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Summary. For the compartmental model we determine optimal designs, which are
robust against misspecifications of the unknown model parameters. We propose a
maximin approach based on D-efficiencies and provide designs that are optimal with
respect to the particular choice of various parameter regions.
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1 Introduction

We consider the compartmental model, which is commonly applied in the
chemical sciences and pharmacokinetics as far as two-step reactions are con-
cerned (see, e.g., [BL59] or [GP82]). Suppose a substance A decomposes
to form substance B which then in turn decomposes to form substance C.
Assuming irreversibility of the reactions, an observation Y quantifying the
amount of intermediate product B after time x ≥ 0 has elapsed is modelled
as Y = η(x, θ) + ε, where the regression function η(x, θ) is defined as

η(x, θ) =
θ1

θ1 − θ2

(
e−θ2x − e−θ1x

)
, (1)

and θ1 > θ2 > 0 denote unknown constants measuring the specific rates of the
first and second decomposition, respectively. Assuming that the observation
errors ε are independent from an exponential family with zero expectation and
constant variance σ2, we find that the Fisher information I(x, θ) for estimating
the parameter θ = (θ1, θ2)T at time x is given by the expression

I(x, θ) = f(x, θ)fT (x, θ), (2)
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where f(x, θ) = (f1(x, θ), f2(x, θ))T is the gradient of the regression function
with respect to θ, i.e.

f1(x, θ) =
θ2(e−θ1x − e−θ2x) + (θ1

2x − θ1θ2x)e−θ1x

(θ1 − θ2)
2 ,

f2(x, θ) = −θ1(e−θ1x − e−θ2x) + (θ1
2x − θ1θ2x)e−θ2x

(θ1 − θ2)
2 . (3)

An (approximate) design ξ is a probability measure with finite support on
IR+

0 , i.e. the observations are taken at the support points of the measure
proportional to the corresponding masses. The Fisher information matrix of
the design ξ is given by

M(ξ, θ) =
∫ ∞

0

I(x, θ) dξ(x), (4)

and an optimal design maximizes a real-valued function of the Fisher infor-
mation matrix, which is usually referred to as an optimality criterion (see,
e.g., [Sil80]). A typical example is D-optimality where the determinant of the
Fisher information is maximized with respect to the design ξ, thus minimizing
the (first order approximation of the) volume of the ellipsoid of concentration
for the parameter θ.

Since an appropriate choice of the experimental conditions can improve the
quality of the statistical inference substantially, much effort has been devoted
to the problem of finding optimal designs for the compartmental model (see,
e.g., [ACHJ93], [BL59], [DOB99], [HW85] or [HH74]). The Fisher information
and thus the optimal designs with respect to the common optimality criteria
depend on the unknown parameter. Following [Che53], several authors assume
that an initial guess of θ is available and determine so-called locally optimal
designs (see [BL59] or [HH74]). However, misspecifications of the parameter
for a locally optimal design can lead to poor results in the subsequent data
analysis. A more robust alternative is to assume sufficient knowledge of θ to
specify a prior distribution for this parameter and to average the respective op-
timality criteria over the plausible values of θ defined by the prior. This leads
to so-called Bayesian optimality criteria (see, e.g., [ACHJ93] or [PW85]). As
an alternative for the construction of robust designs, we propose a maximin
approach based on D-efficiencies, which only requires the specification of a
certain range for the unknown parameter. We feel that this is a more realistic
scenario since practitioners will often have difficulties to specify a prior dis-
tribution for the unknown parameter θ. In section 2, we provide some insight
in the structure of locally D-optimal designs for the compartmental model.
In section 3, we define the standardized maximin D-optimality criterion, de-
termine various designs optimal with respect to the maximin criterion and
investigate the properties of these optimal designs. It turns out that in many
cases the standardized maximin D-optimal designs are supported on three
points so that they can also be used for model checking.
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2 Locally D-optimal designs

We commence our investigation of the locally D-optimal designs by presenting
a result relating D-optimal designs with respect to several parameter combi-
nations, thus yielding a substantial simplification of the optimization problem.

Lemma 1. Let x∗(θ) denote the vector of support points of the locally D-
optimal design with respect to the parameter θ. Then

x∗(γθ) =
1
γ

x∗(θ)

for any γ > 0. Moreover, the locally D-optimal designs with respect to the pa-
rameters θ and γθ have the same weights at the corresponding support points.

Proof. A straightforward calculation using (2) and (3) gives

I(x, γθ) =
1
γ2

I(γx, θ).

