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Abstract

The problem of constructing standardized maximin D-optimal designs for weighted
polynomial regression models is addressed. In particular it is shown that, by following
the broad approach to the construction of maximin designs introduced recently by Dette,
Haines and Imhof (2003), such designs can be obtained as weak limits of the correspond-
ing Bayesian Φq-optimal designs. The approach is illustrated for two specific weighted
polynomial models and also for a particular growth model.
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1. Introduction

There has been considerable interest in recent years in the construction of optimal designs

for weighted polynomial regression models (see e.g. Haines, Dette and Imhof (1999), Imhof

(2001), and references therein). The essential problem within this setting is that the Fisher

information matrix for the regression parameters depends, not on the regression parameters

themselves, but rather on the unknown parameters describing the heteroscedasticity of the

model. There are three broad approaches to this problem, all based on constructing designs

which in some sense optimize a function of the information matrix. In particular it is common,

following Chernoff (1953), to assume a “best guess” for the unknown parameters and to con-

struct a “locally” optimal design. Such designs are however not necessarily robust to the choice

of parameter value. A more flexible approach involves invoking the Bayesian paradigm and

averaging an appropriate criterion based on the information matrix over a prior distribution

on the parameters (Chaloner and Verdinelli (1995)). This approach is also somewhat restric-

tive in the sense that the resultant designs can depend quite strongly on the choice of prior

distribution. Alternatively, and less stringently, it is possible to adopt a maximin strategy and,

specifically, to consider maximizing the minimum of a function of the information matrix taken

over a specified range of the unknown parameters (Silvey (1980), p. 59))

The maximin approach is, arguably, the most appealing of the three approaches described

above. However maximin criteria are not differentiable, the attendant Equivalence Theorems

are difficult to invoke in practice and as a consequence the problem of constructing the asso-

ciated maximin optimal designs is a challenging one (see e.g. Wong (1992), Müller (1995) and

Wiens (1998)). A number of methods for constructing maximin designs have been proposed in

the literature. In particular Sitter (1992), King and Wong (2000) and Fandom Noubiap and

Seidel (2000) present algorithms for the construction of maximin designs which can be imple-

mented numerically. Further Haines (1995), Imhof (2001) and Biedermann and Dette (2003a)

derive explicit expressions for maximin designs for certain model settings but the underlying

arguments are mathematically intricate and also case-specific. A particularly attractive ap-

proach to the construction of maximin designs, and one that promises to be broadly applicable,

is that introduced recently by Dette, Haines and Imhof (2003). Specifically, these authors

demonstrate that, under fairly general conditions, the Bayesian Φq-optimal designs introduced

by Dette and Wong (1996) converge to the corresponding maximin optimal designs as the in-

dex q approaches minus infinity, a convergence which mirrors the well-known convergence of

the associated criteria. The approach has been illustrated with examples involving nonlinear

models and model robust and discrimination designs by Dette, Haines and Imhof (2003) and

implemented numerically for binary response models by Biedermann and Dette (2003b).

The aim of the present paper is to demonstrate that the broad approach of Dette, Haines and

Imhof (2003) to the construction of maximin designs can be applied to the weighted polynomial

regression model setting, and in particular to two such models for which the efficiency functions

capturing the heteroscedasticity have not been widely studied. The relevant definitions and an

extension to the theorem fundamental to the work of Dette, Haines and Imhof (2003) are

presented in Section 2. The construction of Bayesian Φq-optimal designs for the weighted
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polynomial regression models of interest is described in Section 3 and the construction of

the associated maximin D-optimal designs is discussed in Section 4. In particular explicit

expressions for both the Bayesian Φq-optimal and the maximinD-optimal designs are presented.

In Section 5 a further example, based on a growth model for which the optimal design problem

coincides with that for a specific weighted polynomial regression model, is introduced in order

to demonstrate the wider applicability of the method. Finally the results are summarized and

some broad conclusions drawn in Section 6.

2. Preliminaries

Consider the weighted polynomial regression model of degree d

y = β0 + β1x+ β2x
2 + . . .+ βdx

d + ε (2.1)

where y is the response corresponding to an explanatory variable x taken from some design space

X ⊂ R, β = {β0, . . . , βd} is a vector of unknown parameters and ε is a random term with mean

0 and variance σ2/λ(x, θ), with λ(x, θ) an efficiency function depending on a single parameter

θ. An approximate design ξ for model (2.1) is a probability measure on the design space X
with finite support x1, . . . , xn and associated weights w1, . . . , wn respectively. The information

matrix for the regression parameters β = {β0, . . . , βd} depends only on the parameter θ and

has the form

M(ξ, θ) =

∫
X
f(x)fT (x)λ(x, θ) dξ(x)

where f(x) = {1, x, x2, . . . , xd}. In the present study interest centres primarily on two efficiency

functions, the one

λ(x, θ) = (1 + x2)−θ

with x ∈ IR and θ > d introduced by Dette, Haines and Imhof (1999) in the context of locally

optimal designs and the other

λ(x, θ) = (1 + x)−θ

with x ∈ [0,∞) and θ > 2d not used previously in the literature as an efficiency function.

Optimal designs are those designs which in some sense maximize the information matrix.

In the present context interest focusses on Bayesian Φq-optimal and standardized maximin

D-optimal designs for model (2.1) and these are defined as follows. Let ξ∗θ denote the locally

D-optimal design, i.e. that design which maximizes the determinant of M(ξ, θ) for a specific

parameter value θ. Then the Bayesian Φq-optimal design is the design which maximizes the

criterion

Φq(ξ) = {
∫

Θ

{ | M(ξ, θ) |
|M(ξ∗θ , θ) |

}q

dπ(θ)}1/q = {
∫

Θ

|M(ξ, θ) |q dπ̃(θ)}1/q

where −∞ < q ≤ 1
d+1

and dπ̃(θ) =|M(ξ∗θ , θ) |−q dπ(θ), with π(θ) a prior distribution placed on

the parameter θ ∈ Θ (Dette and Wong, 1996). Note that for q = 0 the Bayesian D-optimality

criterion is recovered. Further the standardized maximin D-optimal design is that design which

maximizes

min
θ∈Θ

|M(ξ, θ) |
|M(ξ∗θ , θ) |

= min
θ∈Θ

R(ξ, θ)
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where the parameter θ is assumed to belong to some specified parameter space Θ, an assumption

less stringent than that of invoking a prior distribution.

Bayesian Φq-optimal and standardized maximin D-optimal designs are intimately related.

