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1 Introduction

It is a well discussed problem that structural breaks as well as slowly deca-

ying trends are often misspecified as long-range dependence. On the other

hand, long memory can easily be mistaken as a break in trend. Beginning with

Bhattacharya et al.(1983) several authors constructed trends which artificially

produce a Hurst effect and thus look as if having long memory (Diebold/Inoue,

2001). It is stated in many papers that standard methodology fails in this con-

text. Krämer/Sibbertsen(2002) proved among others that tests on structural

breaks are not able to distinguish structural breaks and long-range dependence

and Giraitis et al.(2001) showed that R/S-based tests on long memory fail also

for a quite general class of trends.

But the question whether a data set has real or spurious long memory has

deep impact to many economic applications. For example, there is evidence

of long-range dependence in the volatilities of many stock returns (Krämer

et al., 2002), which will influence the price of options based on this stock

(Bollerslev/Mikkelsen, 1996). Also long-memory time series allow for optimal

long-term forecasts which would not be possible in a model with a determini-

stic trend disturbed by some independent or short-memory noise process. Bos

et al.(1999) consider the problem of long-range dependence and level shifts

in inflation rates. For an overview about the problem of distinguishing long

memory and major deterministic trends see Sibbertsen(2002a).

But nevertheless there is still no method at hand for distinguishing both of the-

se phenomena. So far, approaches dealing with this problem focused mainly on

R/S-methodology. But Künsch(1986) already showed that the periodogram is

able to distinguish monotonic trends and long memory. Even though Künschs

results are not valid for non-monotonic trends it indicates that periodogram

based methods seem more appropriate than rescaled-range based approaches.

In this context Sibbertsen(2003) found by Monte Carlo that log-periodogram

based estimates for the memory parameter allow to distinguish quite general

deterministic trends and long memory. The test constructed in this paper is

based on this idea. To the series under test standard log-periodogram regres-
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sion is applied as well as tapered log-periodogram regression. Both estimates

are consistent for the memory parameter. But whenever major trends are pre-

sent in the data the standard log-periodogram estimator behaves completely

different than its tapered counterpart. Hence our test statistic is based on the

difference of these estimators. This idea is similar to Hausman tests (Hausman,

1978). However, the limiting distribution under the null of no trend depends on

the true memory parameter. Therefore, it will be estimated by bootstrapping.

The rest of the paper is organized as follows. In the next section long memory

is defined and log-periodogram regression estimators are explained. Section 3

introduces the test statistic and its main properties and in section 4 bootstrap

methods for estimating the limiting distribution of the statistic are described.

Section 5 contains some Monte Carlo results concerning the power of the test.

Application to inflation rates of three industrialized countries, namely the US,

UK and Germany, is given in section 6. Section 7 concludes.

2 Log-Periodogram Regression

In this section long-memory time series as well as log-periodogram regression

estimators for the memory parameter are introduced. A time series Xt is said

to exhibit long memory or long-range dependence if the correlation function

ρ(k) behaves for k →∞ as

lim
k→∞

ρ(k)

cρk2d−1
= 1. (1)

Here cρ is a positive constant and d ∈ (0, 0.5) denotes the memory parameter.

This means that observations far away from each other are still strongly cor-

related. Thus the correlations of a long-memory process decay slowly that is

with a hyperbolic rate and consequently they are no longer summable. This is

the most important difference to short-memory processes.

Using the spectral density of the process we can obtain an equivalent definition

of long memory which is the base for log-periodogram regression estimates. In
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this context a time series Xt is said to exhibit long memory if the spectral

density f(λ) behaves for λ → 0 as

lim
λ→0

f(λ)

cf |λ|2d
= 1. (2)

Here cf is a positive constant and again d ∈ (0, 0.5) denotes the memory

parameter. Thus the spectral density has a pole at the origin.

