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Abstract  

 

In this entry we seek to put into perspective some of the ways in which statistical methods 
contribute to modern engineering practice. 

 
 

Engineers design and oversee the production, operation, and maintenance of the products 

and systems that under-gird modern technological society.  Their work is built on the 
foundation of physical (and increasingly biological) science.  However, it is of necessity 

often highly empirical, because there simply isn’t scientific theory complete and simple 
enough to effectively describe all of the myriad circumstances that arise even in 

engineering design, let alone those encountered in production, operation, and 

maintenance.  As a consequence, engineering is an inherently statistical enterprise.  

Engineers must routinely collect, summarize, and draw inferences based on data, and it is 

hard to think of a statistical method that has no potential use in modern engineering.  
 

The above said, it is possible to identify classes of statistical methods that have 

traditionally been associated with engineering applications and some that are increasingly 

important to the field.  This encyclopedia entry will identify some of those and indicate 

their place in modern engineering practice, with no attempt to provide technical details of 

their implementation. 
 

Statistics and Measurement 

 

It is nearly self-evident that if one is to design, build, and run technological systems and 

devices, one must be able to measure.  And particularly when new systems are on the 
“leading edge” of technology, how to measure can be a serious issue.  While statistics 

offers no direct help in suggesting physical mechanisms to exploit, it does offer important 

methodologies for quantifying and improving the quality of measurements.  (The long-

standing presence of a statistical group in the US National Institute of Standards and 

Technology testifies to this importance.  And in passing we remark that this group’s 

                                                 
*
 The financial support of the Deutsche Forschungsgemeinschaft (SFB 475, "Reduction of 

Complexity in Multivariate Data Structures") through the University of Dortmund is 
gratefully acknowledged.  The author thanks Max Morris, Bill Meeker and Huaiqing Wu 

for their comments on an ear lier draft of the entry. 



 2

online NIST/SEMATECH e-Handbook of Statistical Methods,  
http://www.itl.nist.gov/d iv898/handbook/ [8] provides widely accessible current 

information on statistical methods useful to engineers, in measurement problems and 
beyond.) 

 
One fundamental class of statistical problems in engineering measurement concerns the 
quantification of measurement precision (variability) and identification of important 

contributors to random measurement error.  Random effects models and corresponding 
estimation of variance components are useful statistical tools in these endeavors.  The 

particular context where several different technicians will use a measurement device and 
there is interest in quantifying respectively both a baseline “repeat measurement of the 

same item by a single technician” variance component and a “between technicians” 

variance component, is known as the “gauge repeatability and reproducibility” (gauge 
R&R) problem in engineering and quality control circles.  (See, for example, Vardeman 

and Van Valkenburg [15].) 
 

A second fundamental type of statistical problem in engineering measurement is that of 

adjusting the output of a measurement device to agree (on average) with that of a state-

of-the-art or “gold standard” device (or some fixed standard value).  This is the 

calibration problem, and calibration is aimed at the reduction of systematic measurement 
error or bias, i.e. the improvement of measurement accuracy.  (Osborne [9] provides a 

nice review of statistical methodology appropriate in calibration problems and available 

through the early 1990’s.)  Various forms of regression analysis are common tools in this 

enterprise and it is worth noting that since most often one regresses “new” measurements 

on gold-standard measurements or standard values, transformation of measurements to 
standard values involves an “inverse prediction.”  Accordingly, typical confidence limits 

for a standard value corresponding to a given new measurement come from inversion of 

families of prediction limits for a new measurement not contained in a calibration data 

set. 

 

As measurements themselves become more complicated (for example moving from 
single real numbers, to approximate chemical spectra produced by mass spectrometers or 

to probe paths and approximate coordinates of “touch points” in space produced by 

coordinate measuring machines) the potential for application of methods of multivariate 

analysis and functional data analysis becomes clear.  The recognition of other real 

characteristics of measurements like their digital or rounded nature (their imperfect 
resolution) point to the need for increasingly sophisticated statistical modeling and 

inference methods.  And the need for efficient and effective data collection in 
measurement studies suggests the relevance of methods of statistical experimental design 

in this area. 

