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Abstract

In this paper a new method for monotone estimation of a regression function is proposed.
The estimator is obtained by the combination of a density and a regression estimate and is
appealing to users of conventional smoothing methods as kernel estimators, local polynomials,
series estimators or smoothing splines. The main idea of the new approach is to construct a
density estimate from the estimated values m̂(i/N) (i = 1, . . . , N) of the regression function
to use these “data” for the calculation of an estimate of the inverse of the regression function.
The final estimate is then obtained by a numerical inversion. Compared to the conventially
used techniques for monotone estimation the new method is computationally more efficient,
because it does not require constrained optimization techniques for the calculation of the
estimate. We prove asymptotic normality of the new estimate and compare the asymptotic
properties with the unconstrained estimate. In particular it is shown that for kernel estimates
or local polynomials the monotone estimate is first order asymptotically equivalent to the
unconstrained estimate. We also illustrate the performance of the new procedure by means
of a simulation study.

AMS Subject Classification: 62G05, 62G20
Keywords and Phrases: isotonic regression, order restricted inference, Nadaraya-Watson estimator,
local linear regression

1 Introduction

Smoothing as a means of modeling nonlinear structure in data has become increasingly popular
in numerous applications. However, in many cases monotone estimates of the regression function
are required, because physical considerations suggest that the response is a monotone function of
the explanatory variable. There exists a vast amount of literature on the problem of estimating
a regression function m which is believed to be monotone. Brunk (1955) proposed a modified
maximum likelihood method to construct an estimate of a monotone regression function. Because
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this estimate is not smooth in general Mukerjee (1988) modified this method to obtain a monotone
estimate with properties similar to those of nonparametric regression estimators. Mammen (1991)
investigated the order of isotonisating and smoothing in a two step procedure, where one step
consists in the construction of an isotonic estimate and the other in the construction of a classical
kernel estimate [see also Cheng and Lin (1981), Wright (1982) and Friedman and Tibshirani (1984)
for similar procedures]. Monotone nonparametric regression estimators based on constrained spline
smoothing have been proposed by Ramsay (1988), Kelly and Rice (1990), Mammen and Thomas-
Agnam (1999), while Mammen, Marron, Turlach and Wand (2001) suggested projection - based
techniques for constrained smoothing. Recently, Hall and Huang (2001) proposed a new method
for monotonizing a general kernel type estimator, which modifies the weights in a kernel estimator
such that the modified function is monotone. This approach is particular appealing to users of
conventional kernel methods.
In the present paper we propose an alternative construction of monotone regression functions.
Similarly as in Hall and Huang (2001) our work is motivated by the search of a monotone estimate,
which enjoys the same level of smoothness as its unconstrained counterpart and is additionally
applicable to general smoothing methods. In contrast to the procedure proposed by the lastnamed
authors (which is only able to monotonize kernel type estimators) the method suggested in this
paper applies to arbitrary regression estimates and is computationally more efficient because it
does not require a constrained optimization. Our approach constructs a density estimate from
the estimated regression function and uses this additional smoothing step to obtain a monotone
estimate of the inverse regression function. The monotone regression estimate is finally obtained
by reflecting this function at the line y = x.
The method can easily be motivated by considering an i.i.d. sample of uniformly distributed
random variables, say U1, . . . , UN ∼ U([0, 1]). If m is a strictly increasing function on the interval
[0, 1] with positive derivative, Kd is a kernel function and hd a bandwidth, then

1

Nhd

N∑
i=1

Kd

(m(Ui) − u

hd

)
(1.1)

is the classical kernel estimate of the density of the random variable m(U1), that is

(m−1)′(u)I[m(0),m(1)](u).

Consequently

1

Nhd

∫ t

−∞

N∑
i=1

Kd

(m(Ui) − u

hd

)
du(1.2)

is a consistent estimate of the function m−1 at the point t. In the context of nonparametric
regression m(X) = E[Y | X] is the regression of Y with respect to X and the function m can
be estimated by any standard method (kernel type, local polynomial, series or spline estimator),
which yields an estimate of the inverse m−1 of the strictly increasing function m. The corresponding
estimate of m is finally obtained by inversion of this estimate.
The estimate is carefully described in Section 2, where we also discuss some of its main properties
as a monotone approximation of a given function. In Section 3 we study some of the statistical
properties of the new estimate and prove asymptotic normality of the estimates for m−1 and
m if kernel type or local polynomial estimators are used for the preliminary estimation of the
regression function. In particular we show that for local linear estimators the new estimate is
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asymptotically first order equivalent to the unconstrained estimate. The choice of the smoothing
parameters is also investigated from an asymptotic point of view. In Section 4 we discuss the
finite sample properties of the new estimator by means of a simulation study. Finally, some of the
technical details are given in the appendix. The main advantages of the new procedure are the
computational simplicity (because it does not require any constrained optimization techniques)
and the asymptotic equivalence to the unconstrained estimate. This makes the new method
attractive to users of conventional kernel methods.

2 Monotone smoothing by inversion

Consider the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n,(2.1)

where {(Xi, Yi)}n
i=1 is a bivariate sample of i.i.d. observations such that Xi has a positive two

times continuously differentiable density f with compact support, say [0, 1]. The variance function
σ : [0, 1] → R

+ and the regression function m : [0, 1] → R are assumed to be continuous and two
times continuously differentiable, respectively. If there is evidence that the regression function m
is (strictly) increasing we define for N ∈ N

m̂−1
I (t) :=

1

Nhd

N∑
i=1

∫ t

−∞
Kd

(m̂( i
N

) − u

hd

)
du(2.2)

as an estimate of m−1(t), where

m̂(x) =

∑n
i=1 Kr

(
Xi−x

hr

)
Yi∑n

i=1 Kr

(
Xi−x

hr

)(2.3)

is the classical Nadaraya-Watson estimate [see Nadaraya (1964) or Watson (1964)], Kd and Kr

denote symmetric kernels with compact support, say [−1, 1], existing second moment and hd, hr are
the corresponding bandwidths converging to 0 with increasing sample size n. We assume that Kd is
two times continuously differentiable on its support and that the kernel Kr has been appropriately
modified at the boundary [see Müller (1984)]. For the sake of transparency we restrict ourselves
to the Nadaraya-Watson estimate, but it is notable that all results of the paper remain valid
(subject to an appropriate modification of constants) for other types of kernel estimators as the
Gasser-Müller estimator [see Gasser and Müller (1979)] or local polynomials [see Fan and Gijbels
(1996) or Wand and Jones (1995)].

Note that the indices “r” and “d” correspond to the phrase “regression” and “density” because
we combine a regression with a density estimate to define the estimator in (2.2). Comparing
this estimate with the motivation in equation (1.2) we see that the uniformly distributed random
variables have been replaced by an equidistant design. Note that it is not necessary (and in many
case not desirable) that the number N of design points coincides with the sample size n. Finally,
we note that the estimate m̂−1

I is isotonic if the kernel Kd is positive which will be assumed
throughout this paper. In this case an isotonic estimate of the regression function m̂I is simply
obtained by reflection of the function m̂−1

I at the line y = x. Note that the estimator m̂−1
I is
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equal to 1 and 0 if t > maxN
i=1 m̂( i

N
) + hd and t < minN

i=1 m̂( i
N

) − hd, respectively, and only for
t ∈ [minN

i=1 m̂( i
N

), maxN
i=1 m̂( i

N
)] the inverse of the function m̂I is calculated.