We thus obtain

det
∫

I(x, γθ) dξ(x) =
1
γ4

det
∫

I(γx, θ) dξ(x) =
1
γ4

det
∫

I(x, θ) dξ̃(x),

where the design ξ̃ is given by ξ̃({x}) = ξ({γx}). �

By Lemma 1 it is sufficient to compute locally D-optimal designs with
θ1 = 1, since the optimal designs with respect to any other parameter can
easily be obtained from these designs by rescaling.

Numerical calculations suggest that the locally D-optimal designs in the
compartmental model are supported on exactly two points. Furthermore, min-
imally supported D-optimal designs are equally weighted, which is a standard
result in design theory (see, e.g., [Sil80], Lemma 5.1.3). Some locally D-optimal
designs for several representative situations with respect to the choice of θ are
listed in Table 1.

Table 1. The support points x∗
1, x

∗
2 of the locally D-optimal designs ξ∗ =

{x∗
1, x

∗
2; 1/2, 1/2} with respect to the parameter θ = (1, θ2)

T .

θ2 x∗
1 x∗

2 θ2 x∗
1 x∗

2 θ2 x∗
1 x∗

2

0.1 0.9283 11.0171 0.4 0.8186 3.9018 0.7 0.7164 2.8599
0.2 0.8907 6.1603 0.5 0.7825 3.4353 0.8 0.6868 2.6634
0.3 0.8554 4.6515 0.6 0.7483 3.1076 0.9 0.6594 2.5020

As an interesting result from Table 1 we obtain that a large distance
between θ1 and θ2 results in relatively large support points of the locally D-
optimal designs ξ∗. In the following lemma, we show a result on the asymptotic
behavior of the design ξ∗ when θ2 tends to its upper boundary.
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Lemma 2. If limθ2↗1 θ2 = 1 = θ1 the locally D-optimal design ξ∗ =
ξ∗(θ2) converges weakly to the design {(3 +

√
3)/2, (3 − √

3)/2; 1/2, 1/2} =
{0.634, 2.366; 1/2, 1/2}, which is D-optimal for the linear regression model

Y = a1(x − x2

2
)e−x + a2

x2

2
e−x + ε.

Proof. Let θ2 = 1 − z. By a Taylor expansion at the point z = 0 we obtain

f1(x, θ) = (x − x2

2
)e−x + o(z), f2(x, θ) = −x2

2
e−x + o(z),

and the assertion follows. �

So far, we have considered design regions for the time x, which are un-
bounded, i.e. the time x is allowed to vary from zero to infinity. However, in
many situations there exists a boundary, xmax say, on the maximal amount
of time that is feasible for the particular experiment. In this case, Lemma 1
has to be modified appropriately, i.e. if ξ∗ = (xi; wi) is locally D-optimal with
respect to the parameter θ on the design space [0, xmax], then ξ∗γ = ( 1

γ xi; wi)
is locally D-optimal with respect to the parameter γθ on the design space
[0, 1

γ xmax]. Table 2 gives several examples of locally D-optimal designs for
the compartmental model (1) with a restricted design space. The efficiencies
(eff) of the restricted designs ξ∗xmax

are given by the square root of the ratio of
their particular criterion value and the criterion value of the locally D-optimal
design ξ∗ with respect to an unrestricted design interval.

Table 2. Locally D-optimal designs with respect to several restricted design spaces
[0, xmax] and different values of θ.

θ = (1, 0.5)T θ = (1, 0.1)T θ = (1, 0.05)T

xmax x∗
1 x∗

2 eff xmax x∗
1 x∗

2 eff xmax x∗
1 x∗

2 eff

∞ 0.783 3.435 1 ∞ 0.928 11.017 1 ∞ 0.958 21.004 1
3 0.758 3 0.979 10 0.928 10 0.994 19 0.958 19 0.995
2.5 0.713 2.5 0.891 8 0.932 8 0.944 15 0.958 15 0.945
2 0.646 2 0.728 6 0.936 6 0.820 11 0.958 11 0.824
1.5 0.548 1.5 0.495 4 0.914 4 0.589 7 0.963 7 0.603
1 0.410 1 0.240 2 0.717 2 0.224 3 0.875 3 0.234
0.5 0.228 0.5 0.049 1 0.436 1 0.053 1 0.441 1 0.027
0.25 0.120 0.25 0.008 0.5 0.236 0.5 0.009 0.5 0.236 0.5 0.005

Observing the entries of Table 2, we notice that if the largest support point of
the unrestricted D-optimal design ξ∗ is larger than xmax the boundary itself
is in the support of ξ∗xmax

. Moreover, the efficiencies of the restricted optimal
designs decrease considerably with decreasing xmax. As a consequence, we
suggest using the unrestricted design whenever possible, else trying to choose
the boundary xmax as large as possible from the experimental circumstances.
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3 Standardized maximin D-optimal designs