 
Statistics and Empirical Optimization 

 
Engineering practice is subject to tremendous economic pressure.  Engineering designs 

must be produced quickly and cheaply, and the products designed must be both highly 
effective and cheap to make, while the systems that produce them must be made to run at 
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high efficiency.  All of this (and the lack of comprehensive scientific knowledge adequate 
to describe and evaluate the implications of every possible engineering alternative) 

implies the engineering need for methods of empirical optimization. 
 

This need has long been recognized and addressed in the traditional engineering statistics 
teaching emphasis on experimental design and analysis.  Methods of factorial and 
fractional factorial design and analysis, and so-called “response surface methodology” 

(empirical optimization strategies based on statistical experimental design and low order 
multivariate polynomial regression) have long had their place.  (See, for example, Box 

and Draper [2].)  Until fairly recently, the bulk of applications of these methods has 
probably been to the improvement of existing physical production processes.  But 

statistical tools are increasingly finding application “upstream” in engineering research 

and design, even in contexts where “data” are not measurements on real physical 
systems, but rather outputs of sometimes expensive-to-run computer codes for 

mathematical models of potential systems.  This last possibility goes in the statistical 
literature under the name of design and analysis of “computer experiments” and its 

methodology has connections to both classical experimental design theory and modern 

spatial statistics.  (See, for example, Santner, Williams, and Notz [11], Sacks et. al [10], 

and Currin et. al [3].) 

 
Statistics and Empirical Product and Process “Robustification” 

 

Related to, but not equivalent to, the notion of optimization is that of making a product or 

process “robust”/able to function appropriately across a wide variety of environments and 

over time.  The engineering need for methods of statistical experimental design and 
analysis to support the empirical search for robust product and process configurations 

was first effectively emphasized in the west in the mid 1980’s by Genichi Taguchi.  Since 

that time, a sizeable statistical literature has grown up in “Taguchi methods.”  This 

includes advances in both special forms of highly fractional experimental designs 

(purposely chosen to vary rather than control “noise”/environmental factors) and in 

modeling and inference for contexts where both mean and variance of response change 
with levels of factors whose levels are to be set in choosing a product or process design.  

(The panel discussion of Nair, et. al [6] is a basic early reference in this area.) 

 

Statistics and Process Monitoring 

 
One of the main subject areas traditionally clearly identified as part of  “engineering 

statistics” is “statistical process control.”  The traditional tacit assumptions have been that 
the main application of the methodology was to production, the most common tools were 

Shewhart control charts, and the fundamental idea (dating at least to Shewhart and the 

1920’s) was that production equipment should minimally behave as if it were “stable” 
(consistent up to iid random variation).  The traditional techniques of statistical process 

control have thus been aimed at detection of process change for iid processes. 
 

In the past decade or two, standard simple tools of statistical process monitoring have 
found application in many business contexts beyond the engineering domain (finding 
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prominent places in Total Quality Management and Six Sigma programs for business 
process improvement), and engineering applications have broadened considerably (for 

example including regular use in the ongoing monitoring of the stability of measurement 
processes and the condition of mechanical equipment in preventative maintenance).  In 

statistically sophisticated circles, theoretically superior alternatives to Shewhart charts 
(particularly CUSUM schemes and their variants) have been developed and promoted, 
though evidence of widespread implementation of these is lacking.  And there has been 

some recent work in engineering process monitoring taking a broader (than iid/white 
noise) view of what is acceptable null process behavior (that could perhaps be better 

informed by closer ties to the economic time series literature and its work on change 
detection). 

 

The usual engineering meaning of the phrase “process control” is something different 
from the monitoring/detection-of-fundamental-change technology of statistical process 

monitoring.  Most engineers (particularly mechanical, chemical and electrical engineers) 
understand the terminology to refer to methods (often based on quite sophisticated 

mathematical modeling) of ongoing adjustment of inherently dynamical systems.  There 

have been some efforts on the part of statisticians to provide integrations of methods of 

“engineering control” and “statistical control” (see for example Tucker, Faltin and 

Vander Wiel [12]).  These have had limited impact in engineering practice, due in no 
small part to difficulty statisticians face in acquiring the very specialized and case-by-

case subject-matter process knowledge and background in control theory needed to first 

understand real engineering control systems. 