Long-memory processes can be represented as I(d)-processes with fractional

d ∈ (0, 0.5). This can be done by generalising Box/Jenkins(1976) ARMA-

models to ARFIMA-models. ARFIMA-models were introduced by Gran-

ger/Joyeux(1980) and independently by Hosking(1981). Allowing also for

short-memory terms we have the representation

Φ(B)(1−B)dXt = Ψ(B)εt, (3)

where B denotes the Backshift operator, εt is a mean zero finite variance white

noise process and Φ(z), Ψ(z) denote the autoregressive and moving average po-

lynomials respectively. For an exact definition of fractional integration and fur-

ther details about long-memory processes see Beran(1994) or Sibbertsen(1999).

For an overview about long-range dependence in economics see Bailie(1996).

One possibility of estimating the memory parameter d is log-periodogram re-

gression introduced by Geweke/Porter-Hudak(1983) (further referred as GPH-

estimation). This approach is based on the representation (2) of the spectral

density of a long-memory process near the origin. The idea is to estimate the

spectral density by using the periodogram. Taking the logarithm gives a linear

regression model. For defining the estimator exact denote with

IX(λj) :=
1

2πN
|

N∑

t=1

Xt exp(
−it2πj

N
)|2

the periodogram of the process Xt. The GPH-estimator is now defined as the

least-squares estimator of d based on the regression equation

log IX(λj) = log cf − 2d log λj + log ξj, (4)
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where λj denotes the j − th Fourier frequency, that is λj = 2πj/n and the

ξj are identically distributed errors with E[log ξj] = −0.577, known as Euler

constant.

Besides simplicity the main advantage of the GPH-estimator is that it does

not require any further knowledge about short-term components. Consistency

of the estimator can also be obtained without knowledge of the distribution of

the data generating process (Robinson, 1995 or Hurvich et al., 1998). Only for

proving asymptotic normality it is required that the data generating process

is normally distributed.

Disadvantages of this approach result from the fact that the errors in the re-

gression equation (4) are not independent. Another problem is that the repre-

sentation (2) of the spectral density holds only near the origin. Thus, a trade

off between bias and variance has to be made by taking the optimal number

of frequencies used for the estimation. Whereas Geweke/Porter-Hudak(1983)

proposed a number of N1/2, which is still used in many applications, Hurvich

et al.(1998) showed that a rate of N4/5 is MSE-optimal. This rate will be used

in this paper. Here and in the following N denotes the sample size.

The standard GPH-estimator can be modified by using the tapered periodo-

gram instead of the standard periodogram. Hurvich/Ray(1995) and Velas-

co(1999) showed that the tapered version gives better results in the case of

non-stationary long-memory processes that is d > 0.5. As we see in the next

section this holds also true for non-stationarities produced by deterministic

trends. The idea of data tapers is to apply a smoothing function to the data

which gives smaller weights to the low frequencies in the periodogram. Low

frequencies are important in the case of non-stationarities. Thus the influence

of the trend is reduced by the taper.

The periodogram of the tapered process wtXt is defined by

IT,X(j) =
1

2π
∑

w2
t

|
N−1∑

t=0

wtXte
−iλjt|2.
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Here λj again denotes the j-th Fourier frequency and wt denotes the taper. We

use in this paper the full cosine bell taper given by

wt =
1

2
[1− cos(

2π(t + 0.5)

N
)].

Velasco(1999) proves consistency and asymptotic normality of the tapered

GPH-estimator. For a detailed discussion of tapering see Bloomfield(1992).

Thus, we have two consistent estimates for the memory parameter. Whereas

the standard GPH-estimator is strongly biased in the case of major determini-

stic trends this bias is reduced by its tapered version. A test using this property

is constructed in the following section.

3 The Test Statistic

From now on the model under test is the following

Xt = f(t) + Yt, (5)

where f(t) is a deterministic trend specified later and Yt is a noise process

having zero mean and finite variance.