In particular, Dette and Wong (1996) observed, and indeed it is clear, that the criterion Φq(ξ)

converges to the standardized maximin D-optimal criterion as q → −∞. Further, and more

importantly from the point of view of design construction, Dette, Haines and Imhof (2003)

presented a powerful result which mirrors this convergence in criterion with convergence in

design. Their result is couched in very general terms and relates to an optimality criterion

ψ(ξ, θ) with designs ξ belonging to some design space ∆ not necessarily convex and with θ

some unknown parameter in a possibly non-linear model. In this section a generalization of

this result is presented, where the prior distribution is allowed to depend on q. Thus for each

q the prior may be chosen to simplify the calculation of the corresponding Bayesian design.

Moreover, conditions are specified which ensure that the Bayesian designs do have a limit,

whereas in Dette, Haines and Imhof (2003), the existence of a limit design was part of the

assumptions.

Throughout this paper, ∆ is the set of all competing designs endowed with the Prohorov

metric [see Billingsley (1999)]. The convergence theorem applies to general Bayesian Ψq- and

standardized maximin ψ-optimal designs. The definitions of these designs are the same as those

for Bayesian Φq- and standardized maximin D-optimal designs given above but with |M(ξ, θ)|
replaced by the more general criterion ψ(ξ, θ). Thus for ξ ∈ ∆ let

Ψq(ξ) =

[∫
Θ

{
ψ(ξ, θ)

ψ(ξ∗θ , θ)

}q

dπq(θ)

] 1
q

(−∞ < q < 0), Ψ−∞(ξ) = min
θ∈Θ

ψ(ξ, θ)

ψ(ξ∗θ , θ)
,

where ξ∗θ is the locally ψ(·, θ)-optimal design in ∆.

Theorem 2.1. Let Θ be compact. Suppose the optimality criterion ψ : ∆ × Θ → (0,∞)

is continuous in each argument. For every q < 0, let πq denote an arbitrarily chosen prior

distribution on Θ and let ζq be a Bayesian Ψq-optimal design with respect to the prior πq.

Suppose that the following conditions hold.

a) There is at most one standardized maximin ψ-optimal design.

b) The class of Bayesian designs {ζq : q < 0} is tight and its closure is contained in ∆.

c) There is a finite measure π on Θ with supp(π) = Θ such that for every measurable subset

T ⊂ Θ with π(T ) > 0,

lim inf
q→−∞

πq(T ) > 0.

It then follows that the Bayesian designs ζq converge weakly to a design ζ∗ in ∆ and that ζ∗ is

a standardized maximin optimal design.

The proof is given in the Appendix. The result can be used to obtain the maximin opti-

mal designs as limits (q → −∞) from the Bayesian optimal designs, which are usually easier
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to calculate because of the differentiability of the Bayesian optimality criteria. In contrast

to the result of Dette, Haines and Imhof (2003) Theorem 2.1 guarantees the convergence of

the sequence of Bayesian optimal designs. Moreover, the introduction of priors depending on

the parameter q gives the statistician extra flexibility to simplify the numerical or analytical

calculations of the Bayesian optimal designs.

If condition a) in Theorem 2.1 is not satisfied, there may exist sequences of Bayesian optimal

designs that converge to different limits. It follows from the proof of Theorem 2.1 that any

such limit design is a standardized maximin optimal design. Condition b) is satisfied if the

design space X is compact and ∆ is the set of all probability measures. In applying Theorem

2.1, conditions a) and b) can be disregarded if it is known in advance that the Bayesian designs

converge to some design in ∆. Condition c) is met if all priors have densities with respect

to a dominating finite measure π and the densities are uniformly bounded away from zero.

Condition c) is trivially met if all the prior distributions πq are the same with common support

Θ. In this sense Theorem 2.1 contains the result of Dette, Haines and Imhof (2003) as a special

case.

The following example shows that some condition on the priors πq must be imposed. For

arbitrary priors πq with supp(πq) = Θ the Bayesian Ψq-optimal designs need not converge to a

standardized maximin design. In fact, they need not converge at all, and even if they do, they

can converge to any prescribed design.

Example 2.1. Consider the non-linear homoscedastic regression modelE[Y (x)] = exp(−θx),
x ≥ 0, with Θ = {θ1, θ2}, 0 < θ1 < θ2. Let ∆ be the class of one-point designs and

ψ(ξ, θ) =
∫
x2 exp(−2θx) dξ(x). Any prior πq with supp(πq) = Θ is of the form πq(θ1) = αq,

πq(θ2) = 1−αq, where 0 < αq < 1. The Bayesian Ψq-optimal design point x = xq is the unique

solution in (θ−1
2 , θ−1

1 ) of {
θ1
θ2
e(θ2−θ1)x

}2q

=

(
1

αq

− 1

)
θ2x− 1

1 − θ1x
. (2.2)

Now fix any point x∗ ∈ (θ−1
2 , θ−1

1 ). Then for every q < 0 there is a unique αq ∈ (0, 1) such that

(2.2) holds with x = x∗. For this choice of priors, every Bayesian Ψq-optimal design is the unit

mass at x∗, and so the limit, as q → −∞, is the unit mass at x∗, too. As x∗ was arbitrary,

the limit design will in general not be a standardized maximin optimal design. An obvious

modification of the argument yields prior distributions such that the corresponding Bayesian

designs do not converge at all.

The applicability of Theorem 2.1 to the setting of model (2.1) is somewhat intricate and is

introduced later as a formal result emanating from the present study.
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3. Bayesian Φq-optimal designs

3.1 (d+ 1)-point Bayesian Φq-optimal designs

Observe first that a (d+1)-point optimal design necessarily puts equal masses at its support

points x1, . . . , xd+1 (see e.g. Silvey (1980), p.43). It then follows that the determinant of the

information matrix for β at such a design ξ can be written as

|M(ξ, θ) |= 1

(d+ 1)d+1
| XR |2

d+1∏
i=1

λ(xi, θ),

where XR is the Vandermonde matrix with ith row {1 xi x
2
i . . . xd

i } and hence that

Φq(ξ) =
1

(d+ 1)d+1
| XR |2 {

∫
Θ

d+1∏
i=1

λ(xi, θ)
qdπ̃(θ)}1/q.

Dette and Wong (1996) derived (d + 1)-point Bayesian Φq-optimal designs for a range of ef-

ficiency functions using arguments based on canonical moments. Their approach is not com-

pletely general however and specifically does not hold for the case where λ(x, θ) = (1 + x2)−θ

and λ(x, θ) = (1 + x)−θ. The following theorems were derived using results from the theory of

differential equations.

The first lemma and theorem relate to the efficiency function (1 + x2)−θ and introduce

support points at the roots of an ultraspherical polynomial.

