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We develop and test a robust procedure for extracting an underlying signal in form of a time-varying

trend from very noisy time series. The application we have in mind is online monitoring data measured in

intensive care, where we find periods of relative constancy, slow monotonic trends, level shifts and many

measurement artifacts. A procedure is needed which allows a fast and reliable denoising of the data and

which distinguishes artifacts from clinically relevant changes in the patient’s condition. We use robust re-

gression functionals for local approximation of the trend in a moving time window. For further improving

the robustness of the procedure we investigate online outlier replacement by e.g. trimming or winsorization

based on robust scale estimators. The performance of several versions of the procedure is compared in

important data situations and applications to real and simulated data are given.
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1 INTRODUCTION

In intensive care, physiological variables like the heart rate are recorded at least every minute.
Methods working in real time are needed which extract the underlying clinically relevant signal
from the observed time series while resisting the frequent irrelevant measurement artifacts, which
often even emerge as patches of several subsequent outliers [5]. Median filtering is often applied
to smooth noisy time series [18], and simple rules for detection of atypical observations (outliers)
and sudden changes (level shifts) in the data generating mechanism based on the median absolute
deviation about the median (MAD) are sometimes used in addition. However, in view of high
sampling frequencies most changes occur gradually. In trend periods most scale estimators like the
MAD are strongly biased, and a running median looses a lot of its robustness [6].

A procedure for extraction of a time-varying deterministic trend from the noisy time series observed
in intensive care needs to work automatically and online. It must behave well, or at least not dis-
astrously, in many different aspects and situations as any flaw might be life-threatening. Therefore
we prefer construction of a procedure with specific properties rather than achieving optimality in
a single sense [4]. Important criteria are the existence of a unique solution, low computation time,
high robustness against outliers and satisfactory finite-sample efficiency.

Similar to a running median we use moving window techniques with a fixed window width regulated
by the requirement of working online. Instead of approximating a local level by the median we fit a
linear trend to the data in each time window using regression functionals with high breakdown point
like the least median of squares and the repeated median. For further improving the robustness
of the procedure we test and compare automatic rules for outlier detection and replacement based
on robust scale estimators. Besides the classical MAD we investigate other high breakdown point
methods, namely the length of the shortest half (LSH) and Rousseeuw and Croux’s Qα and SN

[15]. Based on an estimate of the local variability we can detect and replace outliers online before
they influence the data analysis. We compare standard strategies like trimming, winsorization
and variations of these for this purpose. In order to find out the strengths and the weaknesses of
the various possible combinations of these methods we perform an extensive simulation study and
apply them to some time series.

We proceed as follows. In Section 2 we develop a procedure which combines robust functionals for
regression and scale estimation and we describe some modifications for an automatic application.
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In Section 3 we report the results of a simulation study. In Section 4 applications to real and
simulated time series are presented before we draw some conclusions.

2 METHODS

Let y1, . . . , yN be real valued data measured at time points t = 1, . . . , N , with yt being a realization
of a random variable Yt with median µt and variance σ2

t . The aim in the following is to extract
the signal formed by the sequence µt, t = 1, . . . , N , from the data.

In intensive care monitoring data we often find systematic drifts corresponding to slow monotonic
changes in µt, and the variance σ2

t may vary over time as well [8]. It seems reasonable to approx-
imate the signal within a moving time window by a straight line choosing a small to moderate
window width n. The time delay admissible in the respective application further restricts the
choice of n, while n should be chosen not very small adhering to these restrictions to reduce the
variance and the effects of outlier patches. For our clinical application we use time windows of
length n = 2m + 1 = 31 observations.

2.1 Robust Trend Approximation

In the following we approximate the signal µt+i, i = −m, . . . , m, in the current time window
centered at time point t ≥ m + 1 by a straight line,

Yt+i = µt + iβt + Et,i, i = −m, . . . , m, (1)

where µt is the level and βt is the slope in the time window, while Et,i is an error term.

A comparative study [5] investigates the finite-sample properties of the least median of squares
functional TLMS [10], [14] and of the repeated median functional TRM [17]. For regression against
time with data measured at equally spaced time points t + i, i = −m, . . . , m, these read

TLMS = argmin{(µ, β) : Median(yt+i − µ − iβ)2}, (2)

and TRM = (µ̃t, β̃t) with

β̃t = medi

(
medj �=i

yt+i − yt+j

i − j

)
(3)

µ̃t = medi

(
yt+i − i · β̃t

)

respectively. Application of TRM or TLMS to the observations in a time window allows approxi-
mation of the level and the slope in the center of the window. For approximation of the level and
the slope at the first and the last m time points of the series we can use the level µ̃t + iβ̃t and the
slope approximates β̃t fitted in the first and the last time window, respectively.

