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Abstract

Do active vertical mass movements occur within a population of pho-

totropic bacteria in the meromictic Lake Cadagno? An experiment was

conducted in vivo to record vertical pro�les of the parameters turbidity

and temperature in a spatial resolution of 30cm repeatedly over time. Af-

ter eliminating the temporal dependencies within both the space-time data

of turbidity measurements and temperatures, the respective spatial corre-

lation structure can be estimated. Spatial prediction (Kriging) then o�ers

a tool to enhance the observed spatial resolution of both processes.

By means of the (temporally repeated) turbidity pro�les the vertical po-

sition of the bacterial layer can be estimated at each time point. Obvi-

ously its vertical displacements in course of the observational time occur

not only due to active bacterial swimming; additionally the bacteria are

dragged along passively by internal waves in the lake. Eliminating this

latter disturbing e�ect the estimated temperature (instead of depth) at the

bounds of the layer in course of time allows to draw conclusions on the

active component of bacterial movements. Such phenomena can be found

especially at the lower bound of the bacterial layer with amplitudes up to

more than 30cm.

Key Words: Active Bacterial Movement, Space-Time Process, Variogram,

Ordinary Kriging, Spatial Resolution

1



1. Introduction

In the meromictic Alpine Lake Cadagno1, because of speci�c physical and che-

mical conditions a stable population of phototropic sulfur bacteria has colonized.

During the summer months it shapes a distinct horizontal layer in about 11m

depth (see e.g. Egli(1997)). Laboratory experiments with the predominant

species Chromatium okenii showed motorial reactions of these microorganisms

on external stimuli: Isolated bacteria moved actively depending on the surround-

ing light intensity (Vaituzis/Doetsch(1969)). Moreover \chemotactically\ caused

movements are expected due to the bacteria's need for sul�d. Those phenomena

taking place on a microscopic scale of single bacteria are supposed to add up to

synchronic mass movements of the whole bacterial layer, that can be registered

with macroscopic devices. The present paper deals with the question, whether

vertical displacements of the bacterial layer in Lake Cadagno occur due to active

bacterial movements. Especially the active origin of the investigated movements

is to be emphasized here, as displacements of the layer additionally show a passive

component. This e�ect is caused by large internal waves in the lake that drag

along the bacteria passively. It has to be \subtracted\ from the observed total

vertical displacements of the layer so that the remaining part can be awarded to

an active source entirely.

During the past ten years several research projects have been conducted by the

Institute of Plant Biology (University of Z�urich) in order to investigate vertical

movements of the bacterial layer in Lake Cadagno. Data collection of the subse-

quent projects has been improved due to more sophisticated technical equipment

every time, the latest of these succeeding to localize the bacterial layer in high

spatial and temporal resolution (see Egli(1997)). Egli et al.(1998) describe the

methods of data collection and the results of an exploratory analysis of their ex-

tensive experiments. Dynamic changes in the form and structure of the bacterial

layer can be identi�ed, which are independent of the physical displacement of

water masses. A summary of the current state of biological research concerning

this problem is given in Peduzzi et al.(1998).

1Lake Cadagno is situated in the southern part of the Swiss Alps in Canton Tessin
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Notably until now all results of biological research have been derived by means of

exploratory data analysis carried out by biologists. Additionally to exploratory

approaches much more e�cient methods of data analysis are provided by the

statistical theory. By means of inductive analyses based on stochastic model as-

sumptions usually more substantial insight can be gathered from observed data.

In the present case spatiotemporal statistical methods appear to be promising.

These methods have been developed to analyze environmental phenomena vary-

ing in space and time. Tools are provided to model variability in both domains

and to interpolate observed data. Moreover empirical results derived from a

certain project yield recommendations for future similar projects, in particular

concerning the optimal localization of measurement sites.

Data from the above mentioned research project Egli(1997) will be analyzed in

the present paper by means of spatiotemporal methods. Concretely, experiment

No.6ii, conducted August 26th to 29th 1996, yielded reliable measurements and

no technical problems occurred. Fitting a statistical model to the corresponding

data a certain kind of \temporal homogeneity\ is required as an elementary con-

dition. This assumption is found not to hold for the complete observational time

on the whole: Plotting the data an abrupt structural change is noticed on August

28th, 800, due to a change in weather. The observational time should therefore be

divided into two subperiods in the analysis step. In the present paper a statistical

model is �t to only the �rst of these subperiods, concretely this is the period from

August 26th, 1600 until August 28th, 800.