Lemma 3.1. Suppose that λ(x, θ) = (1 + x2)−θ with x ∈ IR and θ > d. Then the locally

D-optimal design ξ∗θ in the class of all approximate designs Ξ puts equal weights on the roots

x1, . . . , xd+1 of the ultraspherical polynomial C
(−θ− 1

2
)

d+1 (
√−x2) and (i)

d+1∏
i=1

(1 + x2
i ) =

d∏
j=1

(d− 2θ − j)2

(2d+ 1 − 2θ − 2j)2
,

(ii)

|M(ξ∗θ , θ) | =

d∏
j=1

jj

d∏
j=1

(2θ − 2j + 1)2θ−2j+1

(2θ − j + 1)2θ−j+1
.

Theorem 3.1. Consider model (2.1) with λ(x, θ) = (1 + x2)−θ, x ∈ IR and θ > d. Assume

that the condition

∫
Θ

a−qθdπ̃(θ) < ∞ holds for all a > 1 . Then the (d + 1)-point Bayesian

Φq-optimal design with respect to the prior π puts equal weights on the roots of the ultraspherical

polynomial

C
(F (qz)− 1

2
)

d+1 (
√
−x2)
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where

F (qz) = −

∫
Θ

θe−θqzdπ̃(θ)∫
Θ

e−θqzdπ̃(θ)
,

the measure π̃ is given by

dπ̃(θ) =
( d∏

j=1

(2θ − j + 1)2θ−j+1

(2θ − 2j + 1)2θ−2j+1

)q

dπ(θ),

and z is a solution to the equation

z = 2

d∑
j=1

{ln(d+ 2F (qz) − j) − ln(2d+ 1 + 2F (qz) − 2j)} .

The next lemma and theorem relate to the efficiency function (1+x)−θ and involve support

points at the roots of a Jacobi polynomial.

Lemma 3.2. Suppose that λ(x, θ) = (1 + x)−θ with x ∈ [0,∞) and θ > 2d. Then the

locally D-optimal design ξ∗θ puts equal weights on the roots x1, . . . , xd+1 of the Jacobi polynomial

xP
(1,−θ−1)
d (2x+ 1) and

(i)
d+1∏
i=1

(1 + xi) =

d∏
j=1

(θ − j + 1)

(θ − d− j)
,

(ii)

|M(ξ∗θ , θ) |=
d∏

j=1

j2j (θ − d− j)θ−d−j

(θ − j + 1)θ−j+1
.

Theorem 3.2. Consider model (2.1) with λ(x, θ) = (1 + x)−θ, x ∈ [0,∞) and θ > 2d.

Assume that the condition

∫
Θ

a−qθdπ̃(θ) <∞ holds for all a > 1 . The (d+ 1)-point Bayesian

Φq-optimal design with respect to the prior π puts equal weights on the roots of the Jacobi

polynomial

xP
(1,F (qz)−1)
d (2x+ 1),

where the function F (·) is defined in Theorem 3.1, the measure π̃ is given by

dπ̃(θ) =
( d∏

j=1

(θ − j + 1)θ−j+1

(θ − d− j)θ−d−j

)q

dπ(θ)
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and z satisfies the equation

z =
d∑

j=1

{ln(−F (qz) − j + 1) − ln(−F (qz) − d− j)}.

The proofs of the above lemmas and theorems are deferred to the Appendix. Similar proofs can

also be readily formulated for a range of efficiency functions including λ(x, θ) = e−θx and e−θx2

and indeed Biedermann and Dette (2003a) present such a proof for a two-parameter efficiency

function.

Observe that for Bayesian D-optimality with q = 0, −F (qz) = Eπ(θ) and that otherwise

the Bayesian Φq-optimal design coincides with the locally D-optimal design for a best guess of

the parameter θ0 = −F (qz). Observe also that it follows immediately from standard arguments

that the solutions to the equations involving z in Theorems 3.1 and 3.2 are unique for q ≤ 0

(Dette and Wong, 1996).

3.2 Approximate designs

Suppose now that the approximate design ξ� is Bayesian Φq-optimal over the class of all

possible design measures. Then the following equivalence theorem holds (Dette and Wong,

1996).

Theorem 3.3. A design ξ� is Bayesian Φq-optimal if and only if the condition∫
Θ

|M(ξ�, θ) |q λ(x, θ)fT (x)M−1(ξ�, θ)f(x)dπ̃(θ) ≤ (d+ 1)

∫
Θ

|M(ξ�, θ) |q dπ̃(θ)

where f(x) = {1, x, . . . , xd} holds for all x ∈ X . Equality is attained at the support points of

ξ�.

It thus follows that if a (d+ 1)-point Bayesian Φq-optimal design complies with the conditions

of this theorem then it is optimal over all approximate designs. Otherwise Bayesian Φq-optimal

designs based on more than d+ 1 points are sought and these cannot be derived algebraically,

at least in general. In practice, such designs are obtained numerically and the global optimality

or otherwise confirmed by invoking Theorem 3.3.

3.3 Example

Consider the weighted quadratic regression model with efficiency function λ(x, θ) = (1 +

x)−θ, where x ∈ [0,∞) and θ > 4. It then follows from Theorem 3.2 that a three-point Bayesian

Φq-optimal design puts equal masses at the support points given by the zeros of the polynomial

xP
(1,F (qz)−1)
2 (2x+ 1) where z satisfies the equation

z = ln
−F (qz)(−F (qz) − 1)

(−F (qz) − 3)(F (qz) − 4)
(3.1)
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and specifically at the points

0 and
3(θ0 − 3) ±

√
3(θ0 − 1)(θ0 − 3)

(θ0 − 3)(θ0 − 4)

where θ0 = −F (qz). Values of z and thus of F (qz) can only be found numerically, even in the

most straightforward cases. A selection of three-point Bayesian Φq-optimal designs with priors

for θ uniformly distributed on intervals of the form [θmin, θmax] are presented in Table 1.

Table 1: Three-point Bayesian Φq-optimal designs for uniform priors on [θmin, θmax]

prior on [5, 6] prior on [5, 10] prior on [5, 15]

q θ0 design θ0 design θ0 design

0 5.5 0, 0.4508, 3.5492 7.5 0, 0.2624, 1.4519 10 0, 0.1727, 0.8273

−1 5.4989 0, 0.4510, 3.5519 7.3848 0, 0.2688, 1.5038 9.4662 0, 0.1863, 0.9114

−10 5.4790 0, 0.4543, 3.6026 7.1109 0, 0.2855, 1.6432 8.8095 0, 0.2062, 1.0413

It is easy to show numerically, by invoking Theorem 3.3, that the three-point Bayesian

Φq-optimal designs for the uniform prior on [5, 6] with q = 0,−1 and −10 and for the uniform

prior on [5, 10] with q = 0 and −1 are globally optimal over the set of all possible approximate

designs but that the remaining designs given in Table 1 are not. In the latter cases the Bayesian

Φq-optimal designs are based on four points of support. For example for the uniform prior on

[5, 15] with q = −1 the Bayesian Φq-optimal design has support at the points 0, 0.1569, 0.6461

and 2.0659 with attendant weights 0.3355, 0.2883, 0.2807 and 0.1055 respectively.