The TRM and the TLMS both have the optimal breakdown point for a regression-equivariant line
estimator, that is �n/2�/n. Some important advantages of the TRM are its smaller computation
time [1], its smaller variance and MSE in case of a small to moderate number of outliers [5] and
the instability of the TLMS for small changes of the data [11]. Unlike the TLMS the TRM is
Lipschitz-continuous in case of a fixed design and hence small changes in the data do not cause
large changes of the results. On the other hand, the TLMS has a much smaller bias and MSE than
the TRM when there is a large percentage of 30% or more outliers in a single time window. The
TLMS is typically even less influenced by large than by small outliers as it may ignore the former
completely, while the TRM shows the intuitive behavior that large outliers have a more serious
effect. Therefore, replacing detected outliers may well improve the performance of the TRM , while
this is not necessarily true for the TLMS.

2



For all these reasons, we use the TLMS merely as a benchmark for global robustness and try to
improve the TRM to become similarly robust as the TLMS against many large outliers. An obvious
way for doing this is to replace outliers online based on an approximation of the local variability.

2.2 Scale Approximation

Assuming that the noise variance is locally almost constant, σt+i ≈ σt, i = −m, . . . , m, we can
approximate σt applying a scale estimator to the residuals in the current time window. Let ri =
yt+i − µ̃t − β̃ti, i = −m, . . . , m, be these residuals, where (µ̃t, β̃t) is an estimate of location and
slope.

The classical robust scale estimator is the MAD

σ̃MAD = c1,n · med{|r−m|, . . . , |rm|} ,

where c1,n is a finite-sample correction factor depending on the window width n = 2m + 1. Many
other robust scale estimators have been suggested. In [7] the finite-sample properties of robust
scale estimators which can be calculated in O(n log n) time are inspected in the regression setting.
It turns out that the length of the shortest half [9], [16]

σ̃LSH = c2,n · min{|r(i+m) − r(i)|; i = 1, . . . , n − m}

where r(1), . . . , r(n) are the ordered residuals, and Rousseeuw and Croux’s [15] suggestion

σ̃QN = c3,n · {|ri − rj | : −m ≤ i < j ≤ m}(h) , h =
(

m + 1
2

)

are particularly interesting. An algorithm for computation of σ̃QN in O(n log n) time is presented
in [3]. Moreover, we consider the nested scale statistic

σ̃SN = c4,n · medi medj �=i|ri − rj | ,

which has also been proposed in [15]. The σ̃LSH shows extremely good resistance against a large
percentage of outliers (see also [13]). On the other hand, σ̃QN and σ̃MAD perform better for inliers,
e.g. for identical measurements due to a small variability relatively to the measurement scale. The
σ̃QN works very well also in case of a level shift, where we sample from a mixture distribution.
In conclusion, the finite-sample efficiency of σ̃QN , σ̃SN and σ̃LSH (in this ordering) is higher than
that of other explicit high breakdown point scale estimators.

2.3 Outlier Detection

Applying any of the previous scale estimators we can check whether the incoming observation
yt+m+1 is an outlier by comparing the residual rm+1 = yt+m+1−µ̃t−β̃t(m+1) for the extrapolation
of the next time point to the estimate σ̃t of the current standard deviation σt. A general strategy
for online cleaning of the data is to replace yt+m+1 by

ỹt+m+1 = µ̃t + β̃t(m + 1) + d1sgn(rm+1)σ̃t if |rm+1| > d0σ̃t (4)

where 0 ≤ d1 ≤ d0 are a-priori specified constants and sgn is the signum function. The idea
underlying d1 = 0 is that outliers do not provide relevant information and should be set to a
prediction. A constant d1 > 0 is reasonable if we do not regard outliers as measurement artifacts
but as disturbed values. Sometimes the sign of an outlier may be informative although its absolute
value is too large. A choice d1 = d0 means that we winsorize the residuals. Intuitively, in the short
run we expect d0 > d1 = 0 to result in more stable results w.r.t. the approximation of the level
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and the slope, and d0 = d1 > 0 to result in more stable results w.r.t. the scale. In the long run
this is not as clear as these goals interact. A choice d0 > d1 > 0 might thus mean a compromise.

We will treat two outlier generating mechanisms which correspond to outliers that are completely
non-informative (substitutive outliers) and somewhat informative (additive outliers) later on. In
case of a substitutive outlier, instead of the value yt+i of the underlying process we observe a
value ωO which does not depend on yt+i. Measurement artifacts can typically be described by
substitutive outliers. On the other hand, an additive outlier is generated by adding ωO to yt+i.
Thus, an additive outlier describes a kind of shock. An additive outlier is more likely to be detected
if ωO and the error at that time point have the same sign, and vice versa the sign of an additive
outlier provides some information on the undisturbed observation.