The collection of data was realized with the following arrangement of devices:

9 sensors were placed vertically in distances of 30cm in a depth to cover the

bacterial layer. Each sensor was equipped to record the turbidity [FTU2] and

temperature [�C] of the surrounding water. Data was sampled in 1 min intervals.

2FTU = Formazine Turbidity Units; in the statistical analysis the measured turbidity values

were transformed on a log-scale
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Figure 1: Scheme of the Lake with Vertical Positioning of the Sensors

Thus the vertical distribution of the two parameters turbidity and temperature

is observed in a spatial resolution of 30cm. Aim of the statistical analysis is to

enhance this resolution by interpolating the measured values of turbidity and

temperature into the space between the sensors. This improves the facilities of

vertically localizing the bacterial layer. Knowing the exact depths of its upper

and lower bound the respective temperature of the surrounding water can be

predicted in the next step. Thereby information is available on the span of tem-

perature corresponding to the bacterial layer in its vertical expansion. Temporal

changes in this span of temperature �nally allow to draw conclusions on the active

component of bacterial movements in vertical direction.

2. The Data

According to the data collection the measured values of turbidity and temperature

correspond to an array with a two-dimensional index. Let Zt(s) represent a

measurement of either turbidity or temperature in depth s at time t. The whole

data set thereby is represented by the expression [Zt(si)] i = 1 ; : : : ; n

t = 1 ; : : : ; T

: s1; : : : ; sn

are the n depths, where the sensors are placed one beneath the other: 11.9m,
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12.2m, : : :, 14.3m; ft = 1 ; : : : ; Tg is the set of time points of the collected data.

Measurements of turbidity and temperature are at hand in each of the n depths

at each of the T points of time.

As a basis for the later proceeding note that this data set can be viewed either

in \spatial\ or in \temporal direction\ primarily:

� On the one hand

[Zt(si)] i = 1 ; : : : ; n

t = 1 ; : : : ; T

=

8>>><
>>>:

Z1(s1) � � � ZT (s1)
...

...

Z1(sn) � � � ZT (sn)

9>>>=
>>>;

=
n
[Z1(si)]i=1;:::;n; [Z2(si)]i=1;:::;n; : : : ; [ZT (si)]i=1;:::;n

o

represents a set of temporally consecutive spatial processes (\spatial point

of view\);

� on the other hand, the same set of values

[Zt(si)] i = 1 ; : : : ; n

t = 1 ; : : : ; T

=

8>>>>>>><
>>>>>>>:

[Zt(s1)]t=1;:::;T

[Zt(s2)]t=1;:::;T

...

[Zt(sn)]t=1;:::;T

9>>>>>>>=
>>>>>>>;

represents a set of spatial located time series (\temporal point of view\).

In statistical terminology, observations of a random variable are taken at spatially

discrete arranged sample locations s1; : : : ; sn repeatedly over time. This data situ-

ation is to be analyzed by methods within the framework of space-time processes3.

Space-time models represent the appropriate tool to interpolate the collected data

into the space between sample locations (spatial prediction): What is the value

of the measured random variable in depths, where no sensors have been placed?

Strictly speaking, here two di�erent random variables are concerned: turbidity

3Compared to the general situation, the present data structure shows several simpli�ca-

tions: The localization of the sensors is done on a one-dimensional spatial scale (depth), the

coordinates of the sample locations are equidistant and do not change over time.
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and temperature. So two di�erent space-time processes will be analyzed. In the

following, each of them is analyzed separately but in the same way. A common

space-time model was found to match both of the observed processes.

In general, a model �tted to space-time data should have one important property.

It has to be able to explain existing spatial and temporal dependencies, a speci�c

aspect of space-time data due to the fact that spatially or temporally linked mea-

surements are related to each other. Judging a proposed model for an observed

data set is done by investigating its ability to explain the special nature of spatial

and temporal correlations su�ciently. The strategy of the model presented here is

then as follows: At �rst temporal dependencies within the data are eliminated in

order to be able to estimate the spatial dependencies unbiasedly. Knowing about

the spatial correlation structure subsequently the problem of spatial prediction

can be solved in an optimal way (see e.g. Cressie(1993)).

