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Abstract. Motivated in part by applications in model selection in statistical genetics

and sequential monitoring of financial data, we study an empirical process framework

for a class of stopping rules which rely on kernel-weighted averages of past data. We

are interested in the asymptotic distribution for time series data and an analysis of the

joint influence of the smoothing policy and the alternative defining the deviation from

the null model (in-control state). We employ a certain type of local alternative which

provides meaningful insights. Our results hold true for short memory processes which

satisfy a weak mixing condition. By relying on an empirical process framework we obtain

both asymptotic laws for the classical fixed sample design and the sequential monitoring

design. As a by-product we establish the asymptotic distribution of the Nadaraya-Watson

kernel smoother when the regressors do not get dense as the sample size increases.

Keywords: Control chart, finance, microarrays, sequential test, smoothing, statistical

genetics.
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Introduction

In many applications one is interested in sequential statistical procedures in order to detect

the first time point where a sequence of observations {Yn}, a time series, is no longer

homogeneous (stationary). For instance, in statistical genetics the problem arises to select

appropriate models explaining the genetic component of a (complex) disease. Due to the

large number of genes, checking all possible models is infeasible in many cases and one

has to rely on (heuristic) search algorithms which analyze a certain subset. If we define an

appropriate statistic to measure the explanatory power of a model, we obtain a sequence

of observations where changes in the mean may indicate reasonable statistical models for

the data at hand. A further potential field of application is the analysis of microarray

data where time series of gene expression levels of genes are obtained. Changes in the gene

expression levels may reflect certain biological processes. Finally, an important field of

application is the analysis of financial time series. Capital markets produce huge sequential

streams of financial data as returns, prices, or interest rates. Hence, sequential methods are

an appropriate tool to detect departures from stationarity which may give rise to portfolio

adjustments or other actions. Although unexpected structural changes give rise to level

shifts (jumps) of economic processes, we often expect gradual structural changes, since in

general markets process information in a continuous fashion.

Many (truncated) detection rules to detect changes in the distribution of a sequence of

observations can be written as stopping times

SN = inf{1 ≤ n ≤ N : Tn = T (Y1, . . . , Yn) > c}

where Tn = T (Y1, . . . , Yn) is a control statistic attaining large values if there is evidence

that the process is no longer homogenous. Note that detection rules of this type are also of

particular interest if we want to get a sequential answer to the following a posteori question:

Given data Y1, . . . , YN , when was it possible for the first time to detect a change in the

time series without using data after the hypothesized change-point?

Often these stopping times can be represented as functionals of certain sequential empir-

ical processes. We use this approach here, because it has several merits. First, we obtain
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asymptotic laws for both sampling designs, the sequential design and the fixed sample de-

sign. Second, it will turn out that the asymptotic distribution of the sequential procedure

depends only on the second moments of the underlying process. Third, the construction of

both control charts and sequential tests is quite straightforward. Finally, one may study

which (stochastic) properties of a procedure are in fact properties of the underlying sequen-

tial empirical process and not due to the definition of the functional yielding the statistic

of interest.

For an a posteriori approach to detect multiple change points which is based on similar

kernel-weighted statistics we refer to Huskova and Slaby (2001). The application of U-

statistics for a posteriori detection has been studied by several authors, we refer to Ferger

(1994, 1997), Gombay and Horvath (1995), and the references given in these papers.

To motivate our approach let us briefly recall some basic results for the classical i.i.d. case.

If {Yn} are i.i.d.(FY ) with E(Yn) = 0 and EY 2
n = 1, one may use Tn = N−1/2

∑n
i=1 Yi, a

CUSUM-type statistic. Then, the process T[Ns], s ∈ [0, 1], converges weakly to Brownian

motion B(s), s ∈ [0, 1],

(1) T[N◦] ⇒ B,

as N → ∞, and therefore, since SN/N = inf{s ∈ [0, 1] : T[Ns] > c}, we have

(2) SN/N → inf{s ∈ [0, 1] : B(s) > c}

in distribution, as N → ∞. Observing that

(3) SN/N > x ⇔ sup
s∈[0,x]

T[Ns] ≤ c

and P (sups∈[0,x] B(s) > b) = 2P (N(0, x) > b), we can further conclude that the distribution

function (d.f.) of SN/N satisfies

(4) P (SN/N ≤ x) →
∫ x

0

c√
2πs3

exp(−c2/(2s)) ds,

as N → ∞, for each x ≥ 0 and by continuity of the right side also uniformly in x ≥ 0 (cf.

Shorack and Wellner (1986), p.33.) Whereas (2) still holds true for weakly dependent time

series under mixing conditions, explicit formulas as (4) are hard to obtain under general

conditions.
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Motivated by these considerations and previous work (Brodsky and Darkhovsky (1993,

2000), Schmid and Steland (2000), Steland (2002a, 2002b, 2003a, 2003b)), the contribu-

tion of this paper is to establish invariance principles as (1) and (4) for detection rules

based on certain sequential kernel smoothers. The results can be applied when the correla-

tion structure of the underlying time series is known or can be estimated consistently. This

means, we obtain approximate solutions without fitting a parametric times series model,

i.e., estimating the full distribution. Whereas Steland (2003b) provides a law of large num-

ber for the normed delay and studies the optimal kernel choice, the results presented here

provide the asymptotic distribution of the underlying empirical process and therefore also

about the asymptotic distribution of the detection rule.

We allow for dependent mixing data and study certain local alternatives. From a statistical

point of view it is interesting to model the deviations from stationarity in order to analyze

how the components of the model affect the asymptotic distribution and thus the statistical

properties of the procedures. Therefore we shall work with a semiparametric model. An

essential component is a generic alternative m0 which is translated and scaled to define

the mean of the process under the alternative. The scaling parameter h will be related to

the effective sample size of the stopping rule and will tend to ∞. The procedure can be

interpreted as a sequential test of the one-sided testing problem

H0 : m0 = 0 versus H1 : m0 ≥∗ 0.

