jacobi polynomial

Py i),



where By is the unique solution of the equation

ﬁ () _ f T (@492 + 05y a1
j=1 a j=1 (a+ ) +612 251arctan(ail) )

(i1) If the value of the parameter B is known and « lies in some interval [ay, as), @ < g <
—n — 1, then the V_.-optimal (n + 1)-point design with respect to © is given by the
uniform distribution on the (n + 1) zeros of the Jacobi polynomial

Pé:t_ofriﬁ,ao%ﬁ)(i 33),

where ag is the unique solution of the equation

+
(209 + 27)% + 432
H 0 ] 5 _dn+1(0417042)7

(200 + 71+ j + 1)2

and the constant d,,1(aq, as) is given by the expression

. . -8
{ (200 +25)% + 482 (=205 — (n+ j 4 1)) 20—t 2oactan(sg) }0‘210‘1
— .
)

1 (20 + 2)2 4+ 482) 020 (=20 — (n+ j + 1))~2er=(ntjt1) 2P arcian(Gig

Example 3.5. If 5 = 0 the situation in Theorem 3.4 (ii) simplifies further. In this case the

standardized maximin D-optimal design is a (symmetric) uniform distribution at the roots of

P(oco,ozo)

the polynomial P,77"" (iz), where ayg is the unique solution of the equation

ﬁ( P +J )2<a2—a1>_’ﬁ(a2+j)a2”(—2a1—(n+j+1))2“1+”+j+1

200+ n+j+1 (o ) (=202 — (n+ j + 1)) 20ttt

Note that this result provides robust designs (based on the maximin approach) in the situation
discussed by Dette, Haines and Imhof (1999).

4 Appendix: proofs

Proof of part (ii) of Lemma 2.1. The determinant of the information matrix of the locally
D-optimal design &, g is given by

1\ Ty 2 ya+tl e 28 arctan(z; 0,3 2
Mg B) = (7)) [T0+aap ™ TLe?*@ee) T (oras — 2ap)
Jj=1 j=1 1<j<k<n+1



where w;4,5, J = 1,...,n + 1, denote the support points of £, 3. Note that the supporting
polynomial can be written as

n+1

P i) = MET T [ @ = 2500)
7=1
where )\gfflw 2= denotes the leading coefficient of the Jacobi polynomial. This gives the
representation
n+1 n+1 n+1 (a+iB, a—iB) (a+i8, a—iB)
B (-1 P (1)
2 _ . . _ T n+l n+1
H(]' + ‘Tj,a,ﬂ) - H(Z - 'Z‘j,a,ﬁ) H(_Z o 'Z‘j,(l,ﬁ) - ()\(oc-l-zﬁ,a—z,é’))Q
j=1 j=1 j=1 n+1
+1 .
(4.1) :2%HDTI (a+j)*+ 7

i Qa+n+j+1)%

where we applied formulae (4.1.1), (4.1.4) and (4.21.6) from Szeg6 (1975). Using the above
formulae again as well as the representation

i 141z
arctan z = —— log ( ),

2 1—12
we obtain
n+1 ntl -
(42) H eXp(arCtan(ib'j,a,ﬁ)) = H exp <arctan (‘, T ')) .
: - J T
j=1 J=1

To calculate the value of the remaining factor in the determinant we consider the corresponding
Jacobi polynomials in the variable x instead of iz, i.e.

)\(a+iﬂ, a—if) n+l

+'ﬂ7 _6 +6; _ﬂ N N +1 -~
PTEL@ a—i )(x) — péilz a—i )(Z (—iz)) = nzT H($—33j,a,6),
=1
where the 7,3 = 1744, j = 1,...,n+1, denote the zeros of these functions. The discriminant

formula (6.71.5) in Szeg6 (1975), Theorem 6.71, gives

n+1
D7(Ia++1zﬁ,afzﬁ) — 9—n(n+l) Hjjf2n(j +a+ iﬁ)jfl(j +a— iﬂ)jfl(n +i+14 2a)n+17j
=1
with the discriminant D) defined as

)\(C!ﬁ-lﬂ, 05_7:6)

. . 2n
(Cl‘l‘lﬂ,a—lﬁ) _ n+1 | | ~ ~ 2
D’I’L+1 - Zn+1 ('Z‘k;ayﬁ - xjva,ﬂ)
1<j<k<n+1

(07 'ﬁ,afiﬂ n n(n
= (AL ey 2 T (208 — Tj.as)°
1<j<k<n+1



Therefore we end up with the identity

n+1 .~

(4.3) H (Thap — Tjag)? = 20+ H] ]—a—zﬂ)ﬂ L(— j_a_.i_lﬂ)j—l

_ n+j—1
1<j<k<n+1 —2a — (n+j+ 1))+

Summarizing the results in (4.1), (4.2), (4.3) and adding the exponents we obtain

no v (a0 + ]) + %)t exp (28 arctan (=L ))
|Mn(§a,6a a, 6)| — 2(n+1 )(2a+n+2) H]y J+
j=1