If the regression function m is supposed to be strictly decreasing the estimate can easily be modified
as

m̂−1
A (t) :=

1

Nhd

N∑
i=1

∫ ∞

t

Kd

(m̂( i
N

) − u

hd

)
du(2.4)

and the antitonic estimate is obtained by the inversion of this function. Throughout this paper
we restrict ourselves to the case of an isotonic regression function and the estimate (2.2). Cor-
responding results for the antitonic case are very similar and obtained by the same reasoning.
Because m̂ converges uniformly to the unknown regression function m, it is heuristically clear
that the estimate m̂−1

I is in some sense close to the function

m−1
N (t) =

1

Nhd

∫ t

−∞

N∑
i=1

Kd

(m( i
N

) − u

hd

)
du,(2.5)

which is an approximation of the integral

1

hd

∫ 1

0

∫ t

−∞
Kd

(m(x) − u

hd

)
dudx =

∫ 1

0

I{m(x) ≤ t}dx + o(1)(2.6)

(note that the kernel Kd has compact support). In other words, the statistic m̂−1
I (t) is a consistent

estimate of the quantity
∫ 1

0
I{m(x) ≤ t}dx and this property does not depend on the particular

estimate m̂ used in the regression step provided that m̂ is a uniformly consistent nonparametric
estimate for the regression function m. The leading term on the right hand side of equation (2.6)
is equal to m−1(t) = inf{u | m(u) > t} if the regression function is increasing and the following
lemma gives the precise order of this approximation if the regression function is strictly increasing.

Lemma 2.1. If the regression function is strictly increasing and the assumptions stated at the
beginning of this section are satisfied then we have for any t ∈ (m(0), m(1)) with m′(m−1(t)) > 0

m−1
N (t) = m−1(t) + κ2(Kd)h

2
d(m

−1)′′(t) + o(h2
d) + O

( 1

Nhd

)
,(2.7)

where the constant κ2(K) is given by

κ2(K) =
1

2

∫ 1

−1

v2K(v)dv.(2.8)

It is easy to see that the functions m−1
N and m̂−1

I are strictly increasing, if

N
max
i=1

N

min
j=1

|m(
i

N
) − m(

j

N
)| < 2hd

(2.9)

N
max
i=1

N

min
j=1

|m̂(
i

N
) − m̂(

j

N
)| < 2hd,

4



respectively. If the number of design points N (which is not necessarily equal to the sample size n)
is chosen sufficiently large, the first inequality is satisfied because of the continuity of the regression
function m. Similarly, if the sample size n → ∞, the second inequality holds for any estimate
m̂ almost surely, which is uniformly strong consistent with a rate o(hd). Throughout this paper
mN denotes the inverse of the function m−1

N . Because m−1
N is expected to be an approximation of

the function m−1, it is intuitively clear that the inverse mN of m−1
N is an approximation of the

function m. The following lemma makes this statement precise and is proved in the appendix.

Lemma 2.2. If the regression function m is strictly increasing and the assumptions stated at the
beginning of this section are satisfied, then we have for any t ∈ (0, 1) with m′(t) > 0

mN(t) = m(t) + κ2(Kd)h
2
d

m′′(t)
(m′(t))2

+ o(h2
d) + O

( 1

Nhd

)
.

If m is not necessarily increasing, the function

g : t →
∫ 1

0

I{m(x) ≤ t}dx(2.10)

or its approximation

ghd
: t →

∫ 1

0

∫ t

−∞

1

hd
Kd

(m(x) − u

hd

)
dudx(2.11)

is still well defined and nondecreasing. Note that the function g is not necessarily differentiable
[see also the examples presented below] and ghd

can be considered as a smooth version of g which
converges to g if hd → 0. The (generalized) inverse g−1

hd
can be considered as an approximation of

the function m by a nondecreasing smooth function. The properties of this function are important
for the behaviour of our estimate and will be briefly described in the following. For the sake of
brevity we restrict ourselves to the function g and mention that the properties of ghd

are similar.
If for a fixed t0 the set m−1({t0}) = {x0} is a singleton and m′(x0) > 0, then, obviously, g(t0) = x0

and g−1(x0) = m(x0). Now let x0 ∈ [0, 1] denote the infimum of all points such that there exists a
t0 with this property (note that the case x0 = 0 is not excluded) and define x1 ≥ 0 as the maximal
point such that this property is satisfied for all x ∈ (x0, x1) with corresponding value t1 = m(x1).
In this case we have for all t = m(x) ∈ [t0, t1]

g(t) = x0 + (x − x0) = x

which proves g−1(x) = m(x) for all x ∈ [x0, x1]. If x1 < 1, the function m is decreasing in
a neighbourhood (x1, x1 + ε) and there may exist a second interval, say (x2, x3), such that m
is strictly increasing on (x2, x3) and such that for all t ∈ (m(x2), m(x3)) the set m−1({t}) is
a singleton. For this interval the same argument shows g−1(x) = m(x) for all x ∈ [x2, x3]. The
repetition of this argument shows that on any interval [a, b], where m is strictly increasing such that
m−1({a}) and m−1({b}) are singletons the inverse of the function g coincides with the regression
function m. We will illustrate this behaviour in the following examples.

Example 2.3. Consider the function

m(x) =
11

3
x − 8x2 +

16

3
x3
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Figure 2.1: Approximation of a non-monotone regression function m (dashed line) by its monotone
approximation g−1 (solid line); left panel: m(x) = 11

3
x − 8x2 + 16

3
x3; right panel: m(x) = x +

1
4
sin(4πx). The figures show also the function g defined by (2.10) (dotted line).

which is strictly increasing on the intervals [0, (6 −√
3)/12], [(6 +

√
3)/12, 1]. The functions m, g

and g−1 are depicted in the left panel of Figure 2.1, where the function g−1 coincides with the
function m whenever m−1({t}) is a singleton. Note that there are two points, where the function g
is not differentiable. Our second example illustrates the approximation of the oscillating function

m(x) = x +
1

4
sin(4πx)

by the monotone increasing function g−1 [see the right panel of Figure 2.1] while the convex case,

m(x) =
16

9
(x − 1

4
)2,

and concave case,

m(x) = 1 − 4(x − 1

2
)2,

are shown in the left and right panel of Figure 2.2, respectively.

3 Main results – asymptotic behaviour

In this section we investigate some of the asymptotic properties of the estimates m̂−1
I and m̂I .

It turns out that both estimates are (appropriately centered) asymptotically normal distributed,
where the asymptotic variance depends on the limit

lim
hr→0,hd→0

hr/hd =: c ∈ (0,∞]

of the ratio of the smoothing parameters. In the case c = ∞ we show that the new mono-
tone estimate m̂I is first order asymptotically equivalent to the unconstrained estimate m̂, if
the Nadaraya-Watson estimator with a uniform design or a local linear estimator is used for the
estimation of the regression function.
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Figure 2.2: Approximation of a non-monotone regression function m (dashed line) by its monotone
approximation g−1(solid line); left panel: m(x) = 16

9
(x − 1

4
)2; right panel: m(x) = 1 − 4(x − 1

2
)2.

The figures show also the function g defined by (2.10) (dotted line).

3.1 Asymptotic normality

We assume that the smoothness conditions regarding the density, variance and regression function
stated at the beginning of Section 2 are satisfied. For the bandwidths hr and hd in the regression
and density estimate we require hr → 0, hd → 0, nhr → ∞, nhd → ∞ and additionally

nh5
r = O(1), n = O(N),(3.1)

log h−1
r

nhrh3
d

= o(1).(3.2)

Note that for the “optimal” rate in regression estimation hr = γn−1/5 the latter assumption reduces
to hdn

4/15/(log n)1/3 → ∞. Our first result shows the asymptotic normality of the estimate m̂−1
I

and only requires the estimate

1

nhrh2
d

= o(1)(3.3)

which gives hdn
2/5 → ∞ in the case where the optimal bandwidth hr = γn−1/5 is used for the

estimation of the regression function.