Here we use the notation f ≥∗ g for two functions f, g : D → R if f(s) ≥ g(s) for all

s ∈ D with strict inequality for at least one s ∈ D. Note that using a different terminology

we may say that the process is in a state of statistical control if H0 holds true and is

out-of-control if H1 is true. Concerning the choice of Tn we will study a class of weighted

averages of past data where the weights are defined by a smoothing kernel K.

The structure of the paper is as follows. Section 1 introduces the statistical model and the

statistical detection procedure in detail. Our basic assumptions are stated in Section 2. The

weak convergence of the underlying sequential empirical process is derived in Section 3 for a

large class of dependent time series. We provide both results under the null hypothesis and

under the alternative as specified above. It turns out that the weak limit is a nonstationary
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Gaussian process. A weak sufficient condition for a.s. continuous sample paths is given. In

Section 4 we apply the results to establish corresponding results for several sequential

detection procedures which can be defined in terms of the sequential empirical process.

1. Model and detection procedure

Assume the observations Y1, . . . , YN , N ∈ N, arrive sequentially and satisfy

Yn = mn + εn, n = 1, . . . , N, N ∈ N,

where {εn} is a mean zero, stationary, and α-mixing process with covariance function

r0(k) = E(ε1ε1+k), k ≥ 0.

We parameterize the drift mn as

mn = m0((n − tq)/hN)1(n ≥ tq), n = 1, . . . , N, N ∈ N,

where h = hN , N ∈ N, is a sequence of positive constants with

N/hN → ζ ∈ (0, +∞),

as N → ∞. tq is a fixed but unknown change-point. m0 : [0,∞) → [0,∞) is called generic

alternative function and is assumed to be continuous in t = 0 with m0(0) = 0. Precise

conditions on m0 will be given below, but they cover the important case that m0 is a

piecewise smooth function. Note that for each fixed n ∈ N we have mn → m0(0), as

N → ∞. In this sense m0 defines a sequence of local alternatives. Note that we assume

equidistant time points n ∈ N which will be denoted by tn, n ∈ N, to make calculations

more transparent. The generalization to non-equidistant designs is straightforward.

The stopping rule used to detect deviations from stationarity is based on a weighted average

of past data. We consider this type of detection rule, since it might be the most popular

device in analyzing sequential streams of data. For example, financial analysts look at such

weighted averages sequentially to derive signals to buy or sell financial instruments. Define

m̂n =
n∑

i=1

Kh(ti − tn)Yi.
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Here K is a smoothing kernel and Kh(z) = h−1K(z/h) its rescaled version. By definition

of m̂n the kernel K is evaluated for arguments z ≤ 0. Hence, h is the effective number

of observations used by the procedure, if the support of K equals [−1, 1]. Consider the

sequential decision rule which gives a signal at the random (stopping) time

SN = inf{1 ≤ n ≤ N : m̂n > c}

where c is a prespecified threshold and N is a (large) integer. The properties of SN and other

related stopping rules, and the choice of the critical value c will be discussed in greater

detail in Section 4. Let us now put the procedure in an empirical process framework.

Introduce the stochastic sequential kernel-weighted partial sum process

(5) MN(s) =
h√
N

[Ns]∑
i=1

Kh(ti − t[Ns])Yi, s ∈ [0, 1].

Now we can represent SN as

SN = N inf{s ∈ [0, 1] : N1/2h−1
MN(s) > c}.

In view of MN(0) = 0 it can be assumed w.l.o.g. that c ≥ 0.

This representation motivates to study the weak convergence of the process {MN}. We

will show that MN converges weakly for a rich class of dependent time series and therefore

governs the asymptotic distributional properties of any stopping time which can be defined

as a functional of MN .

2. Assumptions

Concerning the error terms (innovations) we require the following assumptions.

(E1) {εn} is a strictly stationary process with E|ε1|r+δ < ∞ for some r ≥ 4 and δ > 0.

(E2) {εn} is strongly mixing with

α(k) ∼ ak−β

for some β > r(r+δ)
2δ

.
7



Recall that such mixing conditions, which are standard in nonparametric statistics for

weakly dependent data, are satisfied by many parametric time series models.

We restrict attention to kernels from the following class.

(K) Concerning the kernel K we assume that K is non-negative, bounded, i.e., ‖K‖∞ <

∞, K ∈ L1(R
+
0 ), and Lipschitz continuous, i.e., there exists a constant L such that

|K(z1) − K(z2)| ≤ L|z1 − z2|

for all z1, z2 ∈ R. W.l.o.g. we can and shall assume that K is symmetric.

For results under the alternative, we have to assume the following condition (M) concerning

m0, and a condition on both K and m0.

(M) m0 is assumed to be a piecewise continuous function.

For x ≥ 0 define

I(x) =

∫ x

0

K(s − x)m0(s) ds.

(KM) We assume |I(x)| < ∞ for all x ≥ 0, I ∈ C(R+
0 ), K · m0 has bounded variation,

i.e.,
∫ |d(Km0)| < ∞, and that there exists some x∗ > 0 such that I(x∗) > c.

Notice that a sufficient condition for
∫ |d(Km0)| < ∞ and I ∈ C(R+

0 ) is to require K, m0 ∈
L1(R

+
0 ) with ‖K‖∞, ‖m0‖∞,

∫ |dK|, ∫ |dm0| < ∞, and K Lipschitz continuous. Then∫ |d(Km0)| < ∞ and I is Lipschitz continuous,

|I(x1) − I(x2)| ≤ ζ‖m0‖∞ max{LUζ, ‖K‖∞}|x1 − x2|,

for all 0 ≤ x1, x2 ≤ U , U > 0 fixed.