’:1

e —Qq — (n + ] + 1))2a+n+]+1 ’

which ends the proof of Lemma 2.1 O

Proof of Theorem 3.1. By a standard argument in design theory [see Silvey (1980)] it can
be shown that the Bayesian-V,-optimal (n + 1)-point design with respect to the prior 7 is a
uniform distribution. Thus, by an application of the Vandermonde determinant formula the
induced optimality criterion ¥, in (2.3) is proportional to

(4.4) B [ (-1 [/@ (ﬁ(l L)t @arcan mj>qdﬁ(a,ﬁ)] . |

1<j<k<n-+1 j=1

where the points z;, j = 1,...,n+1, denote the support points of the design £ and the integral
exists by the assumption in the Theorem. If ; = —oo, we have \ifq(f) —0,7=1,....,n+1,
and the same holds for the other direction x; — oo. Hence the criterion function is maximized
by some interior point of IR"*'. Since additionally W,(¢) is differentiable with respect to the
z;'s, a necessary condition for a maximum in a certain point z* € IR"™! is a vanishing gradient
of the function W, (&) or log ¥,(€) in 2*, respectively. Differentiating log W, (&) with respect to
x, l=1,...,n+1, yields

0 log (&) IAE e 2,
45 g8 TlS) _ g F .
( ) al‘l ]:12;751 €T — .’L‘] + 1 P l(qyaqz) + 1 + :Elg 2(qyaqz)7

where the functions Fi, F, are defined in Theorem 3.1 and y, z are given by the expressions

n+1 n+1

(4.6) y = Zlog (1+23), z= Zarctan(xj).
7=1 7=1

Equating the right hand side of (4.5) to zero for [ = 1,...,n + 1, gives a system of equations,
which can be transformed into a differential equation for the polynomial f(z) = H?Ll (x — %)
[see e.g. Szegd (1975), p. 141], i.e.

(4.7) A+ f (x) + 2zFi(qy, q2) + 2Fy(qy, ¢2)) f (z) — (n 4+ 1)(n + 2F\(qy, ¢z)) = 0.



iFrom Szegd (1975) it follows that the polynomial solution of the differential equation (4.7) is

the Jacobi polynomial Péily )(iz) with parameters

p=Fi(qy,qz) — 1+ iF(qy,qz), v=Fi(qy,qz) —1—1iF5(qy,qz).

The conditions on y and z are finally obtained by using the results of (4.1) and (4.2) in the
defining equations (4.6), respectively. O

Proof of Theorem 3.3. By a standard argument [see Silvey (1980)] it can be shown that a
U _ -optimal (n + 1)-point design has equal weights on its support points. Hence the criterion
function is proportional to

inf |:{2_(”+1)(2a+n+2) ﬁ (14 22)°+ (=20 — (n 4 j + 1))2etn+it!
(se -1 39 ((a + )2 + p2)ati

(4.8)

n+1 . 1/(n+1)
X H (z), — x)? H exp (26<arctan(x]~) — arctan (a—f]))) } ] :

1<j<k<n+1 j=1

Since the parameter space © is assumed to be compact, the notation ”infimum” can be replaced
by "minimum”. So it remains to prove that the minimum of the D-efficiencies lies on the
boundary of © and, additionally, that the solution of the optimal design problems is unique.
To show that the minimum lies on I (the boundary of ©) for every (n + 1)-point design £ we
demonstrate that the function over which the minimum is taken is log-concave in (a, 3) by
proving the negative (semi)definiteness of its Hessian with respect to these parameters. The
entries of the Hessian are given by

_ Plogd _ ”i[ 2a+j)(n+1—7j)—4p°

X = da? s (—2a—(n+j+1)((a+j)+5?)
_ Plogd 28
(49) Vi Gaos T =i
Plog® <~ 2(a+j)
Z = 8752 = Z = =

(ot + 5%

which yields for the corresponding eigenvalues A, A,

X+7Z X + 7)?
_ATt +\/Q—XZ+Y2.

4

JFrom a+ 7 < 0 we conclude X < 0 and Z < 0. Hence it can immediately be seen that the
smaller eigenvalue is negative. To show that the larger eigenvalue is non-positive we consider

10



the product A; Ay and prove its non-negativity.

n+1 n+1

)\1)\2_22 Ala+j)(a+k)(n+1-7)

—2a— (n+7j+1))((a+7)*+ 52) (e + k)* + 5?)

7=1 k=1
(4.10)
n+1 n+1
15 n4+1+j—2k |
D D0 D g e (o e (P ey

The first term on the right hand side of (4.10) is obviously non-negative, for n > 0 even strictly
positive. To show that the same claim holds for the second one we split it up into

n+l n+l n+1 n+l  n+l
ergfl(ja k) = Z n+1 ] ] +Z Z n+1 ]7 n-}—l(k ])]
j=1 k=1 j=1 J=1k=1,k<j
where rnH(], k), 7, k=1,...,n+ 1, denotes the expression
n+14j5—2k

rzfl (]7 k) =

(=20 — (n4+j+1))((a+7)2+ B ((a+ k)2 + 3%)°

A straightforward but tedious calculation yields that both Tn+1(] 7) and rn+1(], k) + n+1(k 7)
are non-negative, which implies the log-concavity of the function under consideration.