Theorem 3.1. If the assumptions (3.1) and (3.3) are satisfied, limn→∞ hr

hd
= c ∈ (0,∞) exists

and m is strictly increasing, then it follows that for all t ∈ (m(0), m(1)) with m′(m−1(t)) > 0√
nhd

(
m̂−1

I (t) − m−1
N (t) + κ2(Kr)h

2
r

(m′′f + 2m′f ′

fm′

)
(m−1(t))

) D⇒ N (0, g2(t)),(3.4)

where the constant κ2(Kr) is defined in (2.8) and the asymptotic variance is given by

g2(t) =
σ2(m−1(t))

m′(m−1(t))f(m−1(t))
(3.5)

×
∫ ∫ ∫

Kd(w + cm′(m−1(t))(v − u))Kd(w)Kr(u)Kr(v)dwdudv.
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If limn→∞ hr

hd
= ∞, then we have for all t ∈ (m(0), m(1)) with m′(m−1(t)) > 0

√
nhr

(
m̂−1

I (t) − m−1
N (t) + κ2(Kr)h

2
r

(m′′f + 2m′f ′

fm′

)
(m−1(t))

) D⇒ N (0, g̃2(t)),(3.6)

where the asymptotic variance is given by

g̃2(t) =
σ2(m−1(t))

{m′(m−1(t))}2f(m−1(t))

∫
K2

r (u)du.(3.7)

Note that for sufficiently large n and N the functions m̂−1
I and m−1

N are strictly increasing in-
dependent of the monotonicity of the “true” regression function m [see the inequalities (2.9)].
The following result shows that the corresponding inverse functions m̂I and mN also satisfy an
asymptotic normal law.

Theorem 3.2. Assume that the assumptions of Theorem 3.1 are satisfied and let m̂I and mN

denote the inverse functions of the functions m̂−1
I and m−1

N defined by (2.2) and (2.5), respectively.
If limn→∞ hr

hd
= c ∈ (0,∞) exists, then we have for every t ∈ (0, 1) with m′(t) > 0

√
nhd

(
m̂I(t) − mN (t) − κ2(Kr)h

2
r

(m′′f + 2m′f ′

f

)
(t)

) D⇒ N (0, s2(t)),

where the asymptotic variance is given by

s2(t) =
σ2(t)m′(t)

f(t)

∫ ∫ ∫
Kd(w + cm′(t)(v − u))Kd(w)Kr(u)Kr(v)dwdudv.(3.8)

If limn→∞ hr

hd
= ∞ it follows for every t ∈ (0, 1) with m′(t) > 0

√
nhr

(
m̂I(t) − mN(t) − κ2(Kr)h

2
r

(m′′f + 2m′f ′

f

)
(t)

) D⇒ N (0, s̃2(t)),(3.9)

where the asymptotic variance is given by

s̃2(t) =
σ2(t)

f(t)

∫
K2

r (u)du.(3.10)

We conclude this section noting that the first assertion of Theorem 3.2 can be written as√
nhr

(
m̂I(t) − mN(t) − κ2(Kr)h

2
r

(m′′f + 2m′f ′

f

)
(t)

) D⇒ N
(
0, cs2(t)

)
and that a simple calculation shows

lim
c→∞

cs2(t) = s̃2(t).(3.11)

Thus formally the second part of Theorem 3.2 could be identified from the first part using the
relation (3.11). Moreover, observing Lemma 2.2 and the second part of Theorem 3.2 it follows
that for a bandwidth hd satisfying hd = o(hr)√

nhr

(
m̂I(t) − m(t) − κ2(Kr)h

2
r

(m′′f + 2m′f ′

f

)
(t)

) D⇒ N (0, s̃2(t)),
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where s̃2(t) is defined in (3.10). In other words, if hd = o(hr) the monotone estimator m̂I exhibits
the same first order asymptotic behaviour as the unconstrained estimate m̂. A similar property
was observed by Mammen (1991) for the L2-projection of the Nadaraya-Watson estimate onto the
space of all increasing functions. The choice of the appropriate bandwidths for the estimator m̂I

is discussed in more detail in the following paragraph.

3.2 Bandwidth selection

The choice of the two bandwidths is essential for the performance of the new smoothing procedure.
While the bandwidth hr for the regression estimate m̂ can be chosen by standard methods [see
e.g. Stone (1974), Härdle, Hall, Marron (1988) or Gasser, Kneip and Köhler (1991)], the choice
of the bandwidth hd in the second step of the density estimate is less clear. In the following we
will discuss an efficient choice from an asymptotic point of view. For this recall that by Lemma
2.1 the approximation of the inverse function m−1 by m−1

N is of order O(h2
d). This implies that the

centering constant in Theorem 3.1 is given by

m−1(t) + Γ(hd, hr) + o(h2
r) + o(h2

d),(3.12)

where the function Γ is defined by

Γ(hd, hr) = κ2(Kd)(m
−1)′′(t)h2

d − κ2(Kr)
(m′′f + 2m′f ′

fm′

)
(m−1(t))h2

r .(3.13)

Note that in the case of a uniform density this term simplifies to

Γ(hd, hr) = κ2(Kd)(m
−1)′′(t)h2

d − κ2(Kr)
(m′′

m′

)
(m−1(t))h2

r(3.14)

and the same result is obtained if a local linear estimate is used for the estimation of the regression
function [see Fan and Gijbels (1996)]. Similarly, the leading term of the bias of the estimate m̂I

is given by

ΓI(hd, hr) = κ2(Kd)
m′′(t)

(m′(t))2
h2

d + κ2(Kr)m
′′(t)h2

r,(3.15)

if the design is uniform or a local linear estimate is used for the regression step. In the following
we restrict ourselves to the case, where the Nadaraya-Watson estimate with a uniform design or
a local linear estimator is used in the regression step. Other cases can be discussed exactly in the
same way with an additional amount of notation. We choose the bandwidth

hd = γ m′(m−1(t))hr,(3.16)

for the estimate m̂−1
I and

hd = γ m′(t)hr(3.17)

for the estimate m̂I , for some constant γ > 0. The relevant information regarding the asymptotic
normality of the monotone estimators with these bandwidths is summarized in the following
corollary. The proof is a direct consequence of Theorem 3.1 and 3.2 and therefore omitted.

Corollary 3.3. Assume that the assumptions of Theorem 3.1 are satisfied and that f is either
the uniform density or the local linear estimate is used for the estimator m̂ in (2.2).
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(1) If t ∈ (m(0), m(1)) satisfies m′(m−1(t)) > 0 and the bandwidth hd in the isotonic estimate
(2.2) is chosen according to the rule (3.16), then

√
nhr

(
m̂−1

I (t) + (κ2(Kr) + γ2κ2(Kd))
(m′′

m′

)
(m−1(t))h2

r − m−1(t)
)

D⇒ N (0,
σ2(m−1(t))

f(m−1(t)){m′(m−1(t))}2
µ2

K(γ))

where the asymptotic variance is given by

µ2
K(γ) =

∫ (∫
Kr(u)Kr(u + γw)du

)(∫
Kd(v)Kd(v + w)dv

)
dw.(3.18)

(2) If t ∈ (0, 1) satisfies m′(t) > 0 and the bandwidth hd in the isotonic estimate (2.2) satisfies
(3.17), then

√
nhr

(
m̂I(t) − (κ2(Kr) + γ2κ2(Kd))m

′′(t)h2
r − m(t)

) D⇒ N (0,
σ2(t)

f(t)
µ2

K(γ))

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

Figure 3.1: The function µ2
K defined in (3.18) for the rectangular (dashed line) and Epanechnikov

kernel (solid line), where Kd = Kr

This result has some consequences from an asymptotic point of view. First note that it is easy to
see that Corollary 3.3 also includes the case γ = 0 (corresponding to the second part of Theorem
3.1 and 3.2), if this is interpreted as

lim
hr,hd→0

hr/hd = ∞.