3. The kernel-weighted sequential empirical process

Observe that MN is a random element of the space D[0, 1] of right-continuous functions

on [0, 1] with left-hand limits. When equipped with the Borel-σ-algebra and the Skorohod

metric, D[0, 1] is a separable space, and empirical processes are measurable. Recall that
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a sequence {Xn} ⊂ D[0, 1] converges weakly in D[0, 1] to some X ∈ D[0, 1], denoted by

Xn ⇒ X, as n → ∞, if ∫
h(Xn)dP →

∫
h(X)dP,

as n → ∞, holds true for all continuous and bounded functions h : D[0, 1] → R. If

we interpret h(Xn), h ∈ Cb(D([0, 1]); R), as a characteristic or an aspect of the random

function Xn, weak convergence to X means that all aspects h(Xn) converge to the aspects

h(X) of X. Recall that Xn ⇒ X, as n → ∞, holds true if and only if the finite-dimensional

distributions converge, denoted by Xn
fidis→ X, n → ∞, and the process {Xn} is tight, i.e.,

for each ε > 0 there exists a compact set K ⊂ D[0, 1] such that P (Xn ∈ K) ≥ 1 − ε. We

refer to Billingsley (1968), Pollard (1984), and to Vaart and Wellner (1996) for treatments

of the theory in general metric spaces.

3.1. Weak convergence under stationarity. The following Theorem formulates an

invariance principle which asserts that the process MN converges weakly in D[0, 1] to some

random element Mζ , as N → ∞. Recall that N/hN → ζ ∈ (0, +∞), as N → ∞. We will

not mention this fact in the sequel. The result will imply that we may approximate the

distribution of interesting functionals of MN , e.g., stopping times, by the distribution of

the functional of the Gaussian process Mζ .

Our first Theorem provides weak convergence of MN under the (global) hypothesis H0 :

m0 = 0.

Theorem 3.1. Assume (E1), (E2), and (K). For all 0 ≤ s, t ≤ 1 the limit

Cζ(s, t) = lim
N→∞

CN(s, t)

exists, where

CN(s, t) =
h2

N

[Ns]∑
i=1

[Nt]∑
j=1

Kh(ti − t[Ns])Kh(tj − t[Nt])r0(|ti − tj |).

Under the hypothesis H0 : m0 = 0 the process MN(t) defined by (5) converges weakly to a

Gaussian process Mζ,

MN ⇒ Mζ in D[0, 1],
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as N → ∞. The Gaussian process Mζ is determined by

EMζ(t) = 0 and Cov (Mζ(t), Mζ(s)) = Cζ(t, s)

for all 0 ≤ s, t ≤ 1.

Proof. Let 0 ≤ s, t ≤ 1. Then we have

CN(t, s) =
h2

N

∣∣∣∣∣∣
[Nt]∑
i=1

[Ns]∑
j=1

Kh(ti − tn)Kh(tj − tn)r0(|i − j|)
∣∣∣∣∣∣

≤ ‖K‖2
∞

N

[Nt]∑
i=1

[Ns]∑
j=1

|r0(|i − j|)|

≤ ‖K‖2
∞

N

N∑
i=1

N∑
i=1

|r0(|i − j|)|

= ‖K‖2
∞

{
r0(0) + 2

N−1∑
k=1

(1 − k/N)|r0(k)|
}

.

The right side converges absolutely by assumptions (A) and (B)(cf. Bosq (1996), Th. 1.5),

since β > γ/(γ − 2) holds true if we define γ = r + δ.

We will now verify asymptotic normality of the fidis. Fix a dimension l ∈ N and let

t = (t1, . . . , tl) ∈ R
l be a vector of time points. W.l.o.g. we assume t1 ≤ · · · ≤ tl. We shall

employ the Cramer-Wold device to establish convergence of the fidis P(MN (t1),...,MN (tl)). Let

λ = (λ1, . . . , λl)
′ ∈ R

l − {0}. Define

√
NTN = TNtλ =

l∑
k=1

λkMN(tk)

and σ2
N = Var (

√
NTN). Obviously,

σ2 = lim
N→∞

σ2
N =

l∑
k,k′=1

λkλk′Cζ(tk, tk′) < ∞.

We have

TN =

[Ntl]∑
i=1

wiYi
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with weights

wi = wNtλi =
l∑

k=1

λkK((i − [Ntk])/h)1(i ≤ [Ntk]),

i = 1, . . . , [Ntl]. For simplicity of notation put n = [Ntl]. We use the standard large-block-

small-block argument. The mixing condition ensures that the dependence between sums

of large-block summands vanishes fast enough, whereas the small-block sums have only

q summands where q is chosen such that their contribution is asymptotically negligible.

Further, we apply Bradley’s lemma as in (Bosq 1996, Th. 1.7) to approximate dependent

r.v.s by independent ones. More precisely, the large blocks will have block lengths

p ∼ n/ log n − n1/4,

and the small ones q ∼ n1/4 yielding b ∼ log n blocks of each kind. Define for j = 0, . . . , b−1

Lj =

j(p+q)+p∑
i=j(p+q)+1

wiYi,

Sj =

(j+1)(p+q)−1∑
i=j(p+q)+p+1

wiYi,

RN =

n∑
i=(b−1)(p+q)+1

wiYi.

Then we can decompose the statistic TN as

TN =

b−1∑
j=0

Lj +

b−1∑
j=0

Sj + RN .