For defining the trend we follow Giraitis et al.(2001) and use their quite tech-

nical but weak assumptions. They include slowly decaying trends as well as

change point models. We have the following assumptions for the trend f(t):

Assumption T1: [f (N)(k)]k=1,...,N , N ≥ 1, is an array of real numbers for

which there exists a positive sequence pN and a function h on [0, 1], which is

not identically zero, such that for N →∞

p−1
N

[Nt]∑

k=1

f (N)(k) → h(t)

and

pN

N1/2
→ a,
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where a ∈ [0,∞]. We further assume for the trend

Assumption T2: There exists a positive sequence rN → ∞ and numbers

0 < b, b∗ < ∞, such that as N →∞

r−1
N

N∑

k=1

[f (N)(k)]2 → b,

N−1∑

k=1

|f (N)(k)− f (N)(k + 1)|k1/2 = O(r
1/2
N ),

qN∑

k=1

|f (N)(k)|2 = o(rN)

for any qN = o(N),

|f (N)(k)|2 = O(rN/N)

for k ∼ N and

p2
N

NrN

→ b∗ < ∞.

Assumption T1 describes the rate of decay of the trend function and assu-

res that the trend is slowly decaying. Assumption T2 sets regulations to the

variation of the trend. The trend cannot vary too much and poles are excluded.

Examples: (1) These assumptions cover structural breaks in the data. For

the shift in mean model see Giraitis et al.(2001). Also generalizations of this

model allowing for linear mean functions are covered.

Another function of great practical interest is the logistic regression function

which is also considered in the simulations below. It is given by

f(t) = a +
b

1 + exp(−γ( t
N
− c))

, (6)

where a, b ∈ IR, γ > 0 and c ∈ [0, 1].
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This function is appropriate for modelling changes in the mean and thus also

structural breaks. Depending on the choice of parameters this function models

a break from a to a + b happening at the point cT . The parameter γ regu-

lates how smooth the break happens. For small values of γ the function goes

smoothly from a to a + b for big parameter values we obtain a sudden shift in

the mean.

This function fulfills the assumptions T1 and T2, too. Assumption T1 is ful-

filled with pN = N1/2 because in the case of t/N being lower c the argument

of the exponential function is positive and thus in the worst case the second

term tends to zero and the function in its whole to a. If on the other hand

t/N is greater or equal than c, the argument is lower or equal zero and thus

the denominator tends to one and the function tends to a + b. Because the

function is smooth in between assumption T1 is fulfilled.

The interesting part in assumption T2 is the second equation which assures

that the decay of the function f is slower than with rate N1/2. This is fulfilled

for this function because around the point k = [cT ] the function f(t) changes

from a to a + b whereas it is constant before and after this change. The exact

duration to come from a to a+b depends on the parameter γ. By this argument

it is seen that also assumption T2 is fulfilled for the logistic regression function.

(2) Although the assumptions above and the theorems below are stated for

deterministic trend functions the theory is also transmittable to stochastic

components in the trend. In this example we consider the single change point

model with a random breakpoint rather than a fixed deterministic. Of course

the convergences in assumption T1 and T2 are now convergences in probability.

We consider the trend function

f (N)(k) = m1, 1 ≤ k ≤ S

and

f (N)(k) = m2, S < k ≤ N.
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Here S denotes a random variable with values between one and N . Thus,

there exists a random variable τ with 0 < τ < 1 such that S = [τN ]. Assume

furthermore that m1 6= m2. Then assumption T1 holds with pN = N, a = ∞
and

h(t) = m1 min(t, τ) + m2(t−min(t, τ)).

Assumption T2 is satisfied with rN = N, b∗ = 1 and b = m2
1τ + m2

2(1− τ).

For simplicity we showed that the assumptions are fulfilled for a random change

point model with only one breakpoint. These considerations are easy to gene-

ralize to any finite number of breaks.

In the case of an infinite amount of breaks where the break times follow a

power law Davidson/Sibbertsen (2002) showed that it is possible to construct

long-memory processes by crosswise aggregation of independent copies of these

processes. They also showed that processes constructed following this approach

do not converge to fractional Brownian motion without aggregation but con-

verging to a stable Levy motion in this case. Thus, the case of infinite breaks

need extra consideration which is left for future work.