In this case the constant is given by µ2
K(0) =

∫
K2

r (u)du and coincides with the corresponding
term in the unconstrained regression estimate. Similarly, the bias of the isotonic estimate m̂I(t) is
obtained as κ2(Kr)m

′′(t)h2
r. Thus with the choice γ = 0 (with the interpretation mentioned above)

the monotone estimate exhibits the same (first) order asymptotic behaviour as the unconstrained

10



regression estimate. Secondly, we consider the situation γ > 0, for which a simple application of
Cauchy’s, Jensen’s inequality and Fubini’s theorem shows that

µ2
K(γ) ≤

{∫ (∫
Kr(u)Kr(u + γw)du

)2

dw

}1/2 {∫ (∫
Kd(v)Kd(v + w)dv

)2

dw

}1/2

≤
{∫ (∫

Kr(u)K2
r (u + γw)du

)
dw

}1/2 {∫ (∫
Kd(v)K2

d(v + w)dv
)
dw

}1/2

=

{
1

γ

∫
K2

r (u)du

}1/2 {∫
K2

d(v)dv

}1/2

.

Consequently, observing the identitiy µ2
K(0) =

∫
K2

r (u)du and the first part of Corollary 3.3 it
follows, that the estimator m̂I with the choice (3.17), γ ≥ 1 and Kr = Kd has asymptotically a
smaller variance but a larger bias than the monotone estimator obtained for the choice γ = 0,
which is first order asymptotically equivalent to the unconstrained estimator. A proof of the
inequality µ2

K(γ) ≤ µ2
K(0) in the general case might be difficult. However, numerical results show

that for the commonly used kernels the function µ2
K is decreasing with γ. More precisely, we

did not find a kernel for which this function is not decreasing. A typical example is presented in
Figure 3.1 for the case where Kd and Kr are chosen from the beta family.
In general the appropriate choice of the smoothing parameters is a more sophisticated task, even
from an asymptotic point of view. The above results show that the variance is decreasing with
large values of γ, while the converse holds true for the bias. Heuristically, the choice γ = 0
may have particular advantages if the standard error is small compared to the bias, while values
as γ = 0.5 or γ = 1 may be appropriate for a small bias and larger standard errors. We will
investigate these effects by means of a simulation study in the following section.
In the remaining part of this section we study the effect of the choice of γ in the rule (3.17) if the
local optimal bandwidth

hr =
( b(Kr)σ

2(t)

4f(t)(m′′(t))2κ2
2(Kr)n

) 1
5

(3.19)

is used for the estimation of the regression function, where b(Kr) =
∫

K2
r (u)du. A standard

calculation shows that for this choice the first order approximation of the mean squared error is
given by

h(γ) =
(b(Kr)σ

2(t)

4nf(t)

)4/5

(m′′(t)κ2(Kr))
2/5

{(
1 + γ2 κ2(Kd)

κ2(Kr)

)2

+
4

b(Kr)
µ2

K(γ)
}

(3.20)

where µ2
K(γ) is defined in (3.18). The corresponding mean squared error for the unconstrained

estimate is given by h(0), which gives for the efficiency

e(γ) =
h(γ)

h(0)
=

(
1 + γ2 κ2(Kd)

κ2(Kr)

)2

+ 4
b(Kr)

µ2
K(γ)

1 + 4
b(Kr)

µ2
K(0)

.(3.21)

In Figure 3.2 we display the function e for the cases, where Kr = Kd is the Epanechnikov and
rectangular kernel. We see that for the Epanechnikov kernel the optimal choice (minimizing e(γ)
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Figure 3.2: The function e defined in (3.21) for the rectangular (left panel) and Epanechnikov
kernel (right panel), where Kd = Kr.

with respect to the parameter γ) is γ = 0, which corresponds to the case lim
hr,hd→0

hr/hd = ∞,

while for the rectangular kernel the choice γ ≈ 0.3 yields the smallest efficiency. In this case
the bandwidths hd and hr should be chosen of the same order according to the rules (3.19) and
(3.17). We investigated several other kernels (including the beta-family) and conclude that the
situation displayed in the left panel of Figure 3.2 for the Epanechnikov kernel is rather typical.
Except for the rectangular kernel, all kernels yield the same picture for the efficiency as displayed
in Figure 3.2 for the Epanechnikov kernel. The situation is also similar in the case, where Kd not
necessarily equals Kr. The efficiency is strictly increasing with respect to γ, except in the case,
where a rectangular kernel is used for the preliminary estimation of the regression function. In
this case the minimal efficiency is attained for some γ > 0 but the choice γ = 0 does not yield a
loss of efficiency of more than 5%. These results indicate that from an asymptotic point of view
the bandwidth hd and hr should not be of the same order, but bandwidths satisfying

lim
hd,hr→0

hr

hd
= ∞

should be preferred for the monotone estimator. In general some care is necessary with these
asymptotic arguments and we will illustrate the performance of the estimators for realistic sample
sizes in the following section by means of a simulation study.

4 Finite sample properties

In this section we illustrate the behaviour of the new monotone estimator for finite sample sizes.
We consider the nonparametric regression model (2.1) with a uniform design and the regression
functions

m(x) =
1

2
(2x − 1)3 +

1

2
,(4.1)

12



m(x) = sin
(π

2
x
)
,(4.2)

where the standard deviation of the errors is constant and given by σ = 0.1. For the regression
estimate we use a local linear estimator with Epanechnikov kernel, where the bandwidth hr is
chosen as

hr =
( σ̂2

n

)1/5

,(4.3)

and σ̂2 denotes the estimator of Rice (1984) that is

σ̂2 =
1

2(n − 1)

n−1∑
i=1

(
Y[i+1] − Y[i]

)2

,

where Y[1], . . . , Y[n] denote the observations ordered with respect to their corresponding X-values.
For the density estimate we also use the Epanechnikov kernel with N = 100 design points, while
the bandwidth is chosen as hd = h3

r and n = 100 observation are used for the estimation of the
regression function.
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0
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Figure 4.1: The function m(x) = 1
2
(2x − 1)3 + 1

2
(solid line) and its monotone estimates for

n = 100 observations and σ = 0.1. Left panel: the monotone estimate (dashed line) and the local
polynomial fit (dotted line) for a typical situation; right panel: five monotone estimates obtained
from different simulations (dashed curves).

In Figure 4.1 and 4.2 we show the estimate m̂I based on a local linear estimator m̂ in the first
step of the estimation procedure for the model (4.1) and (4.2), respectively. The left parts of the
figures show the “true” function, the local linear fit m̂ and the corresponding monotone estimate
m̂I for a typical situation, while the right parts of the figures show the true function and five
monotone estimates obtained from different simulations.

In the second part of our simulation study we investigate the choice of the bandwidth hd for finite
sample sizes in more detail. The bandwidth for the local linear estimate is given by (4.3) while
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Figure 4.2: The function m(x) = sin(π
2
x) (solid line) and its monotone estimates for n = 100

observations and σ = 0.1. Left panel: the monotone estimate (dashed line) and the local polynomial
fit (dotted line) for a typical situation; right panel: five monotone estimates obtained from different
simulations (dashed curves).

two choices of hd are under consideration, that is hd = 1
2
hr and hd = h3

r. In Table 4.1 and Table 4.2
we show the simulated mean squared error (MSE), bias and variance of the monotone estimates
for various regression functions and design points, where the standard deviation is σ = 0.1 (Table
4.1) and σ = 1 (Table 4.2). Four cases for the regression function are considered in our study,
namely

(1) m(x) = x

(2) m(x) = x2

(3) m(x) = sin(
π

2
x)

(4) m(x) =
1

2
+

1

2
(2x − 1)3 .