Bradley’s lemma (Bradley, 1983) yields the existence of b independent random variables

L̃0, . . . , L̃b−1 with Lj
d
= L̃j and

P

(
|Lj − L̃j | >

εσ
√

n

b

)
≤ 11 sup

j

(‖Lj + c‖γ

εσ
√

n
b

)γ/(2γ+1)

[α(q)]2γ/(2γ+1),

if we put c = pη supj ‖wjYj‖γ for some η > 1. Noting that

N∑
i=1

w2
i →

l∑
k=1

λk

∫ ζtk

0

K(s − ζtk) ds,
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as N → ∞, which yields
∑(p+q)j+p

i=(p+q)j+1 w2
i → w∗ for some w∗, and using Yokoyama (1980,

Th. 1) and the Cauchy-Schwarz inequality, one may show that E|Lj|γ′
= O(pγ′/2) and

‖Lj + c‖γ′ = O(p1/2) for any 2 < γ′ < γ. Thus, we obtain

P

(∣∣∣∣∣ 1

σ
√

n

b−1∑
j=0

L̃j − 1

σ
√

n

b−1∑
j=0

Lj

∣∣∣∣∣ > ε

)
= P

(
|
∑

j

(L̃j − Lj)| > εσ/
√

n

)

≤
∑

j

P (|L̃j − Lj | > εσ/(b
√

n))

= O

(
b ·
(

p1/2

√
n/b

)γ/(2γ+1)

α([n1/4])2γ/(2γ+1)

)
= o(1),

since α(k) ∼ ak−β with β > γ/(γ − 2).

We shall now verify asymptotic normality of (
√

nσ)−1
∑b−1

j=0 L̃j by using a truncation ar-

gument. Define

L̃M
j = L̃j1(|L̃j | ≤ M), j = 0, . . . , b − 1,

where M > 0 is an arbitrary constant. Now the r.v.s {L̃j : j = 0, . . . , b − 1} are bounded

and therefore satisfy the Lindeberg condition. Further, independence yields

Var

(
1√
nσ

b−1∑
j=0

L̃j − 1√
nσ

b−1∑
j=0

L̃M
j

)
=

1

nσ2

b−1∑
j=0

EL̃2
j1(|L̃j| > M).

By dominated convergence, EL̃2
j1(|Lj| > M) → 0, as M → ∞. Hence

1√
nσ

b−1∑
j=0

L̃M
j − 1√

nσ

b−1∑
j=0

L̃j
P,L2→ 0,

as n → ∞ and then M → ∞, which verifies

(6)
1√
nσ

b−1∑
j=0

Lj
d→ N(0, 1),

as n → ∞.

Analogously, since Sj has q summands,

(7)
1

σ
√

qr

b−1∑
j=0

Sj
d→ N(0, 1),
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and therefore

(8)
1√
nσ

b−1∑
j=0

Sj =

√
qb

n

1

σ
√

qb

b−1∑
j=0

Sj
L2,P→ 0,

as n → ∞, since qb/n = o(1). Finally, since RN has less than p+q ∼ n/ log n L2-summands,

we obtain

Rn√
nσ

L2,P→ 0,

as n → ∞, which gives

(9)
1√
nσ

b−1∑
j=0

Lj −
√

NTN
L2→ 0,

as n → ∞. Hence, the asymptotic distribution of (
√

nσ)−1TN coincides with the asymptotic

distribution of (
√

nσ)−1
∑b−1

j=0 Lj . Finally, (6), (9) and N/n → t−1
l also imply

Var

(
1√
Nσ

b−1∑
j=0

Lj

)
→ σ2 = lim

N→∞
Var (

√
NTN),

as n = [Ntl] → ∞. Thus, we may conclude

MN
fidis→ Mζ ,

as N → ∞, by definition of Mζ.

It remains to verify tightness of the process {MN(t)}. Recall that by assumption (A)

E|ε1|r+δ < ∞ for some r ≥ 4 and δ > 0. We show that

(10) lim sup
N

E(MN (t) − MN(s))4 = O(|t− s|4).

for all 0 ≤ s ≤ t ≤ 1. Then the Cauchy-Schwarz inequality yields for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1

E|MN(t) − MN (t1)|2|MN(t2) − MN(t)|2

≤
√

E(MN (t) − MN (t1))4
√

E(MN (t2) − MN(t))4

= O(|t− s|4)
13



and tightness follows from (Billingsley 1968, Th. 15.6). Fix 0 ≤ s ≤ t ≤ 1 and define

aNi(t, s) = K((ti − t[Nt])/h) − K((ti − t[Ns])/h),

bNi(t) = K((ti − t[Nt])/h).

Clearly, maxi |bNi(t)| ≤ ‖K‖∞. Since K is Lipschitz-continuous and ζ = lim N/h, we have

|aNi(t, s)| = O(ζ |t− s|)

where the O does not depend on i. Note that

MN(t) − MN(s) =
1√
N

[Ns]∑
i=1

aNi(t, s)Yi +
1√
N

[Nt]∑
i=[Ns]+1

bNi(t)Yi.

We shall estimate both terms separately. First recall that assumption (B) immediately

implies

∞∑
j=0

(j + 1)r/2−1(α(j))δ/(δ+r) < ∞.

We apply Th. 1 of Yokohama (1980). In particular, there it is shown (see p. 47 eq. (4.1),

p. 47 last estimate and p. 48) that

n∑
i,j,k,l=1

|Eηiηjηkηl| = O(n2).

Therefore, we have

E

 1√
N

[Ns]∑
i=1

aNi(t, s)Yi

4

≤ 1

N2

[Ns]∑
i,j,k,l=1

aNiaNjaNkaNl|EYiYjYkYl|

≤ sup
i

|aNi(t, s)|4 1

N2

[Ns]∑
i,j,k,l=1

|EYiYjYkYl|

= O(ζ |t− s|4([Ns]/N)2)

= O(ζ |t− s|4).
14



since [Ns]/N ≤ 1. Using the same arguments we also obtain

E

 1√
N

[Nt]∑
i=[Ns]+1

bNi(t)Yi

4

≤ sup
i

|bNi(t)|4 1

N2

[Nt]∑
i,j,k,l=[Ns]+1

|EYiYjYkYl|

= O(ζ |t− s|4(([Nt] − [Ns])/N)2)

= O(ζ |t− s|4).