3. A Spatiotemporal Model

The following space-time model assumes the spatial and the temporal dependence

structure to be represented in form of two separate components that are linked

additively. Speci�cally, the temporal structure of a given set of space-time data is

modelled by means of an ARIMA4-approach, that proved to be a convenient tool

in many time series applications (see e.g. Schlittgen/Streitberg(1997)). After

eliminating the temporal correlations within the data set, the remaining spa-

tial structure is assumed to be constant over time and is analyzed by means of

common Geostatistical procedures.

(1� B)dZt(s) = �1(1� B)dZt�1(s) + : : :+ �p(1�B)dZt�p(s) + �t(s) (1)

where [Zt(s)] is the observed space-time process,

B denotes the temporal Backshift-operator, i.e. BZt(s) = Zt�1(s) and

�t(s) represents a component of purely spatial correlations

and measurement error.

4AutoRegressive Moving-Average process
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By means of a d-fold application of the di�erence �lter (1�B) temporal trend is

eliminated within the set of data. The remaining temporal structure is assumed

to be captured by an autoregressive relationship of the random variables Zt(s).

Note that the autoregressive coe�cients �1; : : : ; �p do not carry a spatial index.

This spatial invariance of the temporal structure represents a crucial assumption

for the later proceeding. At the stage of model speci�cation it arises the big

problem of estimating common coe�cients of a set of (correlated) time series.

A mathematically justi�ed solution of this problem can be found by generaliz-

ing the Least-Squares approach used to estimate AR-parameters of an observed

univariate time series (see Schlittgen/Streitberg(1997) pg. 165�). In the present

case this procedure proved not to be necessary as will be seen below.

An initial analysis of the present data set showed far reaching simpli�cations of the

general approach (1) to be appropriate. The autoregressive temporal structure

was found to show speci�c characteristics in case of the observed turbidity process

as well as the temperature measurements. Concretely the temporal dependencies

could be extracted from the data [Zt(s)] applying the temporal di�erence �lter

(1 � B) only once. Repeated application of the di�erence �lter as well as the

additional autoregressive relationship in model (1) proved not to be necessary in

order to characterize/eliminate temporal correlations. Computing

(1� B)
h
Zt(si)

i
i = 1 ; : : : ; n

t = 1 ; : : : ; T

= (1�B)

8>>>>>>><
>>>>>>>:

[Zt(s1)]t=1;:::;T

[Zt(s2)]t=1;:::;T

...

[Zt(sn)]t=1;:::;T

9>>>>>>>=
>>>>>>>;

=

8>>>>>>><
>>>>>>>:

[Zt(s1)� Zt�1(s1)]t=1;:::;T

[Zt(s2)� Zt�1(s2)]t=1;:::;T

...

[Zt(sn)� Zt�1(sn)]t=1;:::;T

9>>>>>>>=
>>>>>>>;

(where Z0(si) is de�ned to be equal to zero for all i = 1 ; : : : ; n ) and
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plotting the autocorrelation function of each of the time series
h
�t(si)

i
t=1;:::;T

:=
h
Zt(si)� Zt�1(si)

i
t=1;:::;T

(i = 1 ; : : : ; n )

showed low dependencies within these sets of values.

Thus model (1) can be simpli�ed in case of the present data set. Its following spe-

cial case was found to catch the characteristics of the observed data adequately:

(1�B)Zt(s) = �t(s)

, Zt(s) = (1� B)�1�t(s) :

[�t(s)] represents a version of the observed space-time process [Zt(s)], within that

the temporal dependencies have been eliminated:

(1� B)
h
Zt(si)

i
i = 1 ; : : : ; n

t = 1 ; : : : ; T

=
h
�t(si)

i
i = 1 ; : : : ; n

t = 1 ; : : : ; T

=
n
[�1(si)]i=1;:::;n ; [�2(si)]i=1;:::;n ; : : : ; [�T (si)]i=1;:::;n

o

represents a set of temporally consecutive but uncorrelated spatial processes.

All of these processes �t(�) shall be assumed to have identical stochastical char-

acteristics. So it seems reasonable to work under the model that the spatial

processes �t(�) ( t= 1 ; : : : ; T) represent i.i.d. repetitions of one �ctitious process

�(�). This spatial \mother process\ itself is to be imputed a stochastical model.