4. Standardized maximin D-optimal designs

4.1 (d+ 1)-point maximin D-optimal designs

Consider first (d + 1)-point designs which comprise equally weighted support points. In

this case Imhof (2001) and Biedermann and Dette (2003a) have derived standardized maximin

D-optimal designs for polynomial models of the form (2.1) with selected efficiency functions

but the underlying mathematics is intricate. The results presented here are obtained in a more

straightforward and broadly applicable manner by introducing a corollary to Theorem 2.1.

The corollary is first stated in some generality and is then applied to the polynomial models of

interest in the present study. Its proof is given in the Appendix.

Corollary 4.1. Consider the heteroscedastic regression model

y = f0(x)β0 + f1(x)β1 + f2(x)β2 + . . .+ fd(x)βd + ε,

where ε is a random variable with mean zero and variance σ2/λ(x, θ). Suppose that the regres-

sion functions f0, f1, . . . , fd and the efficiency function λ(x, θ) of this model are continuous.

Consider a local optimality criterion of the form ψ(ξ, θ) = φ{M(ξ, θ)}, where M(ξ, θ) is the
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information matrix and φ is a continuous non-negative function on the set of non-negative def-

inite (d+ 1) × (d+ 1)-matrices. Let Θ be compact and supp(π) = Θ. Suppose that ψ(ξ, θ) > 0

on ∆ × Θ and that one of the following conditions is met.

(i) The design space X is compact.

(ii) X = [a,∞), a ∈ R, and

lim
x→∞

{
fj(x) max

θ∈Θ

√
λ(x, θ)

}
= 0, j = 0, 1, . . . , d.

(iii) X = R and

lim
x→−∞

{
fj(x) max

θ∈Θ

√
λ(x, θ)

}
= lim

x→∞

{
fj(x) max

θ∈Θ

√
λ(x, θ)

}
= 0, j = 0, 1, . . . , d.

Then the weak limit of Bayesian Ψq-optimal designs in the class ∆ for q → −∞ is a standardized

maximin optimal design, provided the limit design belongs to ∆.

This corollary can now be invoked to prove the following two theorems. The first theorem,

Theorem 4.1, relates to the efficiency function λ(x, θ) = (1 + x2)−θ and the proof is given in

the Appendix.

Theorem 4.1. The (d + 1)-point standardized maximin D-optimal design for model (2.1)

with λ(x, θ) = (1 + x2)−θ, x ∈ IR, θ ∈ Θ = [θmin, θmax] and θmin > d puts equal weights on the

roots of the ultraspherical polynomial

C
(−θ0− 1

2)
d+1 (

√−x2),

where θ0 falls in the interior of Θ and satisfies the equation

2

d∑
j=1

{ln(d− 2θ0 − j) − ln(2d+ 1 − 2θ0 − 2j)} =
− ln {m(θmax)/m(θmin)}

θmax − θmin

with

m(θ) =

d∏
j=1

(2θ − 2j + 1)2θ−2j+1

(2θ − j + 1)2θ−j+1
.

The next theorem relates to the efficiency function λ(x, θ) = (1+x)−θ and the proof follows

in a manner similar to that of Theorem 4.1.

Theorem 4.2. The (d + 1)-point standardized maximin D-optimal design for model (2.1)

with λ(x, θ) = (1 + x)−θ, x ∈ [0,∞), θ ∈ Θ = [θmin, θmax] and θmin > 2d puts equal weights on

the roots of the Jacobi polynomial

xP
(1,−θ0−1)
d (2x+ 1),

10



where θ0 falls in the range Θ and satisfies the equation

d∑
j=1

{ln(θ0 − j + 1) − ln(θ0 − j − d)} =
− ln(m(θmax)/m(θmin)))

θmax − θmin

with

m(θ) =

d∏
j=1

(θ − d− j)θ−d−j

(θ − j + 1)θ−j+1
.

Note that similar proofs are available for the results stated in Imhof (2001) for λ(x, θ) = e−θx

and λ(x, θ) = e−θx2
. Note also that the equations involving θ0 in Theorems 4.1 and 4.2 have

unique solutions in the range Θ. These equations must be solved numerically however, at least

in general.

4.2 Approximate designs

Consider now designs which are standardized maximin D-optimal over all possible design

measures. Results for these designs follow immediately from the general design theory given in

Pukelsheim (1993) and the related results for designs minimizing the maximum variance of the

parameter estimates presented in Dette and Sahm (1998). The following theorem is relevant

for heteroscedastic polynomial models of the form (2.1) and, since it is a special case of other

more general results (see e.g. Dette, Haines and Imhof, 2003), is stated without proof.

Theorem 4.3. The design ξ� is standardized maximin D-optimal if and only if there exists a

prior distribution πw(θ) supported on the set of parameter values N (ξ�) such that the condition∫
N (ξ�)

λ(x, θ)f(x)TM−1(ξ�, θ)f(x)dπw(θ) ≤ (d+ 1)

holds for all x ∈ X .

It follows immediately from Theorem 4.3 that the maximin D-optimal design ξ� coincides

with the Bayesian D-optimal design for the prior πw(θ) defined on the set N (ξ�). The prior

πw(θ) is usually referred to as the least favourable or “worst” prior, a term borrowed from

Bayesian decision theory (Berger, 1980, p. 360). It should be emphasized however that Theorem

4.3 is attractive theoretically but difficult to invoke in practice. Specifically it is not easy to

construct the prior πw(θ). Thus, at least in general, standardized maximin D-optimal designs

over all approximate designs are difficult to obtain both algebraically and numerically.