We have the test problem:

H0 : f(t) ≡ 0

versus

H1 : f(t)fulfills assumption T1 and T2.

Let us mention at this point that only trends fulfilling assumptions T1 and

T2 are of interest in the alternative here. Major trends which do not fulfill

assumptions T1 and T2 may cause technical problems, because the mean of the

GPH-estimates can diverge in their presence. But again speaking in terms of

applications these trends will hardly be misspecified as long-range dependence.

Standard analysis will show up a non-stationary behaviour of the data rather
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than long memory. From this point of view assumptions T1 and T2 do not

restrict the applicability of the method.

Denote from now on the standard GPH-estimator with d̂ and the tapered

GPH-estimator with d̂T . With m we denote the number of frequencies used

for the estimation. Of course this number has to be equal for the standard and

tapered estimator in our test. The test statistic will be defined as the squared

difference of the standard and tapered GPH estimator. Before introducing

the test statistic itself we prove that using this idea provides a method to

distinguish trends and long-range dependencies.

Denote for this at first with

D := m1/2(d̂− d̂T )

the difference between both estimators.

To fix the notation denote from now on convergence in probability by
P→ and

convergence in distribution by
d→.

To prove that the test is able to distinguish deterministic trends and long

memory it has to be shown that D
P→ 0 under the null hypothesis and D

P→
M(f), where M(f) is a non-zero function depending on the trend function f ,

otherwise. This is done in the following.

Theorem 1 Under H0 we have D
P→ 0.

Proof: It is a well known fact that both estimators are consistent for the

true memory parameter d0 of the underlying noise process (Robinson, 1995,

Velasco, 1999 or Hurvich/Ray, 1995). Thus, their difference converge to zero

in probability. This proves the theorem. ♦

The next theorem shows that the statistic is able to detect major trends.

Theorem 2 Under the alternative H1 it holds

D
P→ M(f),
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where M(f) is a non-zero function depending on the trend function f .

Proof:

To prove the theorem it is enough to show

IX(j)− IT,X(j)
P→ M̃(f), (7)

where IX(j) denotes again the periodogram based on X and IT,X(j) denotes

the tapered periodogram based on X, the process X is as defined in (5) and

M̃(f) is another non-zero function. Proving (7) is enough because the sto-

chastic behaviour of the GPH-estimates depends only on the behaviour of the

periodogram. Because all other terms are equal anyway for the tapered and the

non-tapered estimator showing that the stochastic part is different is enough

to prove that both estimators are not equal. Because this is the only point of

interest in this theorem we do not have to care for the exact representation of

the error terms in the regression equation (4) defining the GPH-estimator.

Analytically the following shows that from proving (7) it follows that both

estimators are not equal. From the definition of the GPH-estimator and the

tapered GPH-estimator we have:

d̂− d̂T =
−2 log λj log IX(λj)

4 log2 λj

+
2 log λj log IT,X(λj)

4 log2 λj

=
2 log λj

4 log2 λj

(log IT,X(λj)− log IX(λj))

Because the logarithm is a monotonous function it is clear that (7) implicates

that d̂− d̂T is nonzero.

In respect of the results of Hurvich et al.(1998) it is enough to consider the

difference of the periodograms itself rather than the difference of the logarithm

of the periodograms what would be indicated by the form of the estimator.

Considering the logarithm would not lead to any further difficulties for the
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purpose of this proof even not for low frequencies close to zero. Thus, for

simplicity of the presentation we do the proof by considering the differences of

the raw periodograms.