Finding an overall optimal choice of d0 and d1 does not seem possible since we do not want to
use large sample asymptotics for a moderate window width, and since we look at several criteria
(approximation of µt, βt, σt) and outlier generating mechanisms. Therefore, we restrict to the
following heuristic choices:

T d0 = 3, d1 = 0 (trimming)

L d0 = 3, d1 = 1 (downsizing large values)

M d0 = 2, d1 = 1 (downsizing moderate values)

W d0 = 2, d1 = 2 (winsorization)

Trimming is commonly applied and means to treat outliers as non-informative. We use a standard
3σ rule for outlier detection and simple predictions then. A preliminary study showed that for the
scale approximation detected outliers should be treated as missing values and the finite-sample
correction factor be adjusted for the reduced number of observations then. Otherwise we possibly
underestimate the scale largely. In the other strategies, we use the adjusted time series for the
approximations without correcting the sample size. In order to simplify notation we add a letter
to the scale functional in the following to denote the outlier replacement strategy. E.g., T σ̃MAD

stands for trimming based on the MAD, while Lσ̃LSH is downsizing large values using the LSH.

Outlier detection cannot be performed online in the first time window. Instead, we approximate
the level, the slope and the scale for this initial period and check the observations retrospectively
for outlyingness using analogous rules as stated above. If we find outlying observations we rean-
alyze the first time window with detected outliers being replaced. Although outward procedures,
where the initial estimates are calculated from all observations, are known to be prone to masking
effects, we nevertheless prefer them to inward procedures since they are easy to implement and
computationally fast, and since we use functionals with high breakdown points.

2.4 The Procedure

Now we formulate a basic algorithm based on the components mentioned above. Let σ̃ be any
of the scale estimators, and m ∈ N as well as d0 ≥ d1 ≥ 0 be given constants. The input of the
algorithm is a time series yt, t ∈ N, observed subsequently in time. We set t = m + 1.

1. Set ỹt+j = yt+j and out(t + j) = 0, j = −m, . . . , m.

2. Estimate µ̃t, β̃t and σ̃t from ỹt+j, j = −m, . . . , m, using TRM and σ̃.

3. Replace all ỹt+j, j = −m, . . . , m, for which |rj | = |ỹt+j − µ̃t − jβ̃t| > d0σ̃t by µ̃t + jβ̃t +
sgn(rj)d1σ̃t and set out(t + j) = sgn(rj) for these j.

4. If #{j = −m, . . . , m : out(t + j) = 1} > m re-replace these ỹt+j and out(t + j) by yt+j and
0 respectively. Act in the same way if #{j = −m, . . . , m : out(t + j) = −1} > m.
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5. If #{j = −m, . . . , m : |out(t+ j)| = 0} < max{�m/3�, 5} reset all ỹt+j to yt+j and out(t+ j)
to zero, j = −m, . . . , m, .

6. Estimate µ̃t, β̃t and σ̃t from ỹt+j, j = −m, . . . , m, using TRM and σ̃.

7. Set ỹt+m+1 to yt+m+1 if |rm+1| = |yt+m+1 − µ̃t − β̃t(m + 1)| < d0σ̃t and to µ̃t + β̃t(m + 1) +
sgn(rm+1)d1σ̃t otherwise. Set out(t+m+1) = 0 in the former and out(t+m+1) = sgn(rm+1)
in the latter case.

8. Set t to t + 1 and go to 4.

Steps 4 and 5 have been added because of some infrequent, but severe problems with automatic
outlier replacement. It may happen that many observations are replaced within a short time
period and then the scale estimate may approach zero because of a temporary bad regression fit
or strong underestimation of the variance. Both these reasons may result in many of the incoming
observations being regarded as outliers and may cause a vicious circle when replacing them by
extrapolations. We found steps 4 and 5 to be very helpful to overcome these problems: If more than
half of the observations within the current time window have been regarded as positive (negative)
outliers and replaced by predictions, the regression line might underestimate (overestimate) the
true levels. Using the original observations which have been predicted to small (large) while still
using the replacements for the detected negative (positive) outliers might then improve the results.
If very few observations within the current time window have not been replaced by extrapolations
at all we should use all the original observations for the regression fit since possibly the variability
is strongly underestimated.

In order to simplify the simulation study in Section 3 we prove that the results do not depend
on an underlying constant trend. The following lemma states some invariance properties of a
filtering procedure as described above. For its formulation we use the operators f : R

N �→
R

2N−4m, (y1, . . . , yN )′ �→ (µ̃m+1, β̃m+1, . . . , µ̃N−m, β̃N−m)′ and σ̂ : R
N �→ R

N−2m, (y1, . . . , yN )′ �→
(σ̃m+1, . . . , σ̃N−m) which map a time series to its decomposition into local level and slope and into
local scale, respectively, obtained by application of a filtering procedure as described above.