The values of the unconstrained local linear estimate are given in brackets. In all cases we observe a
smaller variance and a larger bias of the constrained estimate m̂I as expected from the asymptotic
theory. The effect of the choice of the bandwith on the MSE depends on the size of the variance
and the size of m′′(t). In the case σ = 0.1 the improvement with respect to the variance by
choosing γ = 1/2 in the constant µ2

K(1
2
) is partially compensated by the factor σ2 = 0.01. As a

consequence the MSE obtained for the choice hd = h3
r is smaller than the MSE obtained by the

choice hd = 1
2
hr in cases where |m′′(t)| is large. For regression functions with a small value of

|m′′(t)| this effect is not visible any more [see for example the case m(x) = x]. Consider for example
the function m(x) = 1

2
(2x−1)3 + 1

2
. At the point x = 1

2
we have m′(1

2
) = m′′(1

2
) = 0 and the larger

bandwidths hd = 1
2
hr for the density estimate yields a smaller MSE than the choice hd = h3

r . On
the other hand, if x = 0.2 or x = 0.8 we have |m′′(0.2)| = 36.5 and the effect of the bias is visible
such that a smaller bandwidth hd in the density estimate is appropriate. For larger variances, say
σ = 1, the choice hd = 1

2
hr usually yields a better MSE, but the advantages are not substantial.
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However, the differences become more visible for larger standard deviations (these results are not
presented here for the sake of brevity). Finally, we note that in our simulation study the monotone
estimates have a smaller mean squared error than the unconstrained estimates for large noise [see
Table 4.2], while no general pattern can be observed for small variances (σ = 0.1) [see Table 4.1].
Based on our numerical results we recommend the choice hd = h3

r or hd = h2
r for the bandwidth in

the density estimation step, where the particular alternative depends on the desired smoothness
of the monotone estimate. This choice has the additional advantage that the regions, where
boundary effects affect the density estimate are very small and that the first order asymptotic
behaviour of the monotone estimate coincides with that of the local linear estimate.

hd = 1
2
· hr hd = h3

r

m(x) x MSE Bias Varianz MSE Bias Varianz

0.2 3.88198 · 10−4 −3.45152 · 10−3 3.76285 · 10−4 3.98194 · 10−4 −1.28041 · 10−3 3.96555 · 10−4

(4.16619 · 10−4) (−5.02454 · 10−4) (4.16366 · 10−4) (4.00358 · 10−4) (3.74106 · 10−4) (4.00218 · 10−4)

(1) 0.5 3.50221 · 10−4 −5.73912 · 10−4 3.49892 · 10−4 4.23894 · 10−4 −3.04373 · 10−4 4.23801 · 10−4

(3.93074 · 10−4) (−5.59361 · 10−4) (3.92761 · 10−4) (4.23665 · 10−4) (−3.03034 · 10−4) (4.23573 · 10−4)

0.8 3.39777 · 10−4 2.14544 · 10−3 3.35174 · 10−4 4.03153 · 10−4 1.84656 · 10−3 3.99743 · 10−4

(3.82281 · 10−4) (−7.17278 · 10−4) (3.81766 · 10−4) (3.99410 · 10−4) (1.28901 · 10−4) (3.99393 · 10−4)

0.2 4.50312 · 10−4 1.21897 · 10−2 3.01722 · 10−4 4.55540 · 10−4 7.74593 · 10−3 3.95541 · 10−4

(4.17314 · 10−4) (3.42046 · 10−3) (4.05614 · 10−4) (4.61647 · 10−4) (5.63278 · 10−3) (4.29919 · 10−4)

(2) 0.5 4.06086 · 10−4 6.70773 · 10−3 3.61092 · 10−4 4.37362 · 10−4 5.82293 · 10−3 4.03456 · 10−4

(4.32560 · 10−4) (5.41455 · 10−3) (4.03243 · 10−4) (4.38001 · 10−4) (5.82658 · 10−3) (4.04052 · 10−4)

0.8 4.74827 · 10−4 1.07701 · 10−2 3.58832 · 10−4 4.62387 · 10−4 6.67026 · 10−3 4.17894 · 10−4

(4.06161 · 10−4) (5.40935 · 10−3) (3.76900 · 10−4) (4.42168 · 10−4) (4.94562 · 10−3) (4.17709 · 10−4)

0.2 4.14335 · 10−4 −6.47495 · 10−3 3.72410 · 10−4 4.26854 · 10−4 −3.46118 · 10−3 4.14875 · 10−4

(3.98837 · 10−4) (−3.03924 · 10−3) (3.95595 · 10−4) (4.16850 · 10−4) (−1.71396 · 10−3) (4.13912 · 10−4)

(3) 0.5 4.05091 · 10−4 −4.07137 · 10−3 3.88515 · 10−4 4.30843 · 10−4 −4.22549 · 10−3 4.12988 · 10−4

(4.38181 · 10−4) (−1.80049 · 10−3) (4.28944 · 10−4) (4.30739 · 10−4) (−4.22316 · 10−3) (4.12903 · 10−4)

0.8 4.77313 · 10−4 −1.34917 · 10−2 2.95285 · 10−4 3.97258 · 10−4 −6.89710 · 10−3 3.49688 · 10−4

(4.64601 · 10−4) (−6.42359 · 10−3) (4.23338 · 10−4) (4.16981 · 10−4) (−5.67047 · 10−3) (3.84827 · 10−4)

0.2 1.05505 · 10−3 −2.58045 · 10−2 3.89175 · 10−4 8.36376 · 10−4 −1.99779 · 10−2 4.37257 · 10−4

(7.83679 · 10−4) (−1.83794 · 10−2) (4.45876 · 10−4) (7.68900 · 10−4) (−1.82236 · 10−2) (4.36800 · 10−4)

(4) 0.5 2.03017 · 10−4 −7.09120 · 10−4 2.02514 · 10−4 2.79063 · 10−4 2.20373 · 10−4 2.79015 · 10−4

(4.20886 · 10−4) (−4.29921 · 10−4) (4.20701 · 10−4) (3.66362 · 10−4) (−2.70634 · 10−4) (3.66289 · 10−4)

0.8 9.49052 · 10−4 2.44436 · 10−2 3.51562 · 10−4 8.30827 · 10−4 2.01935 · 10−2 4.23048 · 10−4

(6.98030 · 10−4) (1.71293 · 10−2) (4.04616 · 10−4) (7.62256 · 10−4) (1.84477 · 10−2) (4.21936 · 10−4)

Table 4.1: Simulated mean squared error, bias and variance of the monoton estimator m̂I and
the local linear estimator m̂ (values in brackets) for various regression functions and a uniform
design: (1) m(x) = x, (2) m(x) = x2, (3) m(x) = sin(π

2
x) and (4) m(x) = 1

2
(2x − 1)3 + 1

2
.

The bandwidth of the regression estimate is given by (4.3) and the estimates are calculated from
n = 100 observations with standard deviation σ = 0.1.
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hd = 1
2
· hr hd = h3

r

x MSE Bias Varianz MSE Bias Varianz

0.2 2.20820 · 10−2 3.83279 · 10−3 2.20673 · 10−2 2.13866 · 10−2 −2.27475 · 10−3 2.13814 · 10−2

(2.43494 · 10−2) (6.88163 · 10−3) (2.43021 · 10−2) (2.16107 · 10−2) (−3.91854 · 10−3) (2.15954 · 10−2)

(1) 0.5 1.20904 · 10−2 3.44610 · 10−3 1.20785 · 10−2 1.45233 · 10−2 −6.19947 · 10−3 1.44848 · 10−2

(1.49110 · 10−2) (3.88867 · 10−3) (1.48959 · 10−2) (1.60610 · 10−2) (−5.43948 · 10−3) (1.60314 · 10−2)

0.8 2.06413 · 10−2 6.14231 · 10−3 2.06035 · 10−2 2.50356 · 10−2 −4.72176 · 10−3 2.50133 · 10−2

(2.29607 · 10−2) (3.34988 · 10−3) (2.29495 · 10−2) (2.56745 · 10−2) (−3.64397 · 10−3) (2.56612 · 10−2)