In what follows λj denotes again the j−th Fourier frequency. Let us first con-

sider:

IX(j)− IT,X(j) =

1

2πN
|

N∑

t=1

(Yt + f(t))e−itλj |2 − 1

2π
∑N

t=1 w2
t

|
N∑

t=1

(Yt + f(t))wte
−itλj |2 =

1

2πN
(

N∑

s=1

N∑

t=1

(YsYt + Ysf(t) + Ytf(s) + f(s)f(t))e−i(t−s)λj) −

1

2π
∑N

t=1 w2
t

(
N∑

s=1

N∑

t=1

(YsYt + Ysf(t) + Ytf(s) + f(s)f(t))wswte
−i(t−s)λj) =

1

2πN

N∑

s=1

N∑

t=1

YsYte
−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

YsYtwswte
−i(t−s)λj +

1

2πN

N∑

s=1

N∑

t=1

Ysf(t)e−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

Ysf(t)wswte
−i(t−s)λj +

1

2πN

N∑

s=1

N∑

t=1

f(s)Yte
−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

f(s)Ytwswte
−i(t−s)λj +

1

2πN

N∑

s=1

N∑

t=1

f(s)f(t)e−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

f(s)f(t)wswte
−i(t−s)λj =

IY (j)− IT,Y (j) +

1

2πN

N∑

s=1

N∑

t=1

Ysf(t)e−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

Ysf(t)wswte
−i(t−s)λj +

1

2πN

N∑

s=1

N∑

t=1

f(s)Yte
−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

f(s)Ytwswte
−i(t−s)λj +

1

2πN

N∑

s=1

N∑

t=1

f(s)f(t)e−i(t−s)λj − 1

2π
∑N

t=1 w2
t

N∑

s=1

N∑

t=1

f(s)f(t)wswte
−i(t−s)λj .

Let us now denote the first difference with A, the second with B, the third

with C and the last with D.
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A has no impact because it is the difference of the periodogram and the tapered

periodogram of the noise process only. The noise process is only a short- or long-

memory process containing no disturbance by any trend. Thus, the difference

of both of them tends to zero.

D is non-stochastic and thus the expression here is the square of the classical

Fourier transform of the function f and of those after applying the smoothing

taper wt to f . Because 0 ≤ wt ≤ 1, for all t, and wt 6= 0 and wt 6= 1 for at

least one t both functions are different. From assumption T2 we have that the

Fourier transform of f(t) converges. Hence the difference is non-zero.

The mixed terms B and C are remaining. For those we obtain:

1

2πN

N∑

s=1

N∑

t=1

Ysf(t)e−i(t−s)λj − 1

2π
∑

w2
t

N∑

s=1

N∑

t=1

Ysf(t)wswte
−i(t−s)λj =

1

2πN

N∑

t=1

f(t)
N∑

s=1

Yse
−i(t−s)λj − 1

2π
∑

w2
t

N∑

t=1

f(t)
N∑

s=1

Yse
−i(t−s)λj =

1√
N

N∑

t=1

f(t)
1

2π
√

N

N∑

s=1

Yse
−i(t−s)λj − 1√

N

N∑

t=1

f(t)
8

6π
√

N

N∑

s=1

Yswswte
−i(t−s)λj

For the last equality we use the property of the cosine bell taper that
∑

w2
t =

3
8
N .

Assumptions T1 and T2 give that 1/
√

N
∑N

t=1 f(t) → h(t) with a function h(t)

as in the assumptions. Because Ys was a mean zero random variable with finite

variance the terms under the other two sums fulfill the Lindeberg condition.

From the limit theorem of Lindeberg-Feller we obtain

1

2π
√

N

N∑

s=1

Yse
−i(t−s)λj d→ ξ

and

8

6π
√

N

N∑

s=1

Yswswte
−i(t−s)λj d→ ξ̃,
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where ξ and ξ̃ are standard normal random variables. Hence we have

1√
N

N∑

t=1

f(t)
1

2π
√

N

N∑

s=1

Yse
−i(t−s)λj − 1√

N

N∑

t=1

f(t)
8

6π
√

N

N∑

s=1

Yswswte
−i(t−s)λj d→

h(t)(ξ − ξ̃).

Because h(t) was a smooth function the mixed terms converge to zero in pro-

bability.