In the case of (d + 1)-point designs for model (2.1) with efficiency functions λ(x, θ) =

(1 +x2)−θ and λ(x, θ) = (1 +x)−θ it is possible to identify a candidate worst prior. Specifically

it is easy to see that the criterion R(ξ, θ) for ξ a (d + 1)-point design is unimodal and hence

that, if the (d+ 1)-point standardized maximin D-optimal design is globally optimal, then the

11



cardinality of the set N (ξ�) is 2. This in turn implies that a candidate least favourable prior

πw(θ) can be formulated as putting weights w and 1−w on the parameter values θmin and θmax

respectively such that

wθmin + (1 − w)θmax = θ0

with θ0 specified in Theorem 4.1 or Theorem 4.2. Thus if a (d+1)-point standardized maximin

D-optimal design is available, then it is possible to check whether or not the associated Bayesian

D-optimal design with prior πw(θ) is optimal over all possible designs by invoking Theorem 3.3

and hence to ascertain whether or not the maximin design is indeed globally optimal.

4.3. Example

Consider again the example presented in Section 3.3. Three-point standardized maximin

D-optimal designs for values of θ falling in the range Θ = [θmin, θmax] have support points at

the zeros of the polynomial xP
(1,−θm−1)
2 (2x+ 1) where θm satisfies

3∏
i=1

(1 + xi) =
θm(θm − 1)

(θm − 3)(θm − 4)
=

[
m(θmax)

m(θmin)

]− 1
(θmax−θmin)

with

m(θ) =
24(θ − 3)θ−3(θ − 4)θ−4

θθ(θ − 1)θ−1
.

Note that θm necessarily falls in the specified range and in fact is given explicitly by

θm =
7c− 1 +

√
1 + 34c+ c2

2(c− 1)
.

where c = [m(θmin)/m(θmax)]
1

(θmax−θmin) .

Table 2: Three-point standardized maximin D-optimal designs with equally weighted support

points.

Range Θ θm design, ξ candidate worst prior, πw min
θ

eff(ξ, θ)

{5, 6} 5.4665 0, 0.4563, 3.6350
5 6

.5335 .4665
0.9721

{5, 10} 7.0301 0, 0.2909, 1.6893
5 10

.5940 .4060
0.7569

{5, 15} 8.6996 0, 0.2100, 1.0667
5 15

.6300 .3700
0.5586

Three-point standardized maximin D-optimal designs for the ranges of θ associated with

the priors considered earlier for the Bayesian Φq-optimal designs are given in Table 2. It follows

immediately from observations in the previous subsection that these maximin designs coincide
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with three-point Bayesian D-optimal designs associated with prior distributions on θ for which

E(θ) = θm. It also follows that a standardized three-point maximin D-optimal design is optimal

over the set of all possible designs provided the prior which puts weights w and (1−w) on the

parameter values θmin and θmax respectively where w satisfies

wθmin + (1 − w)θmax = θm

is the least favourable prior or, in other words, provided the three-point Bayesian D-optimal

design associated with this prior is itself optimal over the set of all possible designs. The

candidate least favourable priors for the designs of Table 2 are included in that table together

with the the minimal D-efficiency

min
θ∈Θ

eff(ξ, θ) = min
θ∈Θ

( |M(ξ, θ) |
|M(ξ∗θ , θ) |

)1/(d+1)

.

over the set Θ and the candidate worst (two point) prior. It is easy to show numerically by

invoking Theorem 4.3 that only the maximin design for Θ = [5, 6] is optimal over the set of all

possible designs and that in the other two cases maximin designs which are universally optimal

are based on four or more points of support. For the interval Θ = [5, 10] the standardized

maximin D-optimal design has masses 0.32, 0.26, 0.27 and 0.15 at the four points 0, 0.21, 0.89,

and 4.49, respectively. The minimum D-efficiency on the interval [5, 10] is 0.8402, while the

least favourable prior has masses 0.45, 0.40 and 0.15 at the points 5, 7.06 and 10, respectively.

Thus we only observe a minor improvement of the best two point design. However, in the case

Θ = [5, 15] the improvement by using designs with more than three support points is more

visible. Here the standardized maximin D-optimal design is a 5 point design with masses 0.32,

0.23, 0.28, 0.07 and 0.11 at the points 0, 0.14, 0.54, 1.62 and 3.91, respectively. The minimum

D-efficiency is 0.7910 and the least favourable prior has masses 0.36, 0.32 and 0.32 at the points

5, 8.42 and 15 respectively.

5. Further Applications

In order to demonstrate the potential application of the above results to other related

problems, consider finding the standardized maximin D-optimal designs for the non-linear

growth model

y(x) = xv exp(−θx)
d−1∑
k=0

βkx
k + ε, x ∈ [0,∞), (5.1)

where the error ε is assumed to be normally distributed with mean 0 and variance σ2 and the

parameter v is assumed fixed and greater than or equal to 0. Assume that θ ∈ Θ = [θmin, θmax],

0 < θmin < θmax, and that optimization is restricted to the set of (d + 1)-point designs. Then

the determinant of the Fisher matrix of a design ξ is proportional to ψ(ξ, θ) = |M(ξ, θ)|,
where M(ξ, θ) =

∫ ∞
0
f(x)fT (x)x2v exp(−2θx) dξ(x) and f(x) = (1, x, . . . , xd)T . Because this is

precisely the design problem for a heteroscedastic polynomial regression model with efficiency
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function x2v exp(−2θx), Corollary 4.1 is applicable here and the (d + 1)-point standardized

maximin D-optimal design can be obtained as a limit of the associated (d+ 1)-point Bayesian

Φq-optimal designs.

Let π(θ) be any prior distribution on the parameter θ with supp(π) = Θ. Then Dette and

Wong (1996) have shown that the (d+1)-point Bayesian Φq-optimal design puts equal mass at

the zeros of the polynomial

xL
(1)
d {−2F (qzq)x} , if v = 0,

and

L
(2v−1)
d+1 {−2F (qzq)x} , if v > 0.

Here L
(α)
n (x) is the generalized Laguerre polynomial of degree n orthogonal with respect to

xα exp(−x) dx, x ≥ 0, and z = zq is the unique solution of

z = −(d+ 1)(d+ 2v)

F (qz)
,

where

F (x) = −
∫

Θ
θe−θxθ(d+1)(d+2v)q dπ(θ)∫

Θ
e−θxθ(d+1)(d+2v)q dπ(θ)

.

To determine the weak limit of these Bayesian Φq-optimal designs, that is, to determine the

limit of F (qz) for q → −∞, the following lemma is invoked. The proof of this lemma is given

in the Appendix.

Lemma 5.1. Let π be a prior distribution with support Θ = [θmin, θmax], 0 < θmin < θmax.