Following [Mü95] or [Im01] we propose as robust designs for the compartmen-
tal model designs, which maximize the minimal D-efficiency calculated over
a certain range for the parameter θ, thus protecting the experiment against
the worst case scenario. That means that we maximize the expression

Ψ−∞(ξ) = inf
θ∈Θ

[(
detM(ξ, θ)
detM(ξ∗θ , θ)

)1/2]
, (5)

where, throughout this article, ξ∗θ denotes the locally D-optimal design with
respect to θ. A design maximizing Ψ−∞(ξ) is called standardized maximin
D-optimal (with respect to Θ). The parameter space Θ of possible values of
θ has to be specified in advance by the experimenter. An advantage of this
approach compared to a Bayesian setup is that it is not required to specify a
prior distribution for the unknown parameter θ, which is not possible in all
circumstances. The only ”prior knowledge” needed to use the standardized
maximin D-criterion is an approximate range Θ for the parameter θ.

A powerful tool for checking maximin optimality of a design is an equiva-
lence theorem, which can be found in [DHI03].

Theorem 1. A design ξ∗ is standardized maximin D-optimal with respect to
Θ if and only if there exists a prior π∗ supported on the set

N (ξ∗) =
{

θ ∈ Θ | Ψ−∞(ξ∗) =
(

detM(ξ, θ)
detM(ξ∗θ , θ)

)1/2}

such that the inequality

d(ξ∗, x) =
∫
N (ξ∗)

fT (x, θ)M−1(ξ∗, θ)f(x, θ) dπ∗(θ) ≤ 2 (6)

holds for all x within the design space, where f(x, θ) = (f1(x, θ), f2(x, θ))T is
given in (3). Moreover, there is equality in (6) for all support points of the
design ξ∗.

The designs given in the following discussion were calculated numerically and
then their optimality was carefully checked by the above theorem.

There are two obvious ways, in which a parameter space Θ can be specified.
On the one hand, it might be sensible to assume a one-dimensional closed
interval as an admissible range for each parameter. Since the inequality θ1 >
θ2 > 0 always holds, that means that Θ is given by a closed rectangle in the
positive half plane, i.e. Θ = Θ(z1, z2, z3, z4) := [z1, z2] × [z3, z4], zi > 0, z1 >
z4. On the other hand, the fact that θ1 > θ2 can result in a triangular region
Θ, i.e. Θ = Θ(z1, z2) := {(z1, z2)|0 < z1 ≤ θ2 < θ1 ≤ z2}.

The following lemma applies Lemma 1 to simplify the maximin optimiza-
tion problem for Θ from the above-mentioned cases considerably.
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Lemma 3. Denote by x∗
i = x∗

i (z1, . . . , zj) the support points of the standard-
ized maximin D-optimal design with respect to Θ(z1, . . . , zj), j = 4 or j = 2.
For any γ > 0 the design with the same weights and support points 1

γ x∗
i is

Ψ−∞-optimal with respect to the parameter space γΘ = Θ(γz1, . . . , γzj).
If xi denote the support points of the Ψ−∞-optimal design with respect to Θ

on the restricted design space [0, xmax], then the design with the same weights
and support points 1

γ xi is Ψ−∞-optimal with respect to γΘ on [0, 1
γ xmax].

Proof. The standardized maximin D-optimal design with respect to γΘ can
be obtained by maximizing

min
θ∈γΘ

det
∫ xmax

0 I(x, θ) dξ(x)
det

∫ xmax

0 I(x, θ) dξ∗θ (x)
= min

θ∈Θ

det
∫ xmax

0 I(x, γθ) dξ(x)
det

∫ xmax

0 I(x, γθ) dξ∗θ (x)

= min
θ∈Θ

1
γ4 det

∫ xmax

0
I(γx, θ) dξ(x)

1
γ4 det

∫ xmax

0 I(γx, θ) dξ∗θ (x)
= min

θ∈Θ

det
∫ xmax

γ

0 I(x, θ) dξ̃(x)

det
∫ xmax

γ

0 I(x, θ) dξ∗γθ(x)
,

where the design ξ̃ is derived from ξ by the relation ξ̃({x}) = ξ({γx}).
The above equalities are obtained by direct calculations on the entries of
I(x, θ), whereas the last transformation in the denominator is an application
of Lemma 1. �

In Tables 3 and 4 we present some Ψ−∞-optimal designs corresponding
to rectangular parameter regions. The term min effD stands for the criterion
value of the optimal design. The intervals [z1, z2], [z3, z4] in Table 3 are chosen

Table 3. Standardized maximin D-optimal designs ξ∗ for the compartmental model
with unrestricted design space with respect to various rectangular parameter spaces.