 

Statistics and Process Characterization 
 

Much of modern engineering is done in contexts where multiple devices or systems of a 

given design will be made.  (While one-of-a kind engineering applications exist, they do 

not predominate.)  As such, various forms of data-based process characterization are 

important to engineers.  In some situations simple estimation of process parameters or 

functions of those (often called “capability indices”) suffices.  But it is also common to 
want data-based limits for likely values of either single new process outcomes or the bulk 

of all future process outcomes.  So there is a long tradition of the use of prediction and 

tolerance intervals in engineering statistics (that, curiously enough, is largely unparalleled 

in other application areas). 

 
Statistics and Reliability/Life Data Analysis 

 
The issue of engineering reliability is that of how long a device or system can be 

expected to function before some kind of partial or complete failure.  Where reliability is 

to be measured based on observed lifetime data, statistical methodology for single 
lifetime distributions like the Weibull, lognormal, and log-logistic models has been 

standard in engineering applications.  Where systems are “repairable,” inference methods 
for point processes (for example, renewal processes, and where there is the possibility of 

reliability growth or degradation, nonhomogenous Poisson processes) have found 
applications.  There is some commonality of statistical methodology between this area 
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and the area of medical survival analysis, and methods recognizing the presence of 
various kinds of censoring in data collection are essential.  A comprehensive reference in 

the general area of life data analysis is Meeker and Escobar [4] and Meeker and Escobar 
[5] provide a very broad discussion of ways in which statistical thinking and tools can 

contribute to reliability engineering efforts, from the early design stage through the 
analysis of field warranty data. 
 

Two emphases that are increasingly important in engineering life data analysis are the use 
of degradation data and the planning and analysis of accelerated life tests.  That is, where 

the failure of a device or system can be characterized in terms of the value(s) of one or 
more measurements and it is possible to model and collect informatio n on the evolution 

of these over time, there is the possibility of making inferences superior to those based 

only on simple times to failure.  (See, for example, Chapter 13 of Meeker and Escobar 
[4]).  And in contexts where engineers aim to develop highly reliable products whose 

typical lifetimes must exceed the length of any sensible product development cycle, the 
only means of empirical testing of prototypes is to subject them to environments more 

severe than a normal-use environment and try to extrapolate normal-use life 

characteristics from “accelerated stress” life characteristics.  Methods of statistical 

inference (lifetime model regression techniques) and study planning (experimental design 

optimization tools for lifetime regression models) have proved helpful in making the 
engineering work more systematic and efficient, particularly in applications in the 

electronics industry where good simple models exist for the effects on lifetime of typical 

stress factors, and per-unit test costs are relatively low.  (Nelson [7] and Chapters 17 

through 20 of Meeker and Escobar [4] are standard references here.) 

 
Statistics and (Sampling) Inspection and Acceptance Sampling 

 

In production contexts, there is typically a need to verify that a particular item or a 

product stream or lot of items meets performance/conformance goals of the producer 

and/or a consumer.  Where one admits that individual conformance assessments are 

subject to uncertainty (possibly, as in Albers, Arts, and Kallenberg [1], because only 
indirect measurement of primary performance characteristics is possible or desirable) or 

only some of all items of interest will be inspected, statistical methods become useful.  

Traditionally, this was evident in the prominent place of methods of acceptance sampling 

in the engineering statistics literature.  While this prominence has (appropriately) waned 

(see Vardeman [14] and Vander Wiel and Vardeman [13] in this regard), there remains 
an important role for statistics in the general area of the collection and interpretation of 

product inspection data. 
 

Probabilistic Analyses 

 
While most standard engineering analysis is deterministic, there are some areas where 

stochastic models are used and even fundamental.  To the extent that many engineering 
statisticians know a fair amount of probability, they have the potential to contribute to 

stochastic analysis in engineering.  Some of the engineering contexts in which the 
usefulness of stochastic modeling is well-established include: tolerancing problems, 



 6

system reliability prediction and retrospective “fault-tree” analysis, project planning and 
analysis, production process modeling and queuing, inspection efficacy in 

“nondestructive evaluation,” and signal processing.  In some of these contexts, analytical 
methods are well developed and common.  In others, Monte Carlo methods provide the 

primary path forward to improved engineering insight. 
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