Therefore, altogether the difference of the periodograms is a non-zero function

and hence the difference of the estimates is non-zero because the stochastic

behaviour of the estimates is determined by the behaviour of the periodograms

in this behalf. This proves the theorem. ♦

Remarks:(1) We restrict ourselves in this paper to the case of stationary

long memory because of simplicity of the presentation. But all these results

do hold as well for the case of non-stationary long memory. However, at the

end the question of interest is to distinguish a stationary time series from a

non-stationary series misspecified as being stationary.

(2) The idea of this test is related to Hausman tests introduced by Hausman

(1978). The idea there is to compare two estimators which behave similar under

the null hypothesis but one of them behaves badly under the alternative. Our

situation is slightly different by having two estimators with similar properties

under the null but both behaving badly in alternative situations. In our case

both estimators go under the alternative in different directions and thus the

alternative situation can be distinguished from the null.

Now the test statistic is defined as

T := m1/2(d̂− d̂T )2. (8)

From Theorem 1 and 2 we obtain that the test (6) can distinguish major

deterministic trends and long-range dependence. But the limiting distribution
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depends on the true memory parameter of the noise process. Thus, the limiting

distribution of the test statistic should be estimated from the data by using

bootstrap. This is done in the next section.

4 Estimating the limiting distribution

In the last section we developed a test statistic which is able to distinguish long-

range dependencies and major trends. In this section we discuss the limiting

distribution of this test under the null of no major trend.

In the case of a normally distributed data generating process both estimators

are normally distributed. The variance of the tapered estimator is greater than

that of the standard GPH-estimator and its variance depends on the chosen

taper. For the full cosine bell taper used in this paper the variance can be three

times as big as for the non-tapered estimator. For a detailed discussion of the

limiting distribution of each of these estimators we refer to Robinson(1995)

and Velasco(1999).

But from this discussion we can see that our test statistic is asymptotically

χ2
1 distributed after standardization whenever the data generating process is

Gaussian. It should be mentioned that normality of the data generating process

is not needed for the following discussion and that the test statistic remains of

use if this is not the case. Anyway, for the case of a Gaussian process we can

state the following theorem:

Theorem 3 Under the null of no major trend and if the error process Yt is

Gaussian, the test statistic T is asymptotically χ2
1 distributed with one degree

of freedom after standardizing with the standard deviation depending on the

memory parameter d0 of the process Yt.

Proof: The test statistic T is given in (8) by

T := m1/2(d̂− d̂T )2.
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Asymptotic normality of m1/2(d̂ − d̂T ) follows directly from the asymptotic

normality of each of these estimators. The mean zero follows because of the

consistency of both estimators and the discussion above. It remains the va-

riance. Because both estimators are not independent the asymptotic variance

is given by

Var(T ) = Var(d̂) + Var(d̂T )− 2Cov(d̂, d̂T ).

Here Var() denotes the asymptotic variances of each term. But of course the

covariance of both estimators depends on d0. Thus, after standardization the

statistic itself is χ2
1 distributed. ♦

Therefore, from the covariance term it turns out that the variance depends

on the true memory parameter of the data generating process. This makes it

impossible to compute critical values direct from the asymptotic distribution

without knowledge of the true memory parameter what is the problem under

test. We renounce computing the exact form of the variance term what is

rather complicated and does not support the goal of this paper.

Instead of this we estimate the asymptotic distribution of the test by employing

bootstrap methods. Because of this step the stated Gaussianity of the test

statistic is not crucial for us. The test is still applicable even if the data is not

normal because the asymptotic distribution and thus critical values for the test

statistic have to be estimated in any way.

Bootstrap is a resampling technique which allows the estimation of an estima-

tor or test statistic depending asymptotically on an unknown parameter. For

a detailed discussion about the bootstrap and its applications in econometrics

see Horowitz(2000) or Davidson(2002).