Thus we may conclude (10). �

For applications we need the asymptotic law of a finite approximation of MN at arbitrary

points s1, . . . , sL, as summarized in the following Corollary.

Corollary 3.1. Assume (E1), (E2), and (K). Let 0 ≤ s1 < · · · < sL ≤ 1 be L ordered

time points. Then, under the hypothesis H0 : m0 = 0,

(MN (s1), . . . , MN(sL))

converges in distribution to the distribution of the random vector

(Mζ(s1), . . . , Mζ(sL)),

which is given by a multivariate normal distribution with mean 0 ∈ R
L and covarianve

matrix Sζ = (sζ,ij) with elements sζ,ij = Cζ(si, sj), 1 ≤ i, j,≤ L, provided N → ∞.

Let us briefly discuss convergence of the covariance function CN(s, t).

Remark 3.1. In the proof of Theorem 3.1 it was shown that |CN(s, t)| = O(‖K‖∞
∑

k |r0(k)|).
Also note that for unbounded L2-kernels one may use the bound

|CN(s, t)| = O

(
ζ−1(

∫ ζs

0

∫ ζt

0

K2(z1 − ζs)K2(z2 − ζt) dz2dz1)
1/2(
∑

k

r0(k)2)1/2

)
to check convergence. However, for bounded kernels summability of the covariances suffices.

Remark 3.2. If {Yi} are i.i.d. with common variance 0 < σ2 < ∞, it is straightforward

to show

Cζ(s, t) =
σ2
∫ ζs

0
K(z − ζs)K(z − ζt) dz

ζ2
∫ ζs

0
K(z − ζs) dz

∫ ζt

0
K(z − ζt) dz

for 0 ≤ s ≤ t ≤ 1.
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The conditions on the error terms are satisfied by many time series models. Let us briefly

discuss the following important case.

Remark 3.3. Assume {εn} is a causal ARMA(p, q) process. φ(B)εn = θ(B)Zn, where

{Zn} is white noise and

φ(z) = 1 − φ1z − · · · − φpz
p

θ(z) = 1 + θ1z + · · ·+ θqz
q.

Then, for h ≥ max(p, q + 1) − p there exists p constants βij such that

r0(k) =
l∑

i=1

ri∑
j=0

βijk
jξ−k

i

where ξ1, . . . , ξl are the distinct (possibly complex) zeroes of φ(z) with multiplicities ri. By

causality, |ξi| > 1, i = 1, . . . , l, is ensured. Thus, the convergence rate of r0(k) to 0, as

k → ∞, depends on the zeros ξi which are closest to the unit circle. Simple real zeroes

contribute geometrically decreasing terms, whereas a pair of complex conjugate zeroes to-

gether contribute a geometrically damped sinusoidal term (cf. Brockwell and Davies (1991),

Sec. 3.3).

Remark 3.4. The asymptotic covariance matrix Sζ can be estimated by using consistent

estimates r̂0(k) for the covariance function r0(k), k ≥ 1, of the underlying time series

{Yn}. A detailed discussion of appropriate estimators is beyond the scope of the paper, but

if si = ti, i = 1, . . . , n, a candidate could be the estimator

ŝζ,ij =
h2

N2

[Nti]∑
i′=1

[Ntj ]∑
j′=1

Kh(ti − tn)Kh(tj − tn)r̂0(|ti − tj |).

3.2. Sample path properties of the process Mζ. It is of interest to discuss sufficient

conditions which ensure that the process Mζ has a.s. continuous sample paths. In the

proof of Theorem 3.1 we verified (10) for tightness using the mixing condition of {YN}.
This condition is sufficient to ensure that the limit process is an element of C[0, 1] w.p. 1

(c.f. Vaart and Wellner (1986), 2.2.3). However, the Gaussian process Mζ can be defined

as long as the covariances CN(◦1, ◦2) converge, and that convergence does not require the
16



mixing condition (B). Therefore, in this subsection we provide a sufficient condition for

a.s. bounded and continuous sample paths which does not use the mixing condition.

For a centered D[0, 1]-valued process X define the semi-metric

dX(s, t) = {E|X(t) − X(s)|}1/2, s, t ∈ [0, 1].

If T = [0, 1] is compact w.r.t. the dX-topology, define the covering number N(dX, ε) as the

smallest number of dX-balls centered at points t ∈ T with radius ε > 0 that cover T . The

packing number D(dX, ε) is the maximum number of ε-separated points in T . Covering and

packing numbers are related by the fact that N(dX, ε) ≤ D(dX, ε) ≤ N(dX, ε/2). The en-

tropy is given by H(dX, ε) = log N(dX, ε). For stationary (Gaussian) processes convergence

of the related entropy integral,
∫ η

0
H(dX, ε) dε, η > 0, is necessary and sufficient for a.s.

continuous and bounded sample paths, whereas for nonstationary processes conditions on

the entropy integral provide sufficient criteria (Adler (2003), ch. 2).

Lemma 3.1. Assume {Yn} is a stationary process with
∑

k |r0(k)| < ∞ where r0(k) =

EY1Y1+k. If K is Lipschitz continuous, we have

d2
MN

(t, s) = O(|t− s|2).

uniformly in 0 ≤ s, t ≤ 1.

