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Summary

In a general variance component model with positive variance components a short-cut method

is presented that yields almost everywhere for these components positive estimators that are

invariant with respect to mean value translation and stay near the unbiasedness.
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Zusammenfassung

In einem allgemeinen Varianz-Komponenten-Modell mit positiven Varianzkomponenten wird

eine verkürzte Methode vorgestellt, welche für diese Komponenten fast überall positive Schätzer

ergibt, die invariant bzgl. Mittelwerttranslationen sind und nahe der Unverzerrtheit bleiben.



1 Introduction

In a general variance components model there is the problem that unbiased quadratic estimators,

or also maximum likelihood estimators if a distributional assumption is made, of the variance

components can take on with a positive probability negative values for nonnegative variance

components. These estimators are put then in such cases equal to zero, which for a usually

strictly positive variance component is an unsatisfactory procedure. Therefore in the following

a short-cut procedure is derived that overcomes this de�ciency by yielding almost everywhere

positive variance component estimators staying near the unbiasedness.

2 The Method

Let us consider the linear variance component model

z �
 
X�;

mX
i=1

�i � Ui
!
;

that consists of an n-dimensional random variable z with mean value

E z = X�

and variance-covariance matrix

Cov(z) =

mX
i=1

�i � Ui ;

where the (n� k)-design-matrix X and the m symmetric positive semi de�nite (n� n)-matrices
Ui, i = 1 ; : : : ;m , are known, while the parameter� varies in IRk and the parameter � =

(�1; : : : ; �m)
T in IRm

+ , the positive orthant of IR
m, and we assume rank(X) < n , and Cov(z) to

be positive de�nite.

The problem considered here is to �nd quadratic estimates for the variance components

�1; : : : ; �m, which should be positive almost everywhere, i.e. with probability one, and invariant

with respect to the group � of mean value translations,

� =
n
z 7�! z +X� j � 2 IRk

o
:

A maximal invariant linear statistic y with respect to � is given by

y =
�
I �XX+

�
z

= ProjjRange(X)?z ;
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where I is the (n� n)-identity-matrix and X+ is the pseudoinverse of X.

We get the reduced (by invariance) linear model

y �
 
0;

mX
i=1

�i � Vi
!
; � 2 IRm

+ ;

where Vi = ( I�XX+)Ui(I �XX+), i=1, : : : , m.

Let now A be a symmetric n� n-matrix, then a quadratic (invariant) estimator for a linear

form pT� > 0, p = ( p1; : : : ; pm)
T , p � 0, p 2 IRm, is given by yTAy, and denoting �tr � the trace,

its bias is given by

E yTAy � pT� = E trAyyT � pT�

= trAE (yyT )� pT�

= trA(

mX
i=1

�iVi)� pT�

=

mX
i=1

�i(trAVi � pi) ;

such that yTAy is an unbiased estimator of pT� if

trAVi = pi; for all i = 1 ; : : : ;m ;

and a solution A0 of these equations, respectively the corresponding quadratic estimation function

yTA0y is the (standard-) minimum norm invariant quadratic unbiased estimator (minque) of pT�,

if A0 has the minimum norm among all solutions.

Denote Sym the Hilbert space of all symmetric (n�n)-matrices with the inner product of two
matrices A;B 2 Sym de�ned by trAB, which then induces the standard norm kAk =

p
trA2.

Furthermore let PSD denote the cone of positive semi de�nite matrices in Sym.

If the matrices V1; : : : ; Vm are linearly independent, which for simplicity may be assumed

here, then the minque A0 exists for all p 2 IRm. Since we only claim A0 2 Sym, of course we

usually get

yTAy < 0 with positive probability ;

and only in rare cases A0 2 PSD.

Resticting in advance A to be in PSD has the consequence that the equations for unbiasedness

are seldom ful�lled, so that these conditions had to be weakened, cf. Seely(1971), Rao(1972),

Pukelsheim(1981), Lehmann and Casella(1998), and Hartung(1981), where in section 4 there is

also a solution algorithm given, which however needs some numerical e�ort.
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Therefore in the following a short-cut method is presented that yields an approximation in

PSD to A0 with a correction for bias.

Let us introduce the linear operator

g:

Sym �! IRm

A 7�! gA =

0BB@
trAV1

...

trAVm

1CCA ;

then its adjoint g� is given by

g� :
IRm �! Sym

a 7�! g�a =
Pm

i=1 �iVi; a = ( a1; : : : am)
T ;

such that gg� becomes the Gram-matrix G,

gg� = G = ftrViVjgi=1;:::;m
j=1;:::;m

;

of which the inverse G�1 exists because of the assumed linear independence of V1; : : : ; Vm.

Denote g+ the pseudoinverse operator of g, then the minque A0 is given by

A0 = g+p ;

which because of g+ = g�(gg�)+ permits the computational representation

A0 =

mX
i=1

ai � Vi; with a = ( a1; : : : ; am)
T = G�1p:

Let us de�ne now the vectors b = ( b1; : : : ; bm)
T and c = ( c1; : : : ; cm)

T by

bi =

8<:ai; if ai > 0

0; if ai � 0
; and ci =

8<:�ai; if ai < 0

0; if ai � 0
;

then

A0 = g�a

= g�b� g�c

=: A1 �A2 ;

where A1 2 PSD, A2 2 PSD, and

gA0 = p; gA1 = Gb =: q; gA2 = Gc =: r ;
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such that

pT� = qT�� rT� ;

with the estimators

��XX

pT� =
��XX

qT� �
��XX

rT�

= yTA1y � yTA2y:

We assume A2 6= 0 , otherwiseA0 2 PSD.

Now A1 is an approximation in PSD to A0, with the estimate

yTA1y =
��XX

qT� =
��XX

pT� +
��XX

rT�

<
��XX

rT� ; with positive probability ;

although

qT� = pT�+ rT� > rT�:

An additive correction of A1, however, would lead again to possibly negative estimates. So

the idea is now to work with a multiplicative correction term  , such that  �A1 replaces A0 in
��XX

pT� , and  � A2 replaces A2 in
��XX

rT� .

As determination equation for  we thus get

E

(
 �
��XX

qT� + �
��XX

rT�

)
!
= qT� ;

yielding

 =
qT�

qT�+ rT�
;

and so we de�ne our approximate solution in PSD as

APSD; appr.( ) :=  �A1 ;

where  can be estimated by

b =
yTA1y

yTA1y + yTA2y
;

which gives for pT� the desired, approximate estimate 
��XX

pT�

!
PSD; appr.( b ) = b � yTA1y:
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We can remark that �rst simulation results show a good performance of this estimator.

Instead of our easily obtainable decomposition of A0, we may also use the spectral decom-

position of A0 into A1� �A2� as follows:

A1� :=
X

�2�(A0)

max f0; � g �P� ;

A2� := A1� �A0 ;

where �(A0) is the spectrum of A0 and P� is the projection onto the eigenspace associated with

�, which needs a higher computational e�ort.

In more speci�ed models also quite di�erent and more detailed approximations may be deri-

ved, cf. e.g. Hartung(1999).
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