z1 z2 z3 z4 x1 x2 min effD z1 z2 z3 z4 x1 x2 min effD

0.7 0.8 0.3 0.4 1.06 4.78 0.983 0.9 1.1 0.2 0.5 0.86 4.40 0.891
0.9 1.0 0.3 0.4 0.88 4.33 0.986 2.2 2.8 0.2 0.5 0.37 3.47 0.885
0.9 1.1 0.3 0.4 0.84 4.25 0.978 2.2 2.8 0.2 0.7 0.37 2.94 0.809
0.9 1.1 0.3 0.5 0.83 3.95 0.954 2.0 3.0 0.2 0.7 0.37 2.93 0.787

relatively small. In this case, the Ψ−∞-optimal designs are supported on two
points and equally weighted. For the examples in Table 4 we choose larger pa-
rameter regions Θ, thus obtaining optimal designs supported on three points.
Results for triangular parameter regions are depicted in Table 5.

In our numerical study, we observe that standardized maximin D-optimal
designs with respect to rectangular or triangular parameter spaces have at
most three support points. A third support point appears if a large parameter
space is chosen. In some cases a relatively small number of different stages for
the experiment can reduce costs considerably. Moreover, three design points
still allow model checking to some extent.
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Table 4. Standardized maximin D-optimal designs ξ∗ for the compartmental model
with unrestricted design space with respect to various rectangular parameter spaces.

z1 z2 z3 z4 x1 x2 x3 w1 w2 w3 min effD

2 3 0.2 0.8 0.37 2.28 4.69 0.50 0.35 0.15 0.755
2 3 0.2 0.9 0.35 1.97 4.80 0.49 0.32 0.19 0.736
2 3 0.2 1 0.35 1.63 5.14 0.50 0.29 0.21 0.727
2 3 0.1 1 0.38 1.85 7.88 0.54 0.25 0.20 0.661

Table 5. Standardized maximin D-optimal designs for the compartmental model
with unrestricted design space with respect to various triangular parameter regions.

z1 z2 x1 x2 x3 w1 w2 w3 min effD

1 2 0.44 1.64 0.50 0.50 0.822
0.5 1 0.88 3.28 0.50 0.50 0.822
0.4 1 0.79 2.43 5.76 0.38 0.39 0.22 0.761
1 3 0.25 0.84 2.18 0.35 0.41 0.24 0.740
0.3 1 0.83 2.61 7.15 0.36 0.41 0.22 0.728

We, finally, deal with the problem of finding standardized maximin D-
optimal designs on a restricted design space. The results which are similar for
rectangular and triangular parameter regions Θ are given in Tables 6 and 7.

Table 6. Standardized maximin D-optimal designs for the compartmental model
with respect to various rectangular parameter regions on restricted design spaces.

Θ = [0.8, 1.2] × [0.2, 0.5] Θ = [2, 3] × [0.2, 1]

xmax x1 x2 min effD xmax x1 x2 x3 w1 w2 w3 min effD

∞ 0.86 4.41 0.854 ∞ 0.36 1.64 5.29 0.50 0.29 0.21 0.727
4 0.79 3.89 0.943 4 0.35 1.69 4 0.51 0.28 0.21 0.741
3 0.79 3 0.984 3 0.35 1.85 3 0.49 0.31 0.20 0.785
2 0.67 2 0.992 2 0.33 1.91 0.5 0.5 0.909
1 0.42 1 0.998 1 0.31 1 0.5 0.5 0.986
0.5 0.23 0.5 1.000 0.5 0.20 0.5 0.5 0.5 0.996

Unlike our observations concerning locally D-optimal designs, we find that
the largest support point of the restricted maximin optimal designs is not
always given by the boundary value xmax. Another noticeable aspect is that
in both the rectangular and the triangular case the number of support points of
the restricted design decreases with decreasing the boundary xmax. Moreover,
the D-efficiencies increase with decreasing xmax.
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Table 7. Standardized maximin D-optimal designs for the compartmental model
with respect to various triangular parameter regions on restricted design spaces.

z1 = 0.5, z2 = 1 z1 = 0.3, z2 = 1

xmax x1 x2 min effD xmax x1 x2 x3 w1 w2 w3 min eff

∞ 0.88 3.28 0.82 ∞ 0.83 2.62 7.12 0.36 0.41 0.22 0.728
3 0.78 2.91 0.93 5 0.75 2.25 5 0.33 0.41 0.26 0.759
2 0.68 2 0.98 3 0.81 3 0.5 0.5 0.904
1 0.42 1 0.99 2 0.73 2 0.5 0.5 0.963
0.5 0.23 0.5 0.99 1 0.44 1 0.5 0.5 0.979
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