LEMMA If a regression- and affine-equivariant regression functional T and an affine-equivariant
scale estimator σ̃ are used in the filtering procedure described above then it fulfills the following
equivariance properties, in which θ ∈ R

2 and α ∈ R are arbitrary constants:

f (αy + Xθ) = αf(y) + 1⊗ θ,

σ̂ (αy + Xθ) = |α|σ̂(y),

where y = (y1, . . . , yN )′ is the vector of all observations, X is a (N ×2)-design matrix with the first
column consisting of ones and the second column denoting the time points, 1 is an (N − 2)-dim.
vector of ones, and ⊗ denotes the Kronecker product.

Proof For the ease of notation let yt = (ỹt−m, . . . , ỹt+m)′ be the observations and Xt be the
(n × 2)-design matrix used for the regression fit in the time window centered at time point t.
Further let zj, 1 = 1, . . . , N , be the jth component of αy+Xθ, and z̃j be the corresponding value
(observed or replaced) with which we work in the algorithm, and define zt = (z̃t−m, . . . , z̃t+m)′.
In every step, if for the possibly replaced observations still holds zt = αyt + Xtθ then we have
T (zt) = αT (yt) + θ as the regression functional is regression- and affine-equivariant. Hence,
zt − XtT (zt) = α[yt − XtT (yt)], i.e. the residuals obtained from applying T to zt are α-times
those for yt, and thus we have σ̃(zt) = |α|σ̃(yt) because of the affine-equivariance of σ̃.
Using these remarks we verify the proposition by induction on t. For the initial fit in the first time
window, t = m+1, we find that each the observation in zt is detected as positive (negative) outlier
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if this is true for the corresponding observation in yt. An outlier at time point i is replaced by

z̃i = x′
iT (zt) + d1σ̃ (zt) sgn (zi − x′

iT (zt))

= x′
i (αT (yt) + θ) + d1|α|σ̃(yt)sgn (α[yi − x′

iT (yt)])

= αx′
iT (yt) + x′

iθ + d1|α|σ̃(yt)sgn(α)sgn (yi − x′
iT (yt)) = αỹi + x′

iθ

with x′
i denoting the ith row of X. Hence, after the replacements we find the same relation for the

observations as before. As we detect exactly the same time points as positive (negative) outliers for
zt as for yt, we need to do some resetting (steps 4 and 5) in exactly the same situations and again
find the same basic relation afterwards. Applying the preliminary remarks to the observations in
the time window with replacement again we find that the level, the slope and the scale approximate
at time point t = m + 1 obtained from z are αµ̃t + θ1, αβ̃t + θ2 and |α|σ̃t respectively, where µ̃t,
β̃t and σ̃t are the corresponding approximates for y.
Now consider t > m + 1 and assume that the assertion is proved for all time points up to t − 1.
When moving from t − 1 to t we first check the residual at the new time point t + m. Using the
preliminary remarks again as well as the induction assumption we see that the prediction residual
for zt+m = αyt+m + x′

t+mθ is

zt+m − x′
t+mT (zt−1) = αyt+m + x′

t+mθ − x′
t+m[αT (yt−1) + θ] = α[yt+m − x′

t+mT (yt−1)],

i.e. α-times that for yt+m, and we further have σ̃(zt−1) = |α|σ̃(yt−1). Hence, zt+m is regarded as
positive (negative) outlier iff this is true for yt+m. For the replacement we then have

αz̃t+m = x′
t+m(αT (yt−1) + θ) + d1|α|σ̃(yt−1)sgn

(
α[ỹt+m − x′

t+mT (yt−1)]
)

= αỹt+m + x′
t+mθ,

i.e. in any case we find the same basic relation as before. Moreover, we find positive and negative
outliers in the new, updated time window at the same time points when observing zt as when
observing yt. Thus, we can reason in the same way as for t = m + 1 to see that the estimates
obtained from z at time point t are αµ̃t + θ1, αβ̃t + θ2 and |α|σ̃t. �

3 SIMULATION STUDY

In the following we compare the finite-sample performance of the various versions of the procedure
based on the TRM to the TLMS without outlier replacement. We simulate data from the model

Yt = µ + t · β + Et, t = 1, . . . , N,

with µ = β = 0 as both TRM and TLMS are affine- and regression-equivariant and all scale
estimators are affine-equivariant. The errors Et are always Gaussian white noise with zero mean
and unit variance. We use a window width of n = 31 observations.