Let

Fq(x) = −
∫
θe−θxg(θ)−q dπ(θ)∫
e−θxg(θ)−q dπ(θ)

, q < 0, x ∈ R,

where g is a continuous log-convex function on Θ. For every q < 0 let zq be such that

zq = h{−Fq(qzq)}, (5.2)

where h is a strictly decreasing function on Θ. If there exists t∗ ∈ Θ such that

h(t∗) = − ln{g(θmax)/g(θmin)}
θmax − θmin

, (5.3)

then limq→−∞ Fq(qzq) = −t∗.
Consider now taking g(θ) = θ−(d+1)(d+2v), which is log convex, and h(t) = (d+ 1)(d+ 2v)/t,

which is decreasing. Then it follows immediately from Lemma 5.1 and from the inequality

ln x ≤ x− 1 for x > 0 that

lim
q→−∞

F (qzq) = −t∗ = − θmax − θmin

ln (θmax/θmin)
,

provided θmin ≤ t∗ ≤ θmax. The following theorem therefore holds.
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Theorem 5.1. The (d+1)-point standardized maximin D-optimal design for growth model

(5.1) with θ ∈ [θmin, θmax] puts equal masses at the zeros of

xL
(1)
d

{
2
θmax − θmin

ln (θmax/θmin)
x

}
, if v = 0,

and

L
(2v−1)
d+1

{
2
θmax − θmin

ln (θmax/θmin)
x

}
, if v > 0.

Note that this result extends Theorem 5.1 of Imhof (2001), where only the case of v = 0 is

considered.

6. Conclusions

The main aim of the present study has been to construct standardized maximin D-optimal

designs for weighted polynomial regression models by invoking the general approach to the

construction of maximin designs introduced recently in the paper by Dette, Haines and Imhof

(2003). The relevant theory is developed from the fundamental result of that paper and is

applicable to heteroscedastic regression models in general. The theory is illustrated for two

specific weighted polynomial regression models, the one with an efficiency function λ(x, θ) =

(1 + x2)−θ introduced by Dette, Haines and Imhof (1999) and the other with an efficiency

function λ(x, θ) = (1 + x)−θ not studied previously. Bayesian Φq-optimal designs for these

models are constructed using tools based on the theory of differential equations. This feature

is of interest in itself since the method of construction for such designs developed by Dette

and Wong (1996) and based on canonical moments does not hold in these cases. Standardized

maximin D-optimal designs for the weighted polynomial regression models of interest are then

constructed as weak limits of the corresponding Bayesian Φq-optimal designs. In addition

the maximin D-optimal design for a specific growth model, or equivalently for the weighted

polynomial regression model with efficiency function λ(x, θ) = xve−θx, is constructed similarly.

In all cases explicit expressions for the Bayesian Φq-optimal designs and for the standardized

maximin D-optimal designs are obtained. More generally, this study highlights the usefulness

and broad applicability of the approach of Dette, Haines and Imhof (2003) to the construction

of maximin optimal designs.
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Appendix : Proofs

Proof of Theorem 2.1. It will be shown that if {q(j)}∞j=1 is any sequence of negative

numbers with limj→∞ q(j) = −∞ such that the sequence
{
ζq(j)

}∞
j=1

converges weakly to some

probability measure ζ∗ on X , then ζ∗ is a maximin optimal design in ∆. The tightness assump-

tion ensures, by Prohorov’s theorem [Billingsley (1999), Theorem 5.1, page 59], that there does

exist such a sequence {q(j)}∞j=1. Thus the existence of a maximin design will follow. Moreover,

the assumption that there is at most one maximin optimal design implies that every convergent

sequence
{
ζq(j)

}
converges to the same limit. Now another application of Prohorov’s theorem

[more precisely, Billingsley (1999), Corollary, page 59] will show that the entire family {ζq}
converges to the maximin optimal design.

Thus suppose that {q(j)}∞j=1 ⊂ (−∞, 0) is such that q(j) → −∞ and ζq(j) → ζ∗ as j → ∞.

Since the closure of {ζq : q < 0} is contained in ∆, ζ∗ ∈ ∆. Now assume that ζ∗ is not maximin

optimal. Then there exists a better design ξ′ ∈ ∆ and ε > 0 such that

mξ′ := inf
θ∈Θ

ψ(ξ′, θ)
ψ(ξ∗θ , θ)

> 3ε+ inf
θ∈Θ

ψ(ζ∗, θ)
ψ(ξ∗θ , θ)

.

Clearly,

Ψq(ζq) ≥ Ψq(ξ
′) ≥ mξ′ for all q < 0. (A.1)

The function ψ(ζ∗, θ)/ψ(ξ∗θ , θ) is upper semicontinuous in θ. Indeed, if θ ∈ Θ and {θk}∞k=1 ⊂ Θ,

θk → θ, then

lim sup
k→∞

ψ(ζ∗, θk)

ψ(ξ∗θk
, θk)

≤ lim sup
k→∞

ψ(ζ∗, θk)

ψ(ξ∗θ , θk)
=
ψ(ζ∗, θ)
ψ(ξ∗θ , θ)

.

It follows that the set

U :=

{
θ ∈ Θ :

ψ(ζ∗, θ)
ψ(ξ∗θ , θ)

< mξ′ − 2ε

}
is a non-empty relatively open subset of Θ. In particular, by assumption c), π(U) > 0. Since

ζq(j) → ζ∗, ψ(ζq(j), θ)/ψ(ξ∗θ , θ) converges pointwise for every θ ∈ U to ψ(ζ∗, θ)/ψ(ξ∗θ , θ) as

j → ∞. Also, π(U) <∞. Hence by Egorov’s theorem [Hewitt and Stromberg (1965), Theorem

11.32, page 158], there is a measurable subset T ⊂ U such that π(T ) > 1
2
π(U) > 0 and

ψ(ζq(j), θ)/ψ(ξ∗θ , θ) converges uniformly on T to ψ(ζ∗, θ)/ψ(ξ∗θ , θ). There exists therefore j0 ∈ N

such that
ψ(ζq(j), θ)

ψ(ξ∗θ , θ)
< mξ′ − ε for all θ ∈ T, j ≥ j0.

Hence, for j ≥ j0,

Ψq(j)(ζq(j)) ≤
[∫

T

{
ψ(ζq(j), θ)

ψ(ξ∗θ , θ)

}q(j)

dπq(j)(θ)

] 1
q(j)

≤ (mξ′ − ε)
{
πq(j)(T )

} 1
q(j) .
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In view of hypothesis c), lim infj→∞ πq(j)(T ) > 0, and we obtain that

lim sup
j→∞

Ψq(j)(ζq(j)) ≤ mξ′ − ε,

which contradicts (A.1). Therefore it follows that the design ζ∗ is indeed maximin optimal. �

Proof of Lemma 3.1. It was shown in Theorem 3.1 of Dette, Haines and Imhof (1999)

that for θ > d the locally D-optimal design has equal masses at the roots −1 < x1 < . . . <

xd+1 < 1 of the polynomial

C
(−θ−1/2)
d+1 (

√−x2).