In many Geostatistical applications a simple additive decomposition into inde-

pendent components has proved to be sensible (see Berke(1999)). Concretely the

nonstochastical mean structure is added by a (zero-mean) expression representing

the contribution of spatial dependencies on the process value at a certain loca-

tion. A third component capturing all residual in
uences is assumed to represent

a spatially independent term of measurement error:

[�(s)]s2D = [ �(s)]s2D + [ �(s)]s2D + [ �(s)]s2D ;

with mean function (large-scale variation) �(s),

small-scale variation term �(s) (containing the spatial dependencies) and

White-Noise process �(s) of measurement errors.
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In the present problem the mean function can be assumed to be constant:

�(s) = � 8 s 2 D :

As a next step, the correlation structure within the spatial process �(�) is to be

analyzed. According to the usual proceeding in Geostatistical applications this

is done by estimating5 the variogram

2
�(h) = V ar
h
�(s)� �(s� h)

i

as a function of the spatial distance h. The (estimated) variogram 2
̂�(�) of

the (�ctitious) �(�)-process then also represents the common spatial correlation

structure within each of the processes �t(�) ( t= 1 ; : : : ; T).

Knowing their variogram optimal spatial prediction can be carried out within

each of these processes subsequently.

4. Variogram Estimation and Model Fitting

The array
h
�t(si)

i
i = 1 ; : : : ; n

t = 1 ; : : : ; T

represents data from a space-time process that

does not contain any temporal dependencies. In such situation Samp-

son/Guttorp(1992) propose to estimate the (temporally constant) spatial vari-

ogram 2
�(�) of this process as follows
6.

2
̂�(h) =
1

jN(h)j

X
N(h)

h
sii + sjj � 2sij

i

5Necessary assumptions for the statistical justi�cation of the practical estimation procedure

for the variogram 2
� are the intrinsical stationarity of the underlying �(�)-process as well as

the isotropy of the variogram function (see e.g. Cressie(1993, pg. 60/61)).

6The turbidity values of sensor 3 (depth 12.5m) and the temperatures of sensor 1 (depth

11.9m) were excluded from variogram estimation. If i or j equals 3 within the turbidity process

or 1 within the temperature process respectively, the term [sii + sjj � 2sij ] could clearly be

identi�ed as outliers due to disproportionate size.
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with sij =
1

T

TX
t=1

h
�t(si)� ��(si)

i
�
h
�t(sj)� ��(sj)

i
;

��(si) =
1

T

TX
�=1

�� (si);

N(h) =
n
(si; sj) : jsi � sjj = h; i; j = 1 ; : : : ; n

o
and

jN(h)j = number of distinct elements (si; sj) of N(h):

Thus for values of h corresponding to multiples of the sensor distance 0.3m, a set

of estimated variogram values

2
̂�(0:3) ; 2
̂�(0:6) ; : : : ; 2
̂�(2:1)

can be obtained.

The so called Nugget e�ect (measurement error)7 NE := lim
h!0

2
�(h) (see

Cressie(1993, pg. 59)) was possible to be estimated only for the process of tur-

bidity values: Variations within the set of values [�t(sn)]t=1;:::;T corresponding to

the lowest sensor (in depth 14.0m) can be utilized to quantify the precision of

turbidity measurement,

dNE = dlim
h!0

2
�(h) = 2�Var
n
[�t(sn)]t=1;:::;T

o

The other sensors' values vary not only due to measurement error. Additionally,

internal waves in the lake caused systematic 
uctuations in those sets of values.

Such e�ects add to the pure measurement error process and cause the respective

sensors' variability to exceed the value of measurement error quantitatively:

2�Var
n
[�t(si)]t=1;:::;T

o
=̂ NE + cW > NE 8i = 1 ; : : : ; n� 1:

In case of the process of temperature values such systematic 
uctuations enhance

the variability of all sensors' sets of values. Therefore within this process it was

not possible to quantify the measurement error (Nugget e�ect) at all .