3.1 Finite-sample Correction Factors

In order to obtain finite-sample correction factors ci,k for the scale estimators i = 1, . . . , 4 when
applied to the regression residuals we generate 100000 samples for each of sizes k = 5, . . . , 31, and
calculate the corrections such that the estimators become unbiased, see Figure 1. Obviously, the
corrections for σ̃LSH and σ̃QN strongly depend on whether the sample size is odd or even.

Since we replace extreme observations in the course of the procedure these corrections may not
be sufficient after the first time window. Therefore we analyse the temporal behaviour of all
combinations of scale estimators and outlier replacement strategies generating 20000 time series of
length N = 300 each. From this we derive temporal corrections c

(S)
i,t for each time point t, scale
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Figure 1: Left: Finite-sample correction factors ci,k: σ̃MAD dash-dot, σ̃LSH solid, σ̃QN dashed,
σ̃SN dash-dot-dot-dot. Right: Temporal correction factors c

(T )
i,t for trimming, top down: σ̃MAD,

σ̃LSH , σ̃SN , σ̃QN . The smooth curves are derived by local linear smoothing of the simulated
wiggled curves using an adaptive bandwidth.

estimator i and strategy S ∈ {T, L, M, W} such that the total correction is c
(S)
i,t,k = c

(S)
i,t · ci,k. For

trimming k is n less the number of outliers detected in the current time window, while for the
other strategies we always have k = n = 31. Figure 1 also exemplifies the temporal corrections
c
(T )
i,t for trimming. All curves are increasing and stabilize after between 30 and 70 time points. For

reducing the variability we smooth the curves using a locally linear fit with an adaptive bandwidth.

In the following we report all results for the time window {70, . . . , 100} centered at t = 85 if not
stated otherwise, i.e. we use the first 69 time windows for burn-in.

3.2 Efficiency

For calculation of the finite-sample efficiencies as measured by the mean square error MSE we
generate 10000 time series of length 150 and compare the various methods for each time window.
Using the finite-sample corrections derived above we find all methods to be unbiased. As the
results stabilize rather soon after about 30 time points we concentrate on the MSE in the time
window centered at t = 85, cf. Table 1.

Table 1: N(0,1) errors: Finite-sample efficiencies relatively to least squares measured by the sim-
ulated MSE (in percent), and percentage of replaced outliers.

No outlier replacement Trimming Downsizing L

σ̃MAD σ̃LSH σ̃QN σ̃SN σ̃MAD σ̃LSH σ̃QN σ̃SN σ̃MAD σ̃LSH σ̃QN σ̃SN

level 64.3 64.3 64.3 64.3 51.4 51.5 55.4 55.3 64.3 64.4 64.6 64.5

slope 71.4 71.4 71.4 71.4 70.6 70.7 70.9 71.0 72.3 72.3 72.5 72.4

scale 35.0 39.5 66.4 54.4 23.7 25.0 50.5 38.9 33.0 36.8 62.5 51.1

outliers 0 0 0 0 2.8 2.9 1.6 1.6 2.0 1.9 1.2 1.4

Downsizing M Winsorization TLMS

σ̃MAD σ̃LSH σ̃QN σ̃SN σ̃MAD σ̃LSH σ̃QN σ̃SN σ̃MAD σ̃LSH

level 64.9 64.9 64.7 64.7 65.0 65.0 64.8 64.8 20.6 20.6

slope 73.2 72.9 73.0 72.9 73.2 73.2 73.1 73.2 21.3 21.3

scale 27.4 30.1 40.0 38.1 36.7 41.7 68.7 58.7 30.1 40.7

outliers 8.5 8.0 6.5 7.4 8.8 8.5 7.4 7.9 0 0

Obviously, the choice of the scale estimator influences the efficiency for the level and the slope only
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slightly. Trimming is less efficient than the other strategies, which are even slightly more efficient
than using no outlier replacement, but it is still much more efficient than the TLMS. W.r.t.
the scale approximation, winsorization is more efficient than using no outlier replacement, while
downsizing L is slightly worse and the others are considerably worse than the latter. Furthermore,
the efficiencies of σ̃LSH and σ̃MAD do not depend a lot on whether we apply them to the residuals
obtained from TLMS or from TRM . For the scale approximation we always find the ordering
σ̃QN >> σ̃SN >> σ̃LSH > σ̃MAD, with > denoting “better” in the sense of smaller MSE. This
ordering is well-known in the standard location-scale situation without outlier replacement.