For a proof of the representations in (i) we put λ = −θ − 1/2 and note that

C
(λ)
d+1(

√
−x2) = C

(λ)
d+1(ix) = cd+1

d+1∏
�=1

(x− x�) (A.2)

where cd+1 denotes the leading coefficient of the ultraspherical polynomial, i.e.

cd+1 = (2i)d+1

(
d+ λ

d+ 1

)
(A.3)

[see e.g. Szegö (1975), formula (4.7.9)]. Therefore the identity (A.2) implies

d+1∏
�=1

(1 + x2
�) =

d+1∏
�=1

(i− x�)(−i− x�) =
C

(λ)
d+1(1)C

(λ)
d+1(−1)

c2d+1

= (−1)d+1

{
C

(λ)
d+1(1)

}2

c2d+1

,

where the last identity follows from the symmetry of ultraspherical polynomials [see Szegö

(1975), formula (4.7.4)]. ¿¿From formula (4.7.3) in the same reference and (A.3) we therefore

obtain

d+1∏
�=1

(1 + x2
�) =

{ 1

2d+1

d+1∏
j=1

j

d+ 1 + λ− j
· d+ 2λ+ 1 − j

j

}2

=
{ d∏

j=1

d− 2θ − j

2d+ 1 − 2θ − 2j

}2

, (A.4)

which proves the assertion (i) of Lemma 3.1.

For a proof of part (ii) we note that

|M(ξθ, θ)| =
( 1

d+ 1

)d+1
d+1∏
�=1

(1 + x2
i )

∏
1≤�<k≤d+1

(x� − xk)
2

and it is therefore sufficient to calculate the value of the last factor. To this end we put again

λ = −θ − 1/2 and define

Pd+1(x) =
C

(λ)
d+1(ix)

cd+1id+1
(A.5)
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as the ultraspherical polynomial with parameter λ, argument ix and leading coefficient 1, then

it follows by a straight forward calculation

∏
1≤�<k≤d+1

(x� − xk)
2 = (−1)d(d+1)/2

d+1∏
�=1

∏
k �=�

(x� − xk) = (−1)d(d+1)/2
d+1∏
�=1

P ′
d+1(x�). (A.6)

¿¿From formula (4.7.27) in Szegö (1975) we have for any � ∈ {1, . . . , d+ 1}

(1 + x2)
d

dx
Pd+1(x)

∣∣∣
x=x�

=
1 + x2

id+1cd+1

d

dx
C

(λ)
d+1(ix)

∣∣∣
x=x�

=
i(d+ 2λ)

idcd+1

C
(λ)
d (ix�) =

(d+ 2λ)

cd+1

cdPd(x�) =
d+ 1

2

d+ 2λ

d+ λ
Pd(x�),

where the notation (A.3) is used in the last equality. Observing that the recursive relation for

the polynomial Pj(x) is given by

Pk+1(x) = xPk(x) +
(k − 1 + 2λ)k

4(k + λ− 1)(k + λ)
Pk−1(x)

(P−1(x) = 0, P0(x) = 1) it now follows from formula (6.71.2) in Szegö (1975) that [an = 1, cn =

−(n− 1)(n− 2 + 2λ)/4(n− 2 + λ)(n− 1 + λ)]

d+1∏
�=1

(1 + x2
�)

∏
1≤�<k≤d+1

(x� − xk)
2 = (−1)d(d+1)/2

d+1∏
�=1

(d+ 1

2

)(d+ 2λ

d+ λ

)
Pd(x�)

= (−1)d(d+1)/2
(d+ 1

2

)d+1(d+ 2λ

d+ λ

)d+1
d+1∏
j=1

{ (j − 1)(j − 2 + 2λ)

4(j − 2 + λ)(j − 1 + λ)

}j−1

=
d+1∏
j=1

jj ·
d∏

j=1

(2θ − j + 1)j+1

(2θ − 2j + 1)2j+1
.

Combining this identity with (A.4) yields

d+1∏
�=1

(1 + x2
�)

−θ
∏

1≤�<k≤d+1

(x� − xk)
2 =

d+1∏
j=1

jj ·
d∏

j=1

(2θ − 2j + 1)2θ−2j+1

(2θ − j + 1)2θ−j+1

and the assertion (ii) of Lemma 3.1 follows. �

Proof of Theorem 3.1. The determinant of the information matrix for the parameters

β of model (2.1) from a (d + 1)-point design ξ which puts equal masses at the support points

x1, . . . , xd+1 can be written as

|M(θ, ξ) |=| XR |2
d+1∏
i=1

(1 + x2
i )

−θ
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where XR is the Vandermonde matrix with ith row {1 xi x
2
i . . . xd

i }. Thus

(d+ 1)d+1 · Φq(ξ) =| XR |2
{∫

Θ

d+1∏
i=1

(1 + x2
i )

−qθdπ̃(θ)

}1/q

and differentiating ln Φq(ξ) with respect to xj and setting the result to 0 in turn gives

2

| XR |
∂ | XR |
∂xj

− 2xj

1 + x2
j

∫
Θ

θ

d+1∏
i=1

(1 + x2
i )

−qθdπ̃(θ)

∫
Θ

d+1∏
i=1

(1 + x2
i )

−qθdπ̃(θ)

= 0.

It then follows by arguments similar to those used in Dette, Haines and Imhof (1999) that the

required points are the roots of the polynomial
∏d+1

j=1(x − xj), which satisfies the differential

equation

(1 + x2)f
′′
(x) + 2xF (qz)f

′
(x) − (d+ 1)(d+ 2F (qz))f(x) = 0,

where f(x) is a polynomial of degree d+ 1 in x, z =
∑d+1

i=1 ln(1 + x2
i ) and

F (qz) = −

∫
Θ

θe−θqzdπ̃(θ)∫
Θ

e−θqzdπ̃(θ)

with −F (qz) > d. The support points of the Bayesian Φq-optimal design are thus the roots of

the ultraspherical polynomial

C
(F (qz)− 1

2
)

d+1 (
√
−x2)

and z =
∑d+1

i=1 ln(1 + x2
i ) is obtained by invoking expression for

∏d+1
i=1 (1 + x2

i ) given in Lemma

3.1. Note that for q = 0 the criterion corresponds to Bayesian D-optimality and that for a one

point prior the locally D-optimal design is recovered. �

Proof of Lemma 3.2. It follows by similar arguments as given in Dette, Haines and

Imhof (1999) that the locally D-optimal design is supported at d+1 points including the point

0, say 0 = x1 < x2 < . . . < xd+1, and that the supporting polynomial f(x) = Πd+1
i=1 (x− xi) is a

solution of the differential equation

x(1 + x)y′′(x) − θxy′(x) + (d+ 1)(θ − d)y(x) = 0.