With knowledge of the variogram of a spatial process at a set of discrete distance

values (dNE; )2
̂�(0:3); 2
̂�(0:6); : : : ; 2
̂�(2:1) only the spatial prediction cannot be

7\Microscale-variation\ (see Cressie(1993), pg. 59) was assumed to be non-existent, so the

Nugget e�ect is identical to the measurement error.
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carried out directly. Optimal spatial prediction requires knowledge of the var-

iogram as a continuous function of the spatial distance h. The set of values

(dNE; )2
̂�(0:3); 2
̂�(0:6); : : : ; 2
̂�(2:1) has to be interpolated to arbitrarily close

values of h. Technically this is done by �tting a parametric model 2
�(�j�) to the

set of discrete variogram values. Journel/Huijtbregts(1978, pg. 161-195) propose

several variogram models, from which the \spherical model\ (with linear incre-

ment at the origin) is most common in Geostatistical applications:


(hj�) = 
(hjc0; cs; as) =

8>>><
>>>:

0 if h = 0

c0 + cs
h
3
2
h
as
� 1

2
( h
as
)3
i

if 0 < h � as

c0 + cs if h � as

with parameter space c0 � 0; cs � 0; as � 0.

The estimated parameters �̂ then characterize the shape of the variogram as

a continuous function of the spatial distance h. Di�culties in developing re-

liable estimation procedures for these parameters in particular arise from the

fact that there exist correlations and di�erent variances within the \row data\

(dNE; )2
̂�(0:3); 2
̂�(0:6); : : : ; 2
̂�(2:1). An optimal way of �tting a (nonlinear)

model 2
�(�j�) in this case would be to apply a General-Least-Squares ap-

proach. Instead of this computer intensive procedure, Cressie(1985) suggests a

compromise between optimality and simplicity by applying a Weighted-Least-

Squares approach. By doing this the correlations between the set of values

(dNE; )2
̂�(0:3); 2
̂�(0:6); : : : ; 2
̂�(2:1) are ignored. Only their di�erent variances

are included into the �tting equation, which �nally leads to a weighting of the

agreement of \data\ and model in favour of the agreement at small distances h.

Figures 2 and 3 show the result of this variogram �tting procedure in case of

the observed turbidity process as well as the temperature process, respectively,

computed with the statistical package S-Plus 4.0.
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Figure 2: Variogram of the Turbidity Process
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Figure 3: Variogram of the Temperature Process

As can be seen from these �gures, additionally to the above mentioned continu-

ous interpolation the �tted variogram model guarantees another aspect: It shows

a smoother course than the set of values (dNE; )2
̂�(0:3); 2
̂�(0:6); : : : ; 2
̂�(2:1),
which goes along with a compensation of estimation errors in the discrete

variogram estimators.
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5. Spatial Prediction

Based on the �tted variogram function of a spatial process spatial prediction can

be carried out. Concretely knowledge of the common variogram 2
�(�j�̂) of each

of the processes

h
�1(si)

i
i=1;:::;n

;
h
�2(si)

i
i=1;:::;n

; : : : ;
h
�T (si)

i
i=1;:::;n

allows spatial prediction within each of them. The realization of this procedure in

mathematical terms mainly depends on the structure of the deterministic mean

function (large-scale variation) of the underlying \mother process\ [��(s)]. As this

function was assumed to be constant for all locations (depths), \Ordinary Krig-

ing\ satis�es an optimality criterion: It represents the \Estimated Best Linear

Unbiased Estimator\ (EBLUP, see Cressie(1988)). Cressie(1988) also presents a

way of modifying the spatial prediction procedure in order to compensate mea-

surement errors that occurred at data collection. The resulting Ordinary Kriging

Equations yield (for �xed t) the prediction function �̂t(s0)
noiseless within the �t(s)-

process at an unobserved location s0 62 fs1; : : : ; sng (see Ger�(1998)):

�̂t(s0)
noiseless = �

0
�t :

The vector � of Kriging weights result from the variogram matrices � and �0 as

follows:

� = ��1
�0 � ��1

1(10��1
1)�1(�0

0��1
1� 1) 2 IRn

with � =
h

�(jsi � sjj; �̂)

i
i;j=1;:::;n

2 IRn�n
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�0 =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

h

�(js0 � sij; �̂)

i
i=1;:::;n

2 IRn if s0 6= si 8i = 1 ; : : : ; n

2
666666666666666664


�(js0 � s1j; �̂)
...