3.3 Inliers

Some variables measured in intensive care may have low variability in comparison to the mea-
surement scale. This can result in identical measurements causing scale estimators to become
negatively biased and possibly even leads to zero estimates (“implosion”). Therefore we investi-
gate the effect of identical observations replacing an increasing number 0, . . . , 15 of observations
by zero values (“inliers”) at time points chosen at random in the window centered at t = 85. Each
of the 16 cases is simulated 10000 times and the squared bias, variance and MSE are calculated.

Since the variances of all scale estimators are slightly decreasing with increasing number of zero
measurements with minor differences only we restrict the comparison to the MSE, see Figure 2.
Downsizing M is best for all scale estimators, while the other strategies are close to each other and
better than the TLMS with either the σ̃MAD or the σ̃LSH . Within the strategies, we always find
σ̃QN > σ̃SN ≈ σ̃MAD > σ̃LSH .
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Figure 2: Increasing number of inliers, MSE for the scale: Left: Trimming with σ̃MAD x, σ̃LSH

◦, σ̃QN �, σ̃SN ∗, and TLMS & σ̃MAD 
. Right: T σ̃LSH ◦, Lσ̃LSH x, Mσ̃LSH �, Wσ̃LSH ∗, and
TLMS & σ̃LSH 
.

3.4 Small Percentage of Contamination

Next we examine the influence of a small to moderate fraction of outliers. We replace an increasing
number 0, . . . , 8 of observations by outliers of increasing size ωO ∈ {2, 4 . . . , 10} at random time
points in the window centered at t = 85. This corresponds to between 0% and 25.8% contaminated
observations. Since outliers in the previous time windows may affect the results, we also replace the
same number of observations in the preceding non-overlapping window centered at t = 54. Each
of the 25 cases is simulated 1000 times and the squared bias, variance and MSE are calculated for
the level, the slope and the scale.
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Figure 3 illustrates the results for additive outliers with random sign. We restrict to the MSE
as outliers with random sign do not cause the level and the slope approximation to be biased,
and we only depict the results for σ̃MAD and for trimming in any combination. The TRM with
outlier replacement outperforms the TLMS here. Trimming results in a slightly larger MSE for the
level than the other strategies, but it performs best for the slope. For the level and the slope, the
differences among the scale functionals are small. For the scale, downsizing L based on σ̃LSH or
σ̃MAD provides the best protection. Trimming and downsizing L based on σ̃QN or σ̃SN perform
well for large outliers but have weaknesses in case of many small outliers as they become biased
then, similarly as σ̃LSH applied to the TLMS residuals. Closer inspection reveals that for trimming
the variance increases with the number of outliers according to the reduced number of observations.

When inserting one-sided positive outliers the results are essentially the same as when we addi-
tionally insert a level shift as discussed in the next subsection.

3.5 Level Shift and Outliers

Now we additionally insert a level shift of size ωS ∈ {−10,−5,−3, 3, 5, 10} into the time window as
the occurrence of large shifts is an important problem. In intensive care, changes that last five or
more minutes are often clinically relevant [12]. Therefore, we generate a level shift by adding ωS

to the last five observations at the end of the window centered at t = 85. Additionally, we replace
an increasing number 0, 2, . . . , 8 of observations by outliers of increasing size ωO ∈ {2, 4, . . . , 10} at
random time points in the window as described before. Again, we generate 1000 samples for each
case and calculate the squared bias, variance and MSE.

Figure 4 depicts the results for a moderate shift of size ωS = 3 and positive additive outliers. The
results for the other shift sizes are very similar, also for negative shifts. Trimming gives the best
results w.r.t. the level and the slope, while downsizing L seems better than trimming for the scale
with σ̃QN being best. The TLMS shows better performance than the TRM -based methods only in
case of a substantial number of large outliers and only for the level. Closer examination shows
that the advantages of trimming for the level and the slope are due to bias as the variances of all
methods are rather stable. The differences w.r.t. the scale are mainly due to variance, although
all methods except T σ̃SN show an increasing bias for more than five outliers.

When inserting positive substitutive outliers (not shown here), the results are similar to those for
positive additive outliers. Trimming shows the best overall performance, while the TLMS offers
advantages in comparison to the TRM -based procedures for the level in case of many large outliers.
Downsizing L is again the closest competitor to trimming, particularly for the scale. The σ̃LSH

and even more σ̃QN perform very well here, especially for the slope.

When inserting a level shift and replacing an increasing number of observations by additive outliers
with random sign the results look very much like those reported in the previous subsection for the
case without a shift.

3.6 Explosion

So far we have seen that the high breakdown point methods cope rather well with 25% or less
outliers. The differences depend mainly on the strategy for outlier replacement then. However,
estimators with the same breakdown point can be very differently affected by a fraction of outliers
which is close to the breakdown point. Berrendero and Zamar [2] find the maximum asymptotic
bias of σ̃LSH for almost 50% contamination in a location-scale model to go considerably slower to
infinity than that of the other scale functionals applied here.