0.2 2.00228 · 10−2 1.29049 · 10−2 1.98562 · 10−2 2.10975 · 10−2 1.74607 · 10−2 2.07926 · 10−2

(2.34644 · 10−2) (1.61745 · 10−2) (2.32028 · 10−2) (2.36844 · 10−2) (1.56773 · 10−2) (2.34386 · 10−2)

(2) 0.5 1.60288 · 10−2 5.70680 · 10−2 1.27721 · 10−2 1.52649 · 10−2 4.44132 · 10−2 1.32924 · 10−2

(1.71533 · 10−2) (3.12126 · 10−2) (1.61791 · 10−2) (1.60654 · 10−2) (2.44530 · 10−2) (1.54674 · 10−2)

0.8 2.30870 · 10−2 1.92527 · 10−2 2.27164 · 10−2 2.39332 · 10−2 1.74988 · 10−2 2.36270 · 10−2

(2.43430 · 10−2) (1.48117 · 10−2) (2.41236 · 10−2) (2.40616 · 10−2) (1.43056 · 10−2) (2.38570 · 10−2)

0.2 2.33988 · 10−2 −1.47132 · 10−2 2.31823 · 10−2 2.38061 · 10−2 −1.45759 · 10−2 2.35936 · 10−2

(2.43304 · 10−2) (−1.13764 · 10−2) (2.42010 · 10−2) (2.36457 · 10−2) (−1.39270 · 10−2) (2.34518 · 10−2)

(3) 0.5 1.44971 · 10−2 −4.78662 · 10−2 1.22059 · 10−2 1.43279 · 10−2 −3.89659 · 10−2 1.28096 · 10−2

(1.60098 · 10−2) (−2.73210 · 10−2) (1.52634 · 10−2) (1.54996 · 10−2) (−2.53982 · 10−2) (1.48545 · 10−2)

0.8 2.15224 · 10−2 −2.40621 · 10−2 2.09434 · 10−2 2.19968 · 10−2 −2.24630 · 10−2 2.14922 · 10−2

(2.46888 · 10−2) (−2.33662 · 10−2) (2.41428 · 10−2) (2.30151 · 10−2) (−1.79270 · 10−2) (2.26937 · 10−2)

0.2 2.64675 · 10−2 −9.52509 · 10−2 1.73947 · 10−2 2.62166 · 10−2 −8.01244 · 10−2 1.97967 · 10−2

(2.70579 · 10−2) (−5.91196 · 10−2) (2.35628 · 10−2) (2.80176 · 10−2) (−6.21125 · 10−2) (2.41596 · 10−2)

(4) 0.5 1.10375 · 10−2 3.90471 · 10−3 1.11022 · 10−2 1.26469 · 10−2 2.36610 · 10−3 1.26469 · 10−2

(1.48730 · 10−2) (2.77092 · 10−3) (1.48654 · 10−2) (1.59408 · 10−2) (−3.69709 · 10−3) (1.59271 · 10−2)

0.8 2.56056 · 10−2 9.80171 · 10−2 1.59983 · 10−2 2.54270 · 10−2 7.57326 · 10−2 1.96916 · 10−2

(2.64244 · 10−2) (6.44489 · 10−2) (2.22707 · 10−2) (2.73103 · 10−2) (5.56479 · 10−2) (2.42136 · 10−2)

Table 4.2: Simulated mean squared error, bias and variance of the monoton estimator m̂I and
the local linear estimator m̂ (values in brackets) for various regression functions and a uniform
design: (1) m(x) = x, (2) m(x) = x2, (3) m(x) = sin(π

2
x) and (4) m(x) = 1

2
(2x − 1)3 + 1

2
.

The bandwidth of the regression estimate is given by (4.3) and the estimates are calculated from
n = 100 observations with standard deviation σ = 1.

5 Appendix: proofs

Throughout this section we assume without loss of generality that the function m has a positive
derivative on the interval [0, 1]. The general case can easily be obtained by considering a subin-
terval, for which this property is satisfied (note that m′ is continuous). Moreover, we assume for
the sake of a transparent notation that the number of design points N in the estimate m̂I equals
the sample size n and write mn instead of mN .

Proof of Lemma 2.1. Obviously, we have

m−1
n (t) =

∫ 1

0

∫ t

−∞
Kd

(m(x) − u

hd

) 1

hd

dudx · (1 + O(
1

nhd

))

and observing that the support of the kernel Kd is given by the interval [−1, 1] the leading term
on the right hand side is estimated as follows

A(hd) =

∫ 1

0

∫ t

−∞
Kd

(m(x) − u

hd

)du

hd
dx(A.1)

16



=

∫ m−1(t+hd)

0

∫ t

m(x)−hd

Kd

(m(x) − u

hd

)du

hd
dx

= m−1(t − hd)

+

∫ 1

0

I{m−1(t − hd) ≤ x ≤ m−1(t + hd)}
∫ t

m(x)−hd

Kd

(m(x) − u

hd

)du

hd
dx

= m−1(t − hd) + hd

∫ m(1)−t
hd

m(0)−t
hd

I{−1 ≤ z ≤ 1}(m−1)′(t + zhd)

∫ 1

z

Kd(v)dvdz.

If t ∈ (m(0), m(1)) is fixed, we obtain from the identity∫ 1

−1

∫ 1

z

Kd(v)dvdz = 1

(note that Kd is symmetric and has compact support [−1, 1]) and a Taylor expansion

A(hd) = m−1(t − hd) + hd

∫ 1

−1

(m−1)′(t + zhd)

∫ 1

z

Kd(v)dvdz

= m−1(t) + h2
d(m

−1)′′(t)
{1

2
+

∫ 1

−1

z

∫ 1

z

Kd(v)dvdz
}

+ o(h2
d)

= m−1(t) + κ2(Kd)h
2
d(m

−1)′′(t) + o(h2
d)

as hd → 0, where the last identity follows from the representation∫ 1

−1

z

∫ 1

z

Kd(v)dvdz =
1

2

∫ 1

−1

v2Kd(v)dv − 1

2
.

�

For a proof of Lemma 2.2 and Theorem 3.2 it is necessary to understand the operator, which
maps a non-decreasing function m to its “quantile” m−1(t). We need a result on the functional
delta method, which we could not find explicitly in the literature. For related results considering
quantile processes see Fernholz (1983), Gill (1989) or Van der Vaart (1998). Consider a fixed
t ∈ R, and let M denote the set of all functions H ∈ C2[0, 1] with positive derivative on the
interval [0, 1], which contain t in the interior of their image, i.e. t ∈ int H([0, 1]). Consider the
functional

Φ :

{
M → [0, 1]

H → H−1(t)

and define for H1, H2 ∈ M the function

Q :

{
[0, 1] → R

λ → Φ(H1 + λ(H2 − H1)).
(A.2)

Note that in the case of existence Q′(0) is the Gatéaux derivative of the functional Φ at H1 in
the direction of H2 −H1. The following result shows that this derivative exists and also gives the
second derivative.
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Lemma A.1. The mapping Q : [0, 1] → R defined by (A.2) is two times continuously differentiable
with

Q′(λ) = − (H2 − H1)

h1 + λ(h2 − h1)
◦ (H1 + λ(H2 − H1))

−1(t)(A.3)

Q′′(λ) = Q′(λ)
{ −2(h2 − h1)

h1 + λ(h2 − h1)
+

(H2 − H1)(h
′
1 + λ(h′

2 − h′
1))

{h1 + λ(h2 − h1)}2

}
◦ Q(λ)(A.4)

where h1, h2 denote the derivatives of H1, H2, respectively.

Proof of Lemma A.1. Let

F (x, y) = (H1 + x(H2 − H1))(y) − t,

then Q(λ) is determined by the equation

F (λ, Q(λ)) = 0.