Proof. For 0 ≤ s, t ≤ 1 define

∆Kh(ti; t[Ns], t[Nt]) = Kh(ti − t[Ns]) − Kh(ti − t[Nt])

and note that by Lipschitz continuity of K

|∆Kh(ti; t[Nt], t[Ns])| = O(h−1L|([Nt] − [Ns])/h|)
17



W.l.o.g. we now assume 0 ≤ s ≤ t ≤ 1. Observing that

CN(s, s) − CN(s, t) =
h2

N

[Ns]∑
i=1

[Ns]∑
j=1

Kh(ti − t[Ns])∆Kh(tj; t[Ns], t[Nt])r0(|i − j|)

−h2

N

[Ns]∑
i=1

[Nt]∑
j=[Ns]+1

Kh(ti − t[Ns])Kh(tj − t[Nt])r0(|i − j|)

CN(t, t) − CN(t, s) =
h2

N

[Nt]∑
i=1

[Nt]∑
j=1

Kh(ti − t[Nt])∆Kh(tj; t[Nt], t[Ns])r0(|i − j|)

+
h2

N

[Nt]∑
i=1

[Nt]∑
j=[Ns]+1

Kh(ti − t[Nt])Kh(tj − t[Ns])r0(|i − j|),

and re-arraging terms we see that

(11) d2
MN

(s, t) = CN(s, s) − CN(s, t) + CN(t, t) − CN(t, s)

can be written as

d2
MN

(s, t) = UN (s, t) + VN(s, t) + WN(s, t)

where

UN (s, t) =
h2

N

[Ns]∑
i=1

[Ns]∑
j=1

∆Kh(ti; t[Ns], t[Nt])∆Kh(tj ; t[Ns], t[Nt])r0(|i − j|)

VN(s, t) =
h2

N

[Nt]∑
i=[Ns]+1

[Nt]∑
j=[Ns]+1

Kh(ti − t[Nt])∆Kh(tj ; t[Nt], t[Ns])r0(|i − j|)

WN (s, t) =
h2

N

[Nt]∑
i=[Ns]+1

[Nt]∑
j=[Ns]+1

Kh(tj − t[Ns])∆Kh(ti; t[Nt], t[Ns])r0(|i − j|)

First, we have

UN (s, t) ≤ L2

∣∣∣∣ [Nt] − [Ns]

h

∣∣∣∣2 1

N

[Ns]∑
i,j=1

r0(|i − j|)

= O

(
2L2|t − s|2ζs

∑
k

|r0(k)|
)

,

18



where the O does not depend on (s, t), since |[Nt]/h− ζt| = O(|N/h− ζ |+ 1/h) if |t| ≤ 1.

Further, by stationarity, VN(s, t) can be estimated as follows.

VN(s, t) ≤ h−1‖K‖∞L

∣∣∣∣ [Nt] − [Ns]

h

∣∣∣∣ [Nt] − [Ns]

h

1

[Nt] − [Ns]

[Nt]−[Ns]∑
i=1

r0(|i − j|)

= O

(
2‖K‖∞L|t − s|2ζ

∑
k

|r0(k)|
)

,

uniformly in 0 ≤ s, t ≤ 1. WN (s, t) is estimated analogously. Thus, we may conclude that

the pseudo-metric satisfies

d2
MN

(t, s) = O(|t− s|2),

uniformly in 0 ≤ s, t ≤ 1. �

We are now in a position to formulate our sufficient criterion.

Theorem 3.2. Assume {YN} is stationary with
∑

k |r0(k)| < ∞ where r0(k) = EY1Y1+k.

If K is bounded, in L1(R
+
0 ), and Lipschitz continuous, then the Gaussian process Mζ is

continuous and bounded on [0, 1] with probability 1.

Proof. Lemma 3.1 immediately implies

dMζ
(s, t) = lim

N→∞
dMN

(s, t) = O(|t− s|),

uniformly in 0 ≤ s, t ≤ 1. This in particular yields that [0, 1] is compact w.r.t. the dMζ
-

topology. Put

p2(u) = sup
|s−t|<u

d2
Mζ

(s, t), u ≥ 0.

Now there exists a constant C > 0 such that for any δ > 0∫ ∞

δ

p(e−u2

) du ≤ C

∫ ∞

0

e−u2

du = C
√

π/2.

Thus, Adler (2003, Th. 2.2.1) yields a.s. continuity and boundedness of Mζ . �
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3.3. Behavior under the alternative. Under the alternative MN diverges at the rate√
N and converges to a finite constant when rescaled, as stated in the next result.

Theorem 3.3. Assume (E1), (E2), and (K).

(i) Under the alternative H1 : m0 ≥∗ 0 we have for fixed s ∈ [0, 1]

1√
N

MN(s)
P→ 1

ζ

∫ ζs

0

K(z − ζs)m0(z)dz,

as N → ∞.

(ii) If K · m0 has bounded variation, for any 0 < a ≤ 1

sup
a≤s≤1

∣∣∣∣ 1√
N

MN(s) −
∫ ζs

0

K(z − ζs)m0(z)dz

∣∣∣∣ P→ 0,

as N → ∞.

Proof. We may assume that m0 has no jumps, otherwise one may argue on subintervals.

Since Yn = mn + εn with mn = m0(n/h), we have

MN (s) =
h√
N

[Ns]∑
i=1

Kh(ti − t[Ns])m0([ti − tq]/h) + M
′
N (s)

where M
′
N stands for the process MN where the Yi’s are substituted by the εi’s. Now the

assertion follows, since

1

h

[Ns]∑
i=1

K((ti − t[Ns])/h)m0((ti − tq)/h) → 1

ζ

∫ ζs

0

K(z − ζs)m0(z)dz

and by Theorem 3.1

N−1/2
M

′
N = oP (1),

as N → ∞. To show (ii) we verify∥∥∥∥∥∥1

h

[Ns]∑
i=1

K([ti − t[Ns]]/h)m0((ti − tq)/h) −
∫ ζ◦

0

K(z − ζ◦)m0(z) dz

∥∥∥∥∥∥
∞,[a,1]

= O(1/N).

where the integral equals µζ(s) = ζs
∫ 1

0
K(ζs(y − 1))m0(ζsy) dy. Define t∗i = i

ζsh
for i =

1, . . . , [Ns]. Since N/h → ζ , there exists a N0 ∈ N such that for all N ≥ N0 we have
20



0 ≤ t∗i ≤ 1 for all i = 1, . . . , [Ns] − 1. Note that

1

[Ns]

[Ns]∑
i=1

µζ(t
∗
i ) =

1

h

[Ns]∑
i=1

K((ti − t[Ns])/h)m0(ti/h).