Figure 5 depicts the results when replacing an increasing number 7, . . . , 15 of observations by
positive outliers of size ωO ∈ {2, 4, . . . , 10}. Trimming seems better than the other strategies in

9



0
2

4
6

8

2

4

6

8

10

0

0.05

0.1

0.15

0.2

number of outlierssize

0
2

4
6

8

2

4

6

8

10

0

0.5

1

1.5

2

x 10
−3

number of outlierssize

0
2

4
6

8

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

number of outlierssize

0
2

4
6

8

2

4

6

8

10

0

0.05

0.1

0.15

0.2

number of outlierssize

0
2

4
6

8

2

4

6

8

10

0

0.5

1

1.5

2

x 10
−3

number of outlierssize

0
2

4
6

8

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

number of outlierssize

Figure 3: Small to moderate number of additive outliers with random sign, MSE for the level (top),
for the slope (middle) and for the scale (bottom): T σ̃MAD x, Lσ̃MAD ◦, Mσ̃MAD �, Wσ̃MAD ∗
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 (right).
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Figure 4: Small to moderate number of positive additive outliers and positive shift of size ωS = 3,
MSE for the level (top), for the slope (middle) and for the scale (bottom): T σ̃LSH x, Lσ̃LSH ◦,
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 (right).
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case of many outliers. Downsizing L is the only serious competitor. Among the scale functionals,
σ̃QN and σ̃LSH are superior for these two strategies, particularly w.r.t. the level and the scale.
The TLMS is best among all methods if there are more than ten large outliers. Closer examination
shows that the differences are mostly due to bias as the variances increase much slower.

The results for substitutive outliers are slightly better than those for the same number of additive
outliers presented here, but the ordering of the methods is essentially the same. The results for
outliers with random sign also not presented here are much better than those for outliers with the
same sign. Like in the case of a moderate number of outliers, trimming is worse than the other
strategies for the level, but better for the slope and the scale, while there are no big differences
among the scale estimators except for trimming, for which σ̃SN performs worse than the others.

4 APPLICATION

In the following we apply the methods to simulated and real time series for further comparison.
Because of the previous results we restrict to procedures based on trimming or downsizing L and
compare them to the TLMS .

4.1 Tracking Shifts

In online monitoring data sometimes systematic sudden shifts occur. If applied without modifi-
cations for outlier and shift detection, the TRM tends to smooth such level shifts as it becomes
increasingly biased when more than, say, 30% of the observations in the window are affected by
the shift, while the TLMS resists a shift much better [5]. Therefore we add a simple rule for shift
detection to the TRM -based procedure as we want to track sudden shifts well.

A medical rule of thumb states that five subsequent observations which are of about the same
size and differ substantially from the proceeding observations are often clinically relevant. This
suggests to use rules based on runs of outlying observations for shift detection [12]. However, this
rule of thumb does not apply in any case, and run rules are not ‘robust’ as they may fail because of
single outliers immediately after the shift. Therefore, we use another simple rule for shift detection
based on the residuals r1, . . . , rm to the right of the center of the current time window. More
precisely, we decide that a positive level shift may have happened if

m∑
j=1

I{rj>d2σ̃} >

m∑
j=1

I{rj≤d2σ̃},

i.e. if more than half of these residuals are large positive, and we use an analogous rule for
negative level shifts. The constant d2 has to be chosen as a relevant threshold. We use d2 = 2 in
the following as small shifts are usually irrelevant and influence the subsequent outcomes of the
filtering procedure less than large shifts. Using such a rule the breakdown point of the regression
functional drops down to �m/2�/n ≈ 1/4, but a shift can still be detected if �m/2� of the first m

observations after the shift are outlying.

In the following we add this rule for shift detection to the procedure between steps 6 and 7. As we
need to restart the algorithm when we detect a shift, denote in case of a positive (negative) shift
the smallest j ∈ {1, . . . , m} with rj > d2σ̃ (rj < −d2σ̃) by j1. This is the time point where we
assume the shift to have happened. We extrapolate the current trend estimate up to time point
t + j1 − 1, move the center of the time window to t + m + 1 and restart the algorithm with step 1
as there are at most �m/2� observations in the time window which have been measured before the
shift. As noted before high breakdown point methods can cope with a percentage of contamination
less than 25%. For approximating the signal at time points t + j1, . . . , t + m we extrapolate the
trend estimate derived at t + m + 1.
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Figure 5: Large number of positive additive outliers, MSE for the level (top), for the slope (middle)
and for the scale (bottom): T σ̃MAD x, T σ̃LSH ◦, T σ̃QN �, T σ̃SN ∗ (left), and Lσ̃MAD x, Lσ̃LSH

◦, Lσ̃QN �, TLMS & σ̃LSH 
 (right).
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There is a lot of space for improvement of shift detection as the minimal time delay of the previous
rule is �m/2�+1. Complimentary run rules could be added for instance to speed up shift detection.
Note, however, that it takes some time to distinguish outlier patches from level shifts anyway.