It is easy to see that the domain of the function Q can be extended in a neighbourhood of the
interval [0, 1] and by the implicit function theorem it follows that Q is differentiable with derivative

Q′(λ) = − (H2 − H1) ◦ Q(λ)

h1 ◦ Q(λ) + λ(h2 − h1) ◦ Q(λ)
,

which proves (A.3). The calculation of the second derivative now follows by a straightforward
application of the chain rule, which gives

Q′′(λ) =
(H2 − H1)(h2 − h1)

{h1 + λ(h2 − h1)}2
◦ Q(λ)

− Q′(λ) · (h2 − h1)(h1 + λ(h2 − h1)) − (H2 − H1)(h
′
1 + λ(h′

2 − h′
1))

{h1 + λ(h2 − h1)}2
◦ Q(λ),

and an application of (A.3) yields the representation (A.4).
�

Proof of Lemma 2.2. By a Taylor expansion we have from Lemma A.1 (with H1 = m−1, H2 =
m−1

n )

mn(t) − m(t) = Φ(m−1
n ) − Φ(m−1) = Q(1) − Q(0) = Q′(λ∗)

for some λ∗ ∈ [0, 1] (see Serfling (1980)), where

Q′(λ∗) = − (m−1
n − m−1)

(m−1 + λ∗(m−1
n − m−1))′

◦ (m−1 + λ∗(m−1
n − m−1))−1(t).(A.5)

Note that
(m−1 + λ∗(m−1

n − m−1)) → m−1
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by Lemma 2.1 and introduce the notation tn = (m−1+λ∗(m−1
n −m−1))−1(t) (note that tn → m(t)).

For the numerator in (A.5) we obtain

(m−1
n − m−1)(tn) − (m−1

n − m−1)(m(t)) = (m−1
n − m−1)′(ηn) · (tn − m(t))(A.6)

for some ηn with |ηn − m(t)| ≤ |tn − m(t)|. For the first factor in (A.6) we have by a standard
argument

(m−1
n − m−1)′(ηn) =

∫ 1

0

Kd

(m(x) − ηn

hd

)dx

hd
− (m−1)′(ηn) + O

( 1

nhd

)
= O(h2

d) + O
( 1

nhd

)
,(A.7)

and as a consequence it follows from (A.5) and (A.6) that

Q′(λ∗) = −(m−1
n − m−1) ◦ m(t)

(m−1)′(m(t))
+ o(h2

d) + o
( 1

nhd

)
.(A.8)

The assertion of Lemma 2.2 is now obtained from Lemma 2.1 and (A.5) [note that (m−1)′′(m(t)) =
−m′′(t)/{m′(t)}3].

�

Proof of Theorem 3.1. We only prove the first part of the theorem, the second assertion follows
by similar arguments. We use the decomposition

m̂−1
I (t) =

1

nhd

∫ t

−∞

n∑
i=1

Kd

(m̂( i
n
) − u

hd

)
du = m−1

n (t) + ∆n(t),(A.9)

where m−1
n is defined in (2.5) and ∆n is given by

∆n(t) =
1

nhd

n∑
i=1

∫ t

−∞

{
Kd

(m̂( i
n
) − u

hd

)
− Kd

(m( i
n
) − u

hd

)}
du.(A.10)

For the latter term it follows that

∆n(t) = ∆(1)
n (t) +

1

2
∆(2)

n (t),(A.11)

where

∆(1)
n (t) =

1

nh2
d

n∑
i=1

∫ t

−∞
K ′

d

(m( i
n
) − u

hd

){
m̂(

i

n
) − m(

i

n
)
}

du,(A.12)

∆(2)
n (t) =

1

nh3
d

n∑
i=1

∫ t

−∞
K ′′

d

(ξi − u

hd

){
m̂(

i

n
) − m(

i

n
)
}2

du,(A.13)

with |ξi − m( i
n
)| < |m̂( i

n
) − m( i

n
)| (i = 1, . . . , n). A straightforward calculation shows that

|∆(2)
n (t)| =

1

h2
d

∣∣∣ 1
n

n∑
i=1

K ′
d

(ξi − t

hd

)
{m̂(

i

n
) − m(

i

n
)}2

∣∣∣
=

1

h2
d

∣∣∣ ∫ 1

0

K ′
d

(m(x) − t

hd

)
{m̂(x) − m(x)}2dx

∣∣∣ · (1 + op(1)).
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If we assume that the kernel Kr has been appropriately modified near the boundaries [see Müller
(1984)] it follows that the expectation of the first term in the last expression is of order

O
( 1

hd

{ 1

nhr
+ h4

r

})
.

This implies √
nhd∆

(2)
n (t) = op(1) ,(A.14)

and a combination of (A.9), (A.11) and (A.14) shows that the assertion of Theorem 3.1 can be
proved establishing the weak convergence

√
nhd

(
∆(1)

n (t) + κ2(Kr)h
2
r

(m′′f + 2m′f ′

fm′

)
(m−1(t))

) D⇒ N (0, g2(t)).(A.15)

For this we use the decomposition

∆(1)
n (t) =

(
∆(1.1)

n (t) + ∆(1.2)
n (t)

)
(1 + op(1))(A.16)

with

∆(1.1)
n (t) =

−1

n2hdhr

n∑
i,j=1

Kd

(m( i
n
) − t

hd

)
Kr

(Xj − i
n

hr

)m(Xj) − m( i
n
)

f( i
n
)

(A.17)

∆(1.2)
n (t) =

−1

n2hdhr

n∑
i,j=1

Kd

(m( i
n
) − t

hd

)
Kr

(Xj − i
n

hr

)
σ(Xj)

εj

f( i
n
)
.(A.18)

For the first term we obtain

E
[
∆(1.1)

n (t)
]

= −(1 + o(1))

hrhd

∫ 1

0

∫ 1

0

Kd

(m(x) − t

hd

)
Kr

(y − x

hr

)
f(y)

m(y) − m(x)

f(x)
dydx

= −h2
rκ2(Kr)

∫ 1

0

1

hd
Kd

(m(x) − t

hd

){
m′′(x) +

2m′(x)f ′(x)

f(x)

}
dx · (1 + o(1))(A.19)

= −h2
rκ2(Kr)

(m′′f + 2m′f ′

fm′

)
(m−1(t)) · (1 + o(1)),

while the variance of ∆
(1.1)
n (t) is given by

Var
(
∆(1.1)

n (t)
)

=
1

n3h2
dh

2
r

Var
( n∑

i=1

Kd

(m( i
n
) − t

hd

)
Kr

(Xj − i
n

hr

)m(Xj) − m( i
n
)

f( i
n
)

)

≤ 1

nh2
dh

2
r

E
[(∫ 1

0

Kd

(m(x) − t

hd

)
Kr

(Xj − x

hr

)m(Xj) − m(x)

f(x)
dx

)2]
(1 + o(1))(A.20)

= o
( 1

nhd

)
.