Hence, Koksma (1942/43) yields∣∣∣∣∣∣1h
[Ns]∑
i=1

K((ti − t[Ns])/h)m0((ti − tq)/h) − µζ(s)

∣∣∣∣∣∣ ≤ 2

∫
|dK(◦ − ζs)m0(◦)|DN(t∗1, . . . , t

∗
[Ns]),

where

DN(t∗1, . . . , t
∗
[Ns]) = sup

[a,b]⊂[0,1]

∣∣∣∣∣[Ns]−1
∑

i

1(t∗i ∈ [a, b]) − (b − a)

∣∣∣∣∣ .
For our choice {t∗i } DN(t∗1, . . . , t

∗
[Ns]) = 1/[Ns] = O(1/N), since s ≥ a, (cf. Niederreiter

(1992)). �

4. Sequential stopping rules

Let us now apply the results of the previous Section to stopping rules. Our starting point

was the stopping time

SN = inf{1 ≤ n ≤ N : m̂n > c},
for which we will derive the asymptotic behavior under the null hypothesis. Since in The-

orem 3.3 the convergence is not uniform over [0, 1], let us consider the follwowing modified

stopping rule to obtain a meaningful result under the alternative. For 0 < a ≤ 1 define

S̃
(a)
N = inf{[aN ] ≤ n ≤ N : m̂n > c}.

and note that

S̃
(a)
N = N inf{a ≤ s ≤ 1 : N1/2h−1

MN(s) > c}.
However, in view of the weak convergence of MN to a Gaussian process, it is also interesting

to consider the stopping rule

S∗
N = inf{s ∈ [0, 1] : MN > c}.

We discuss one-sided stopping rules, but the results carry over to two-sided procedures

where a signal is given if the absolute value of the control statistic exceeds a positive

threshold.
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We will show that SN/N and S̃
(a)
N /N converge to deterministic quantities. Under the alter-

native, that quantity is a function of the generic alternative m0 and the smoothing kernel

K which summarizes the influence of these components on the statistical properties of

the stopping rule. In contrast to these results, we show that S∗
N converges weakly to the

random variable S∗
ζ = inf{s ∈ [0, 1] : Mζ(s) > c} which has a non-degenerate weak limit.

The critical value can be obtained from the asymptotic distribution, e.g., to ensure certain

average run lengths or type I error rates under the null hypothesis, asymptotically. In the

former case, we choose c such that E0S
∗
ζ ≥ ξ for some given in-control average run length

ξ. To control asymptotically the type I error rate, c is chosen to satisfy

(12) P0(S
∗
ζ < 1) = P0

(
sup

0≤s<1
Mζ(s) > c

)
= α

for some given α ∈ (0, 1). Here P0 and E0 indicate reference to the null hypothesis.

Note that we will be concerned with convergence of infimums of the type inf{s ∈ [a, b] :

Tn(s) ∈ A} with 0 < a < b < ∞ and therefore use the convention inf ∅ = b.

In view of (3), we start with the following result about a sup-functional of MN .

Theorem 4.1. Assume (E1), (E2), and (K). Under the null hypothesis H0 : m0 = 0

(in-control model) the following assertions hold true.

(i) We have

sup
0≤s≤◦

MN(s) ⇒ sup
0≤s≤◦

Mζ(s) in (D[0, 1], d),

as N → ∞.

(ii) If c > 0 we have for all x ∈ [0, 1]

(13) P

(
sup

0≤s≤x
MN(s) ≤ c

)
→ P

(
sup

0≤s≤x
Mζ(s) ≤ c

)
,

as N → ∞. If Var Mζ(t) > 0 for all t ∈ (0, 1], (13) holds true for all c ∈ R.

Proof. We first verify assertion (i). Define the functional ϕ : D[0, 1] → D[0, 1],

ϕ(f)(x) = sup
0≤s≤x

f(s), x ∈ R.
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We have to show ϕ(MN ) ⇒ ϕ(Mζ) in (D[0, 1], d), as N → ∞, which easily follows when

working with equivalent versions. By the Dudley/Skorohod/Wichura representation theo-

rem in general metric spaces (e.g. Shorack and Wellner (1986), Th. 4, p.47, and Remark

2, p. 49) there exists a probability space with equivalent versions M̃N (of MN) and M̃ζ (of

Mζ) with a.s. convergent sample paths w.r.t. the d-topology, i.e.,

d(M̃N , M̃ζ)
a.s.→ 0,

as N → ∞. Since Theorem 3.2 ensures that Mζ ∈ C[0, 1] w.p. 1, we even have

‖M̃N − M̃ζ‖∞ a.s.→ 0,

as N → ∞. Clearly, the latter implies that the right-hand side of the inequality∣∣∣∣ sup
0≤s≤x

M̃N(s) − sup
0≤s≤x

M̃ζ(s)

∣∣∣∣ ≤ sup
0≤s≤x

|M̃N(s) − M̃ζ(s)|

converges to 0, as N → ∞, for any 0 ≤ x ≤ 1. Thus, we obtain

‖ϕ(M̃N) − ϕ(Mζ)‖∞ = sup
0≤x≤1

∣∣∣∣ sup
0≤s≤x

M̃N(s) − sup
0≤s≤x

M̃ζ(s)

∣∣∣∣
≤ sup

0≤s≤1
|M̃N(s) − M̃ζ(s)|

a.s.→ 0,

yielding

d(ϕ(M̃N), ϕ(M̃ζ))
a.s.→ 0,

as N → ∞. This implies weak convergence of the related functionals of the orginal pro-

cesses,

(14) ϕ(MN) ⇒ ϕ(Mζ) in (D[0, 1], d),

as N → ∞ (cf. Shorack and Wellner (1986), Corollary 1, p. 48.) Of course, the latter

fact yields convergence of the d.f.s in all continuity points of the limit distribution. The

question arises whether the distribution of ϕ(Mζ) = sup0≤s≤x Mζ(s) may have atoms.