4.2 Time Series with Shifts

First we discuss a simulated time series of length 500 comparing the outcomes of the filtering
procedures to the ‘true’ values, see Figure 6. The time series is generated from Gaussian white
noise with unit variance, and a deterministic trend period as well as two level shifts of size 4
and 6 respectively have been inserted. Moreover, patches of 4 (2×), 3 (4×), 2 (9×) and 1 (12×)
subsequent observations have been replaced by positive additive outliers of size 6, i.e. there are
10% outliers altogether.

Downsizing L with any of the scale functionals overestimates the signal right after the end of the
trend period because of an outlier patch. Every version of the procedure detects the level shifts
and times them correctly at t = 300 and t = 400, while the TLMS slightly increases before the
first downward shift and then drops down to early. The slope approximation based on the TLMS

is more volatile than that based on the TRM , and it is much more affected by the shifts and the
outlier patches. Generally, trimming performs superior here. We got similar results for other time
series simulated from similar models.

4.3 Real Time Series

The second example is a real physiologic time series representing heart rate (Figure 7). An experi-
enced physician found a clinically relevant downward trend and some irrelevant outlier patches in
this time series. Here, we compare the performance of the trimming based methods. As opposed to
applying TRM without replacement [5] the positive outliers do not cause the TRM in combination
with trimming based on σ̃LSH , σ̃QN or σ̃SN to overestimate the signal, while using σ̃MAD results
in a spurious increase at t = 170. The TLMS exhibits a large spike at t = 63 due to a special
pattern in the data. The slope approximates almost constantly signal a monotonic decrease up
to t = 140, while they vary about zero thereafter when using the TRM with trimming. Only for
σ̃MAD we get a large negative slope at about t = 180. Again the TRM outperforms the TLMS,
which is more volatile and strongly influenced by some patterns in the data.

4.4 Time Series with Non-Linear Trend

Finally, we apply the methods to a simulated time series of length 600 with an underlying sinusoidal
trend µt = 5 sin(π/400)1t≤400 − 5 sin(π/200)1t>400, that is overlayed by N(0, 1) noise. 10% of the
observations are disturbed by additive N(0, 9) outliers organized in patches of 4 (3×), 3 (6×), 2
(10×) and 1 (10×) subsequent outliers. All outlier sizes are generated independently, also within
the patches, for getting a very distinct scenario to those considered before. We note that Section
3 trimming showed its main weaknesses in the case of two-sided outliers considered here.

Figure 8 depicts the results for trimming with σ̃QN . The results for σ̃LSH or downsizing L are
very similar. Application of the TRM with either of these combinations reproduces the underlying
non-linear trend well, there are only some small problems with the minimum and the maximum of
the signal. The TLMS is again much more volatile with some superfluous bumps.

5 CONCLUSION

The extraction of an underlying signal from noisy data is a basic task for automatic online mon-
itoring. We have found that the repeated median suggested in [5] can be further improved by
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online outlier replacement using high breakdown point scale estimators. Although downsizing can
be better if there is a moderate number of positive and negative outliers, trimming seems generally
superior as it can almost achieve the high robustness of the least median of squares even in extreme
outlier situations. W.r.t. the choice of the scale estimator there apparently are better choices than
the classical MAD. The σ̃QN shows excellent performance for outliers of similar size, e.g. when
a level shift occurs. The reason might be that σ̃QN seems well-adapted to mixtures of shifted
distributions. If there are many large outliers of different sizes, however, using σ̃LSH is better
as it provides stronger worst-case protection. Such combined procedures seem preferable to the
LMS because of the better performance in case of a moderate number of outliers and the smaller
computational costs. Reliable rules for shift detection can be based on the regression residuals,
and trends might be detected from the sequence of slope approximates.

Identical measurements due to small variability may cause problems for automatic outlier replace-
ment. We suggest using σ̃QN then and have proposed some modifications which work very well at
least in case of normal errors. An automatic procedure can still fail e.g. when all measurements in
the time window are identical. Increasing the window width may sometimes help but is not always
possible as it increases the time delay. In some applications we have an idea about a minimal
variability in the data or a minimal relevant outlier and shift size which can be incorporated in
the algorithm. Otherwise, one might add uniform noise according to the measurement scale both
to the observations and the replacements.
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