This implies [using assumption (3.1)]

∆(1.1)
n (t) + h2

rκ2(Kr)
(m′′f + 2m′f ′

fm′

)
(m−1(t)) = op

( 1√
nhd

)
,(A.21)
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and consequently the assertion (A.15) follows from√
nhd∆

(1.2)
n (t)

D⇒ N (0, g2(t)).(A.22)

For a proof of this relation we note that E[∆
(1.2)
n (t)] = 0 and calculate the variance

Var(
√

nhd∆
(1.2)
n (t)) =

1

n3hdh2
r

n∑
j=1

Var
( n∑

i=1

σ(Xj)εj

f( i
n
)

Kd

(m( i
n
) − t

hd

)
Kr

(Xj − i
n

hr

))
(A.23)

=
1

hdh2
r

∫ 1

0

σ2(x)
[∫ 1

0

Kd

(m(y) − t

hd

)
Kr

(x − y

hr

) dy

f(y)

]2

f(x)dx · (1 + o(1))

=
1

hdh2
r

∫ 1

0

Kd

(m(z) − t

hd

)∫ 1

0

Kd

(m(y) − t

hd

) 1

f(y)f(z)

×
∫ 1

0

σ2(x)Kr

(x − y

hr

)
Kr

(x − z

hr

)
f(x)dxdydz · (1 + o(1))

=
σ2(m−1(t))

(m′(m−1(t))2f(m−1(t))

hd

hr

∫ ∫ ∫
Kd(w)Kd(v)Kr(u)

×Kr

(m−1(t + hdv) − m−1(t + hdw)

hr

+ u
)
dudvdw · (1 + o(1))

=
σ2(m−1(t))

m′(m−1(t))f(m−1(t))

∫ ∫ ∫
Kd

(
w +

hr

hd
m′(m−1(t))(v − u)

)
×Kd(w)Kr(u)Kr(v)dwdudv · (1 + o(1)),

where we applied the substitution v → {m(m−1(t+hdw)+hr(v−u))− t}/hd and the last identity
uses the relation

lim
hr→0,hd→0

hr/hd→c

Kd

(m(m−1(t + hdw) + hr(v − u)) − t

hd

)
= Kd(w + cm′(m−1(t))(v − u)).(A.24)

This proves the representation of the asymptotic variance in (3.4). For a proof of the asymptotic
normality we calculate by similar arguments

n∑
j=1

E
[{ σ(Xj)

n3/2h
1/2
d hr

εj

n∑
i=1

Kd

(m( i
n
) − t

hd

)
Kr

(Xj − i
n

hr

) 1

f( i
n
)

}4]

=
E[ε4

1]

nh2
dh

4
r

∫ { 4∏
j=1

∫
Kd

(m(xj) − t

hd

)
Kr

(x − xj

hr

) dxj

f(xj)

}
σ4(x)dx · (1 + o(1))

=
σ4(m−1(t))E[ε4

1]

nhd

(m−1)′(t)
{f(m−1(t))}4

∫ ∫ { 4∏
j=2

∫
Kd

(
x̃ +

hr

hd

m′(m−1(t))(yj − y1)
)
Kr(yj)dyj

}
×Kd(x̃)Kr(y1)dy1dx̃ · (1 + o(1))

= O
( 1

nhd

)
= o(1)

and the asymptotic normality in (A.22) follows from the central limit theorem of Ljapunoff.
�
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Proof of Theorem 3.2. We only prove the first part of the theorem, the second assertion follows
by exactly the same arguments. From Lemma A.1 we obtain the Taylor expansion

H−1
2 (t) − H−1

1 (t) = Q(1) − Q(0) = Q′(0) +
1

2
Q′′(λ∗)(A.25)

for some λ∗ ∈ [0, 1] [see Serfling (1980)], which will now be applied for the functions H2 =
m̂−1

I , H1 = m−1
n . This gives for the estimator m̂I and the quantity mn at the point t the represen-

tation

m̂I(t) − mn(t) = An +
1

2
Bn ,(A.26)

where

An = −(m̂−1
I − m−1

n )

(m−1
n )′

◦ mn(t)

Bn =
2(m̂−1

I − m−1
n )(m̂−1

I − m−1
n )′

{(m−1
n + λ∗(m̂−1

I − m−1
n ))′}2

◦
(
m−1

n + λ∗(m̂−1
I − m−1

n )
)−1

(t)

− (m̂−1
I − m−1

n )2(m−1
n + λ∗(m̂−1

I − m−1
n ))′′

{(m̂−1
I + λ∗(m̂−1

I − m−1
n ))′}3

◦ (m−1
n + λ∗(m̂−1

I − m−1
n ))−1(t).

At the end of this proof we will show the estimates

An = −(m̂−1
I − m−1

n )

(m−1)′
◦ m(t) + op

( 1√
nhd

)
,(A.27)

Bn = op

( 1√
nhd

)
,(A.28)

then the first assertion of Theorem 3.2 can be obtained as follows. From (A.27), (A.28) and (A.26)
we have

√
nhd

(
m̂I(t) − mn(t) − κ2(Kr)h

2
r

(m′′f + 2m′f ′

f

)
(t)

)

= −
√

nhd

(m̂−1
I − m−1

n ) ◦ m(t) + κ2(Kr)h
2
r

(
m′′f+2m′f ′

f

)
(t) · (m−1)′ ◦ m(t)

(m−1)′ ◦ m(t)
+ op(1)

= −m′(t)
√

nhd

{
(m̂−1

I − m−1
n ) ◦ m(t) + κ2(Kr)h

2
r

(m′′f + 2m′f ′

m′f

)
(t)

}
+ op(1)

D
=⇒ N (0, s2(t)),

where s2(t) is defined in (3.8) and we used the first part of Theorem 3.1 in the last step.

For a proof of the estimate (A.27) we consider the difference

Dn = (m̂−1
I − m−1

n ) ◦ mn(t) − (m̂−1
I − m−1

n ) ◦ m(t)(A.29)

= (m̂−1
I − m−1

n )′(ξn)(mn(t) − m(t))
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where |ξn−m(t)| ≤ |mn(t)−m(t)|. The first factor can be estimated as follows (recall the definition
of ∆n in (A.10))

∆′
n(ξn) = (m̂−1

I − m−1
n )′(ξn) =

1

nhd

n∑
i=1

{
Kd

(m̂( i
n
) − ξn

hd

)
− Kd

(m( i
n
) − ξn

hd

)}
(A.30)

=
1

nh2
d

n∑
i=1

K ′
d

(ηi,n − ξn

hd

){
m̂(

i

n
) − m(

i

n
)
}

,

where

|ηi,n − m(
i

n
)| ≤ |m̂(

i

n
) − m(

i

n
)| = O(Rn) a.s.

with

Rn =
( log h−1

r

nhr

)1/2

[see Mack and Silverman (1982), Theorem B]. This yields

∆′
n(ξn) =

1

nh2
d

n∑
i=1

K ′
d

(m( i
n
) − ξn

hd

){
m̂(

i

n
) − m(

i

n
)
}

+ O
(R2

n

h3
d

)
a.s.(A.31)

=
1

h2
d

∫
K ′

d

(m(x) − m(t)

hd

)
{m̂(x) − m(x)}dx + O

(
Rn +

R2
n

h3
d

+
1

nhd

)
a.s.

= O
(Rn

hd

+
R2

n

h3
d

+
1

nhd

)
a.s.

As a consequence we obtain from (A.29) and Lemma 2.2

Dn = O
(
Rnhd +

R2
n

hd
+

hd

n

)
= o

( 1√
nhd

)
a.s.

The estimate (A.27) now follows from the fact that (m−1
n )′(t) = (m−1)′(t) + o(1) [see the proof of

Lemma 2.1].
The second estimate (A.28) is proved similarly and we only indicate the main steps. First we
decompose Bn = 2Bn1 − Bn2 where

Bn1 =
(m̂−1

I − m−1
n )(m̂−1

I − m−1
n )′(tn)

{(m−1
n + λ∗(m̂−1

I − m−1
n )}2(tn)

(A.32)

Bn2 =
(m̂−1

I − m−1
n )2(m−1

n + λ∗(m̂−1
I − m−1

n ))′′(tn)

{m̂−1
I + λ∗(m̂−1

I − m−1
n )}3(tn)

(A.33)

and tn = (m−1
n + λ∗(m̂−1

I − m−1
n ))−1(t). Note that

tn
P−→ m(t), (m−1

n + λ∗(m̂−1
I − m−1

n ))
P−→ m−1.

Observing (A.31) and Theorem 3.1 we therefore obtain

Bn1 = Op

( 1√
nhd

·
(Rn

hd
+

R2
n

h3
d

))
= op

( 1√
nhd

)
,

Bn2 = Op

( 1

nhd

)
,

23



which proves (A.28). �
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