The uniqueness of the solution in the class of (n 4+ 1)-point designs with uniform mass can be
shown as follows. Define the function of the D-efficiencies as ®(£, ) = effp(&,9), a function of
the support points of £ and the unknown parameter vector ©J. Obviously, the relation between
®(¢,9) and the maximin optimality criterion is given by

V_oo(€) = min & (&, V).

9O
Let €1, £2) denote two different (n+1)-point uniform demgns with support points x( ), ;2), Jj=
1,...,n + 1, respectively, and construct another design €12 in this class as a un1forrn distri-

bution on the support points

AR
T T — j=1,...,n+1.

For fixed 9 € © the function ®(&, V) is strictly unimodal on the set
{(xl,...,an)T CR"™' | —co<21<...<Tpy1 < oo}
[see Antille, Dette and Weinberg (2002)], which implies that the following holds

(4.11) ®(£M? ) > min{®(cW, 9), d(e?,9)} VI e€O.

11



Now let £ €@ be differentW _,-optimal in the class of (n + 1)-point designs with optimal
value U* ., i.e.

B0 9) = min B(£D Y) = T
min ®(£,9) = min &(&, ) = ¥

In particular, we have

(4.12) OEW W) > v, dEPD 9 >wr . Voeo.

—0o0)

The above minima exist because the parameter space © is assumed to be compact. We define
N (&) as the set of parameter values, for which the function ®(, ) becomes minimal, i.e.

N(€) = {19 €O ‘ B¢, 0) = rﬁneiél(b(f,ﬂ)}.

The compactness of © implies that the set A'(¢(1?) is not empty. ;From the optimality of the
value ¥* __ we conclude that for all ¥* € N'(£1?) the inequality

(4.13) (e, 97y < W
holds. But from (4.11) and (4.12) it follows that
(4.14) o, 97) > min{®(EW,07), (P, 07)} > ¥,

which is a contradiction. Thus there can not be more than one W_.-optimal (n + 1)-point
design and the proof of Theorem 3.2 is complete. O

Proof of part (i) of Theorem 3.4. ;jFrom the last equation in (4.9) it follows that for fixed
« the function log ®(&,9) defined in the proof of Theorem 3.2. is strictly concave in §. Hence
the minimum of ®(, ) occurs on the boundary of © = {a} x [f1, B2], i.e.

min ®(&,9) = min{® (£, o, £1), P&, o, Bo) }-

ISIC]

In the next step we show that for the W_-optimal (n + 1)-point design &* the following holds

(4.15) (&, o, Br) = (€7, v, Ba).

Having proven the above equation we use it as a side condition on the optimal design £*, which
enables us to apply a constrained optimization technique to our problem. We then apply the
differential equation approach already pointed out in the proof of Theorem 3.1 and end up with
the result of Theorem 3.4. It is straightforward to show the uniqueness of the solution and
those calculations are therefore omitted.

Thus it remains to prove equation (4.15). We only provide a sketch of the proof since the
calculations are straightforward but tedious. For more details see Biedermann (2003). Let the
sets Mpg,, Mg, be defined by

Mg, ={& ] ®(§, 0, 01) <@, f2)}, Mg, ={& | (&, 0, 51) < D(E, o, ) },

12



i.e. Mg, denotes the set of uniformly weighted (n + 1)-points designs, for which the minimum
of ®(&, , ) is attained at the point 5;, (i = 1,2). The inequality in the definition of the set
Mg, is equivalent to

atj 62,82 a.rctan(

= <

/N

2,81 a.rctan(

2)y 1/2(B2—p1)
) } '

+‘m +‘m
~

n+1 n+1
(416) H earcta.n(m]-) > { H (O{ + ]) + 52)
j=1

o Mat+ )2+ B

If the optimal (n + 1)-point design £* is in the interior of Mp, it must be obtained as the zero
of the gradient of ®(&, v, f1) and hence must coincide with the locally D-optimal design &, s,
Plugging this into inequality (4.16) and using (4.2) yields the inequality

n+1 B n+1 2 2\ atj 262arctan(i) 1/2(B2—PB1)
Hearctan(a—f_;) >{H<(Oé+]) +52)04 J e ;‘ } ‘

j=1 j=1 (Oé + ])2 + ﬁi? e261 arctan(T)

= <.

It can easily be shown that this inequality is not valid and therefore £* is not an element of the
interior of Mpg,. Analogous reasoning leads to the same result for Mg,, hence £* lies on the
common boundary of Mg, and Mg, and the equation (4.15) holds. O

Proof of part (ii) of Theorem 3.4. The proof is is omitted since we can proceed analogously
to the proof of part (i).
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