Since Mζ ∈ C[0, 1] w.p. 1, it is sufficient to consider ϕ|C[0, 1]. Clealy, (C[0, 1], ‖ ◦ ‖∞) is a
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separable Banach function space. Thus, we may apply Lifshits (1982, Th. 2) which asserts

that νx = L(sup0≤s≤x Mζ(s)) can have an atom only at the point

γx = sup
0≤t≤x:Var Mζ(t)=0

EMζ(t),

vanishes on the ray (−∞, γx), since sup0≤s≤x Mζ(s) ≥ γx w.p. 1, and is absolutely contin-

uous with respect to Lebesgue measure on (γx, +∞). Since EMζ(s) = 0 for all s ∈ [0, 1]

provided H0 is true, we have γx = 0 for all x. Hence, all c > 0 are continuity points of the

distribution of sup0≤s≤x Mζ(s). Therefore, assertion (ii) follows. �

It is clear that expectation and d.f. of S∗
N are given by

ES∗
N =

∫ ∞

0

P

(
sup

s∈[0,x]

MN(s) ≤ c

)
dx,

and

FS∗
N
(x) = 1 − P

(
sup

s∈[0,x]

MN(s) ≤ c

)
.

Theorem 4.1 now yields the following Corollary about the convergence of the latter, which

justifies (12).

Corollary 4.1. Under the assumptions of Theorem 4.1 (ii) for each x ∈ [0, 1],

P (S∗
N ≤ x) → P (S∗

ζ ≤ x),

as N → ∞, where S∗
ζ has d.f.

F ∗
ζ (x) = 1 − P

(
sup

0≤s≤x
Mζ(s) ≤ c

)
.

Let us now study the asymptotic behavior of the stopping rules SN and S
(a)
N .

Theorem 4.2. For each critical value c > 0 the following assertions hold true.

(i) Assume (E1), (E2), and (K). Under the null hypothesis H0 : m0 = 0 (in-control-

model),
SN

h

P→ ζ and
SN

N

P→ 1,

as N → ∞.
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(ii) Assume (E1), (E2), (K), (M), and (KM). Under the alternative H1 : m0 ≥∗ 0

(out-of-control model) we have for each 0 < a ≤ 1

S̃
(a)
N

N

P→ inf {s ∈ [a, 1] : µζ(s) > c}

as N, h → ∞ with N → ∞, where

µζ(s) =

∫ ζs

0

K(z − ζs)m0(z)dz, s ∈ [0, 1],

provided µζ(s
′) > c for some s′ ∈ [a, 1].

Remark 4.1. (a) A sufficient condition for µζ = I(ζ◦) ∈ C(R+
0 ) is given in Section 2.

(b) For ζ = 1 we obtain an analogue to Steland (2003b, Th. 2.2), where untruncated

stopping rules are studied. In that paper, the functional optimization w.r.t. the kernel K is

also discussed. For a Bayesian view on this issue see Steland (2002b).

Proof. In Theorem 4.1 we have shown that

‖MN‖∞,[0,1]
d→ ‖Mζ‖∞,[0,1],

as N → ∞. Hence,

‖MN‖∞,[0,1] = OP (1)

which implies

(15) d(N1/2h−1
MN , 0)

P→ 0,

as N → ∞. Define the functional ϕ : D[0, 1] → [0, 1],

ϕ(f) = inf{0 ≤ s ≤ 1 : f(s) > c}, f ∈ D[0, 1].

Eq. (15) implies

(16) SN/N = ϕ(N1/2h−1
MN) ⇒ ϕ(0), in (D[0, 1], d),

as N → ∞. Since ϕ(0) = 1 is a constant, (16) is equivalent to SN/N
P→ 1, as N → ∞. The

corresponding result for SN/h = (N/h)SN/N is now straightforward.

It remains to prove (ii). Fix 0 < a ≤ 1. Define the functional ϕa : D[a, 1] → [a, 1],

ϕa(f) = inf{a ≤ s ≤ 1 : f(s) > c}.
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Clearly, ϕa|Ec is continuous w.r.t. ‖ ◦ ‖∞ and d, where

Ec = {f ∈ C[0, 1] : f(x∗) > c for some x∗}.

The assertion is equivalent to

ϕa(N
1/2h−1

MN)
P→ ϕa(µζ),

as N → ∞. Since Theorem 3.3 yields

(17) sup
a≤s≤1

∣∣∣∣∣
√

N

h
MN (s) −

∫ ζs

0

K(z − ζs)m0(z) dz

∣∣∣∣∣ P→ 0,

as N → ∞, we obtain

(18) ϕa(N
1/2h−1

MN) ⇒ ϕa(µζ), in (D[a, 1], d),

as N → ∞, because µζ ∈ C[0, 1]∩Ec is a continuity point of ϕa. Since µζ is a deterministic

function, (18) is equivalent to ϕa(N
1/2h−1

MN )
P→ ϕa(µζ), as N → ∞, which proves the

assertion. �

5. Conclusions

We derived the asymptotic distributions of kernel-weighted partial sum processes and re-

lated sequential stopping rules for time series satisfying a weak α-mixing condition. We

discussed a stopping rule, SN , which mimics the real behavior of non-statisticians, and re-

lated procedures which are suggested by the asymptotic results. From an applied viewpoint

it is important to note that our results yield approximations which depend on the under-

lying distribution only through second moments. Further, as a by-product, we obtain the

asymptotic distribution of the Nadaraya-Watson estimator under the monitoring sampling

design of our settting, which differs from the design usually assumed in nonparametric

regression. Working with a special kind of local alternatives yields interesting insights into

the joint asymptotic influence of the smoothing kernel and the generic alternative defining

the sequence of local alternatives.
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