�(js0 � si?�1j; �̂)

lim
h!0

2
̂�(h; �̂)


�(js0 � si?+1j; �̂)
...


�(js0 � snj; �̂)

3
777777777777777775

2 IRn if 9i? 2 f 1; : : : ; n g: s0 = si?

1 = (1 ; : : : ;1)0 2 IRn

�t =
h
�t(s1); : : : ; �t(sn)

i
0

2 IRn

In this way the value of the spatial process
h
�t(si)

i
i=1;:::;n

(for �xed t) can be pre-

dicted in arbitrary close depths sj (j = 1 ; : : : ; m ) withm� n, only limited by

the capacity of the available computer. Finally a set of values is at hand which

represents a noiseless version of the process [�t(�)] in high spatial resolution. Join-

ing all these consecutive spatial processes [�t(�)] a highly resolved version of the

observed space-time process [��(�)] is present:

n
[�1(sj)]j=1;:::;m ; [�2(sj)]j=1;:::;m; : : : ; [�T (sj)]j=1;:::;m

o
=

h
�t(sj)

i
j = 1 ; : : : ; m

t = 1 ; : : : ; T

:

As a next step the course back to the Zt(s)-process is to be followed. Therefore

a \temporal point of view\ is applied to the values of the �t(s)-process:

h
�t(sj)

i
j = 1 ; : : : ;m

t = 1 ; : : : ; T

=

8>>>>>>><
>>>>>>>:

[�t(s1)]t=1;:::;T

[�t(s2)]t=1;:::;T

...

[�t(sm)]t=1;:::;T

9>>>>>>>=
>>>>>>>;

:

Application of the inverse di�erence �lter (1� B)�1 to each of these time series

yields the corresponding values of the Zt(s)-processes; the formerly eliminated
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temporal dependencies are brought back into the data:

(1� B)�1
h
�t(sj)

i
j = 1 ; : : : ; m

t = 1 ; : : : ; T

=

8>>>>>>><
>>>>>>>:

(1�B)�1[�t(s1)]t=1;:::;T

(1�B)�1[�t(s2)]t=1;:::;T

...

(1� B)�1[�t(sm)]t=1;:::;T

9>>>>>>>=
>>>>>>>;
=
h
Zt(sj)

i
j = 1 ; : : : ; m

t = 1 ; : : : ; T

with (1�B)�1
h
�t(sj)

i
t=1;:::;T

=
1X
u=0

Bu
h
�t(sj)

i
t=1;:::;T

=
h tX
u=1

�u(sj)
i
t=1;:::;T

( �u(sj) := 0 for u � 0 ) .

Finally a noiseless version of the observed space-time process [Zt(s)] has been

derived in high spatial resolution (m� n):

h
Zt(sj)

i
j = 1 ; : : : ;m

t = 1 ; : : : ; T

=

8>>>>>>><
>>>>>>>:

[Zt(s1)]t=1;:::;T

[Zt(s2)]t=1;:::;T

...

[Zt(sm)]t=1;:::;T

9>>>>>>>=
>>>>>>>;

=
n
[Z1(sj)]j=1;:::;m; [Z2(sj)]j=1;:::;m; : : : ; [ZT (sj)]j=1;:::;m

o
:

6. Results

The above described procedure of variogram estimation, variogram model �tting

and Kriging was applied to the turbidity process on the one hand as well as to the

temperature process on the other8. Concretely in each case the spatial resolution

could be enhanced from 30cm (sensor distance) to 3.33cm. Thus the basis is

set up for estimation of active vertical movements of the bacterial layer in Lake

Cadagno.

8with the statistical software package S-Plus (version 4.0)
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By means of the turbidity pro�le the vertical expansion of the bacterial layer can

be estimated exactly at a certain time point. Localisation is done by de�ning its

bounds to be those depths where the turbidity transgresses a value of 8 FTU9 (see

Egli(1997)); locations with turbidities below that value are regarded not to be

covered by the bacterial layer. After estimating the depths of its bounds10 for each

time point those sets of values can be connected in \temporal direction\. This

yields a time series of the depth of the upper and the lower bound, respectively,

during the whole observation period of the experiment:

h
Dup(t)

i
t=1;:::;T

and
h
Dlow(t)

i
t=1;:::;T

:

The corresponding graphs (see Ger�(1998, pg. 89)) show vertical displacements

of the bacterial layer of large amplitudes (up to 50cm). But as described above,

these movements are due to active bacterial swimming only in part. The main

reason for the movement are internal waves in the lake. These passive e�ects are

eliminated by means of spatial prediction within the temperature process: What

is the temperature in those depths, where upper and lower bound of the bacterial

layer could be made out at a certain time point?