The problem in our situation is that bootstrap techniques apply only for

independent data. But if d0 > 0 this is not the case here. We have stron-

gly dependent data. The bootstrapping idea for this data is based on the

ARFIMA-representation (3) of a long-memory process. It says that differen-

cing the process appropriately results in a white noise process which then can

be bootstrapped.
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The idea is as follows. We differentiate the data with the smaller of both of

the estimated memory parameters obtained from the standard and the tapered

GPH-estimation because this is the less biased estimator. The resulting process

is being bootstrapped and these bootstrap samples are integrated again with

the estimated memory parameter. For the so generated data we compute the

test statistic. Repeating this procedure M times estimates the empirical distri-

bution function of our test statistic. From this empirical distribution function

p-values for the true value of the test statistic using the original data can be

computed.

5 Monte Carlo Results

In the Monte Carlo study we focus on the logistic regression (6) and on a sinus

trend. The logistic regression function is a useful way for modelling shifts in the

regime. Depending on the choice of parameters rapid breaks can be modelled as

well as smooth changes. For this reason the logistic regression function is very

popular in economic modelling. The sinus trend simulates a periodic behaviour

as it occurs in seasonal data. It is considered to show that the test can deal also

with those structures. That is why we concentrate our studies in this paper on

these functions.

The actual simulations are in each case based on N = 1000 repetitions. The

actual distribution of the test statistic is in each case estimated by M = 1000

Bootstrap replications.

Let us first consider the logistic regression function. We compute the power of

the test statistic for various parameter choices concerning the memory para-

meter as well as the time of the break and the smoothness. The parameter a

and b describing the value of the function before and after the break and thus

the size of the break are fixed for the whole study with a = 0 and b = 1.5.

The noise process used is a Gaussian ARFIMA(0, d, 0)-process on which the

logistic regression function is added.
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Table 1 gives the power of the test for a rather smooth changeover of the

regimes by choosing the parameter γ = 10 as well as for a classical structural

break in the mean by choosing γ = 1000. The power is computed for various

memory parameters. We consider the case of an independent noise process

meaning d = 0, of a memory parameter in the middle of the stationary long-

memory range by d = 0.2 and we consider strong long memory for d = 0.4.

The actual break point is located at 10, 20, 50, 80, 90% of the data given by

a value of c = 0.1, 0.2, 0.5, 0.8, 0.9. Thus, we consider breaks as well at the

beginning of the observation period as in the middle and the end of the data.

Table I Power of the test for the logistic regression

d = 0 d = 0.2 d = 0.4

γ = 10 γ = 1000 γ = 10 γ = 1000 γ = 10 γ = 1000

c = 0.1 0.813 0.971 0.93 1 0.997 1

c = 0.2 0.919 0.864 0.989 0.9 1 0.974

c = 0.5 0.971 0.964 0.98 0.993 1 1

c = 0.8 0.986 0.994 1 1 1 1

c = 0.9 0.976 1 1 1 1 1

As it can be seen from the table we have a good power of mostly above 90%

for all values of d. The power increases with d but is still high for d = 0. There

are also no differences between a rather smooth change in mean (γ = 10) and

an abrupt structural break (γ = 1000). The power of the test does also not

depend on the break time. We obtain a high power for breaks at the beginning

of the observation period (c = 0.1) as well as in the middle (c = 0.5) and at

the end (c = 0.9).

Let us now consider the sinus trend given by

f(t) =
sin(t)

t
.

This trend fulfills the conditions T1 and T2. The idea of considering this sinus

trend is to simulate a periodic behaviour as it occurs for example in seasonal
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or cyclical data. We consider sin(t)/t rather than sin(t) directly to have a

decaying trend which makes it even harder to distinguish the trend from long-

range dependence. The power for this trend is given in table II.

Table II Power of the test for sin(t)/t.

d Power

d = 0 0.945

d = 0.2 1

d = 0.4 1

Again we observe a very good power for all values of d. This shows that the

test behaves well not only for structural breaks but also for smooth decaying

functions. It is able to detect also seasonal effects.

Table III shows that the test keeps its levels. The level of the test is almost

reached in all cases. Still the test is rather conservative. This emphasizes the

good properties of the test.