Let [Tt(s)] represent the temperature process. Hence mathematically the values

Tt
h
Dup(t)

i
and Tt

h
Dlow(t)

i
are predicted for each t = 1 ; : : : ; Tyielding time series

of the temperature at the layer's upper and lower bound, respectively.

9Non-zero turbidity values beyond the bacterial layer are explained by 
oating particles in

the surrounding \clear\ sea water.

10see Appendix for details on the applied algorithm
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Figure 4: Temperature at the Upper and Lower Bound of the Bacterial Layer in

Course of Time.

Smoothed version of the time series
n
Tt

�
Dup(t)

�o
t=1;:::;T

and
n
Tt

�
Dlow(t)

�o
t=1;:::;T

,

derived from the original series by Moving-Average �ltration.

Figure 4 allows drawing conclusions on active vertical movements of the bacterial

layer.

Suppose the temperature at its bounds does not change substantially in the course

of time. Consequently the bacteria do not withdraw from their surrounding water

masses during a certain interval of time. This does not mean that the bacteria did

not shift vertically at all. But any vertical displacements occurred synchronously

to internal waves in the lake. Thus a causal connection of both phenomena would

seem to be proved: Vertical shifts of the layer are realized because the bacteria

are dragged along passively by the water masses.

On the other hand the temperature at the bounds of the bacterial layer may

change during certain intervals of time. In this case its vertical displacements

seem to have originated - at least partially - in active bacterial self-movements.

\Relatively to the water masses\ the bacteria swam up or down into warmer or

colder zones of the lake.

Viewing �gure 4 these latter e�ects can be seen. Especially at the lower bound

of the layer active vertical movements can be made out: Here the bacteria pass
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through a span of temperature of approximately 0:2�C periodically. This corre-

sponds to a vertical distance of more than 30cm, that is covered within about 8

hours repeatedly. At the upper bound of the layer highly marked e�ects like that

cannot be made out. Here the bacteria stay within water masses of about 7:8�C

during the whole observational time.

A recurring pattern of active vertical movements can be found neither at the up-

per nor at the lower bound of the bacterial layer. Possible diurnal e�ects can not

be derived from �gure 4 because the observation time is too short (38 hours).

7. Alternative Approaches and Future Projects

One of the most important properties of Kriging as a means of spatial prediction

is the additional ability of quantifying the accuracy of the Kriging predictor. In

contrast to other means of spatial prediction the Kriging equations yield not only

a point-predictor of an unobserved variable but also the Mean Squared Prediction

Error (MSPE) associated with it. Further research on the present problem might

aim at quantifying the precision of the estimated bacterial movements and calcu-

lating some form of con�dence intervals. Finally one can carry out a statistical

test of the hypothesis that the calculated phenomena are due to random e�ects

exclusively. Rejection of this hypothesis would represent a statistical proof of

\signi�cant\ bacterial activity.

A big disadvantage of the presently applied procedures is the fact that both ob-

served space-time processes - turbidity and temperature - are analyzed separately.

An obvious extension of this approach is to model a bivariate space-time process

instead and bene�t from the correlations between both individual (\component\)

processes11. Cokriging (see Cressie (1993, pg. 138�)) then represents a way of

predicting within one of the component processes using the additional informa-

tion provided by the other component processes optimally. This approach has

not been applied to the present data set for the following reasons: Firstly the

11For vector-valued stochastic processes Cressie (1993, pg. 140) mentions the concept of

\cross-variograms\: (Co)Variogram-functions that describe the dependence structure within as

well as between individual component processes.
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existing statistical software packages do not provide procedures for implement-

ing Cokriging in a space-time setting by now. Moreover in the present case the

relationship between both component processes turbidity and temperature was

found to be nonlinear. Thereby it is not recognized by the common measures

of stochastic dependence: Variogram and Covariogram only describe linear rela-

tionships between two random variables. The theory of Cokriging is based upon

these linear concepts and is not prepared to include additional information of a

nonlinear kind. In predicting one component process the additional information

provided by a nonlinearly related second process cannot be exploited adequately

by the concept of Cokriging by now.

The inclusion of weather data into the space-time model might be promising as

well. Certain meteorological measurements might prove to represent signi�cant

explanatory variables for the observed phenomena of bacterial movement. The

detection of such causal connections is highly interesting from a biological point

of view. For example it possibly proves changing light intensity to be the source

of bacterial activity (phototactical movement).

From a theoretical statistical point of view the underlying general spatiotempo-

ral model (1) is worth further research. Future projects might aim at developing

formulae for the space-time correlation structure of stochastic processes that �t

in the scope of model (1). One of the most restrictive model assumptions is that

of space-time separability. Spatial and temporal structure are assumed to be

represented by two separate components; the model might be extended in a way,

that interactive space-time e�ects are incorporated. Another point of criticism

concerns the general strategy of dealing with temporal correlations within an ob-

served data set: Temporal dependencies are eliminated before the spatial analysis

is carried out. A promising alternative to this strategy is to bene�t from the tem-

poral structure as additional information that might improve the e�ciency of the

spatial analysis. Finally optimal empirical estimation of the model parameters is

another unsolved problem of model (1).

As an alternative to the present procedure another completely di�erent approach

might serve to identify phenomena of active bacterial movement as well. Markus

et al.(1999) analyze hydrogeological space-time data. They state that 
uctuations
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within groundwater level measurements result from di�erent cumulative e�ects

that are impossible to be observed directly (e.g. water in�ltration from precipita-

tion). Mathematical identi�cation of such \latent e�ects\ is performed by means

of dynamic factor analysis. In the present case the application of dynamic factor

analysis possibly yields bacterial activity as a latent e�ect governing 
uctuations

in the observed data. Estimated factor loadings then serve to quantify the inten-

sity of this phenomenon.

Future limnological research projects might bene�t from the results of the present

study in di�erent ways. Firstly the presented spatiotemporal model can be ap-

plied once again if similar problems are to be investigated with data of similar

kind. Moreover the e�ciency of future projects especially at Lake Cadagno can

be enhanced taking into account the present results: The spatial variability of

the random variables turbidity and temperature has been characterized via the

respective variogram. Knowing the (co)variation structure of a spatial process

one can determine an optimal localization of measurement sites if the process is to

be observed once again in the future. For example at regions with large variation

in the process values a relatively dense network of measurement sites would be

recommended. For future projects at Lake Cadagno such considerations of opti-

mal network design can be done in advance. One can determine the localization

of turbidity and temperature sensors so that the stochastic characterictics of the

respective process are captured optimally.

A few recommendations for future projects at Lake Cadagno can be done across

the board. In order to investigate periodical and aperiodical changes of the bacte-

rial layer values of turbidity and temperature should be observed in higher spatial

resolution than it has been done in the present study. As far as the temporal res-

olution is concerned, longer temporal distances between successive measurements

surely su�ce to observe active movements of the bacterial layer. On the other

hand the total length of coherent intervals of observational time has to be en-

hanced widely. Observing periodic e�ects with low frequencies like in the present

study, the analyzed time span should extent over several days or even weeks.
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Appendix

Vertical localization of the bounds of the bacterial layer:

The applied procedure can be characterized as inverse prediction. In the usual

prediction problem the value of the observed process, [Zt(s)] say, at a �xed loca-

tion s0 is asked for and predicted by means of a function Ẑt(s0). In the inverse

case the question is the other way round: At what location s does the value of

the observed process amount to a given constant c ? Mathematically, s is asked

for, so that Zt(s) = c, i.e. s = Z�1
t (c):

Practically, usual (\non-inverse\) prediction is applied for locations (depths)

sj (j = 1 ; : : : ; m ) that are as close together as possible. The two neighbour-

ing depths, between those the turbidity value of c = 8 FTU is transgressed, are

extracted. Linear interpolation of their respective turbidity values yields a unique

depth that corresponds to the turbidity of (exactly) 8 FTU. This procedure surely

is suboptimal. Errors occur because of the simplifying application of linear inter-

polation. But these errors are expected to be relatively small taking into account

the high spatial resolution (3.33cm) to which the observed process is present after

the preceding steps of calculation.
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