Table III Level of the test.

d Level

0.01 0.05 0.1

d = 0 0.012 0.05 0.083

d = 0.2 0.005 0.049 0.085

d = 0.4 0.005 0.045 0.088

It is worth mentioning at this place that although the distribution of the test

statistic depends on the true memory parameter d0 simulated critical values

for d = 0, 0.2 and 0.4 have been very close to each other.
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6 Application

There is evidence of long memory in several economic data sets as volatilities of

stock returns or inflation rates. Sibbertsen(2002b) showed in an empirical study

by employing the above ideas that there is strong evidence of long memory in

the volatilities of the returns of seven German stocks.

Here we re-analyze the long-memory behaviour of inflation rates. There is an

intensive discussion whether inflation rates contain a unit root. In recent years

several empirical analysis found evidence of long memory in inflation rates.

For an overview of this discussion see Baillie(1996). Bos et al.(1999) discussed

whether these findings are due to level shifts. They modelled exogenous level

shifts during the oil price crises. They compared models with no, two and four

exogenous shifts for the G7 countries. For testing of significance of the shift

they employed the LM- and Wald-test. They found that the estimated memory

parameter clearly reduces in all cases when level shifts are introduced to the

model. Still this can not be seen as a proof because tests on structural breaks

do misspecify long memory as structural breaks (Krämer/Sibbertsen, 2002).

But we still support the thesis of level shifts in inflation rates by applying the

test (8) to the inflation rates of three industrialized countries, namely the US,

UK and Germany. Using the monthly consumer price index (CPI) for all of

these countries from January 1957 to March 20022 we obtain the inflation rate

It at time t for each country by It = log(CPIt/CPIt−1). Thus, we have 543

observations for each country meaning that we use m = N0.8 = 154 frequencies

for the estimation of the memory parameter. The results of the test is given

in table IV.

Table IV Test results for three inflation rates

d̂ d̂T

√
154(d̂− d̂T )2

US 0.39 0.53 0.246

UK 0.344 0.442 0.118

Germany 0.17 0.31 0.238

2Data obtained from Datastream.
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Thus, the null of no major trend can be rejected for the US and Germany

at the 95% and even the 99% level. For the UK the hypothesis still can be

rejected to the 90% level whereas it cannot be rejected to the 95% level.

These results clearly reject the hypothesis of no trends or structural breaks

in inflation rates and support the thesis that to some extent the long-range

dependence effects are the results of misspecification of major trends such as

level shifts as long memory. Our estimation results reproduce the previous

empirical findings of long-range dependence by using log-periodogram based

techniques. The smaller of both of our estimators gives almost those results

Bos et al. (1999) estimated after introducing four level shifts. Only for the UK

we obtain a slightly higher value.

Comparing the standard GPH-estimator and its tapered counterpart show that

there is evidence of structural breaks in inflation rates. Whether there are also

some long memory effects present in inflation rates has to be considered in

future research.

7 Conclusion

In this paper we constructed a test for distinguishing long-range dependence

and major trends such as structural breaks. The idea of the test is to compare

the standard GPH-estimator with the tapered GPH-estimator. Both estima-

tors are consistent under the null of no major trend but behave different under

the alternative of major trends or structural breaks. This idea is similar to

Hausman tests. It is proven that this test can distinguish long memory and

major trends. The asymptotic distribution of the test statistic which depends

on the memory parameter of the underlying noise process is estimated by using

bootstrap. It turns out that the test performs well by having a high power. It

is also shown that the test behaves well for different types of trends by conside-

ring structural breaks with the logistic regression function as well as periodic

trends by considering a sinus trend. In the last section the test is applied to

inflation rates of the US, UK and Germany. By rejecting the null of no major

trend to the 99% level for the US and Germany and to the 90% level for the
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UK the test clearly rejects the empirical findings of long-range dependence in

inflation rates and supports the hypothesis that these findings are caused by

level shifts in the data.
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