The polynomial solution of this equation is given by the hypergeometric series

xF (−d, d+ 1 − θ, 2,−x)
which is proportional to the Jacobi polynomial

f(x) = xP
(1,−θ−1)
d (2x+ 1)
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[see formula (4.21.2) in Szegö (1975)]. The assertions (i) and (ii) of Lemma 3.2 now follow by

similar arguments as given in the proof of Lemma 3.1, which are omitted for the sake of brevity.

�

Proof of Theorem 3.2. This follows along the lines stated in the proof of Theorem 3.1.

�

Proof of Corollary 4.1. Under any of the three conditions, fi(x)fj(x)λ(x, θ) is

bounded and uniformly continuous on X × Θ for i, j = 0, . . . , d. Thus for every fixed θ ∈ Θ,

each entry of the information matrix M(ξ, θ) is continuous in ξ. Moreover, by Lebesgue’s

convergence theorem, for every fixed design ξ ∈ ∆, each entry of M(ξ, θ) is continuous in θ.

Therefore, the local criterion ψ(ξ, θ) = φ{M(ξ, θ)} is continuous in both arguments. The asser-

tion now follows from Theorem 2.1 with πq = π for all q < 0. Note that conditions a) and b) of

Theorem 2.1 do not have to be verified, since the existence of the limit design is an assumption

of Corollary 4.1. Condition c) is trivially satisfied here. �

Proof of Theorem 4.1. For j = 0, . . . , d,

lim
x→±∞

xj max
θ∈Θ

√
λ(x, θ) = lim

x→±∞
xj

(1 + x2)
1
2
θmin

= 0.

Thus condition (iii) of Corollary 4.1 is satisfied and the maximin design can therefore be ob-

tained as the limit of Φq-optimal designs. Suppose d is even; the case where d is odd is similar.

Let π be any prior distribution with support Θ and write

Fq(x) = −
∫
θe−θxm(θ)−q dπ(θ)∫
e−θxm(θ)−q dπ(θ)

, q < 0, x ∈ R,

h(θ) = 2

d
2∑

j=1

{ln(2θ − 2j + 2) − ln(2θ − d− 2j + 1)} , θ ∈ Θ.

If zq denotes the solution of the equation zq = h(−Fq(qzq)), then, by Theorem 3.1, the Bayesian

Φq-optimal (d+ 1)-point design puts equal weights on the roots of the polynomial

C
(Fq(qzq)− 1

2)
d+1 (

√
−x2).

It remains to show that limq→−∞ Fq(qzq) = −θ0. To see that there indeed exists θ0 ∈ intΘ as

defined in the theorem, set

H(x, θ) =

d
2∑

j=1

ln
(2x− d− 2j + 1)2θ−d−2j+1

(2x− 2j + 2)2θ−2j+2
, x, θ ∈ Θ.
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Then

∂H(x, θ)

∂x
= 2(d+ 1)

d
2∑

j=1

θ − x

(2x− d− 2j + 1)(x− j + 1)
,

so that H(·, θmax) is strictly increasing and H(·, θmin) is strictly decreasing on Θ. Hence, in

view of Lemma 3.1 (ii),

− ln {m(θmax)/m(θmin)}
θmax − θmin

=
H(θmin, θmin) −H(θmax, θmax)

θmax − θmin

<
H(θmin, θmin) −H(θmin, θmax)

θmax − θmin
= h(θmin)

and, similarly,
− ln {m(θmax)/m(θmin)}

θmax − θmin
> h(θmax).

This ensures the existence of θ0. It is easily verified that h(t) is strictly decreasing and that

lnm(θ) is convex. It now follows by Lemma 5.1 that limq→−∞ Fq(qzq) = −θ0, which completes

the proof of Theorem 4.1. �

Proof of Lemma 5.1. Set

Gq(t) = t+ Fq{qh(t)}, t ∈ Θ

and tq = −Fq(qzq). It follows from (5.2) that Gq(tq) = 0. As F ′
q(x) ≥ 0 for all x, Gq is strictly

increasing. Thus tq is the only zero of the function Gq. It has to be shown that limq→−∞ tq = t∗.

Assume first that t∗ < θmax. Let ε > 0 be such that t∗ + ε ≤ θmax. Setting

φ(θ) = exp{θh(t∗ + ε)}g(θ),

one has

Fq{qh(t∗ + ε)} = −
∫

Θ
θφ(θ)−q dπ(θ)∫

Θ
φ(θ)−q dπ(θ)

. (A.7)

As θh(t∗ + ε) + ln g(θ) is convex, so is φ(θ). Since h is strictly decreasing, we obtain by (5.3),

φ(θmax)

φ(θmin)
= exp {(θmax − θmin)h(t

∗ + ε)} g(θmax)

g(θmin)
< exp {(θmax − θmin)h(t

∗)} g(θmax)

g(θmin)
= 1.

Thus φ(θmax) < φ(θmin), and so φ(θ) < φ(θmin) for all θ > θmin. Consequently, we have for

every θ0 ∈ intΘ,

lim
q→−∞

{∫
[θ0,θmax]

φ(θ)−q dπ(θ)
}− 1

q

{∫
Θ
φ(θ)−q dπ(θ)

}− 1
q

=
maxθ∈[θ0,θmax] φ(θ)

maxθ∈Θ φ(θ)
< 1,
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and so

lim
q→−∞

∫
[θ0,θmax]

φ(θ)−q dπ(θ)∫
Θ
φ(θ)−q dπ(θ)

= 0, lim
q→−∞

∫
[θmin,θ0)

φ(θ)−q dπ(θ)∫
Θ
φ(θ)−q dπ(θ)

= 1.

In view of (A.7) this yields

Gq(t
∗ + ε) = t∗ + ε−

∫
Θ
θφ(θ)−q dπ(θ)∫

Θ
φ(θ)−q dπ(θ)

≥ t∗ + ε−
θ0

∫
[θmin,θ0)

φ(θ)−q dπ(θ) + θmax

∫
[θ0,θmax]

φ(θ)−q dπ(θ)∫
Θ
φ(θ)−q dπ(θ)

.

It follows that

lim inf
q→−∞

Gq(t
∗ + ε) ≥ t∗ + ε− θ0

for all θ0 ∈ intΘ. Thus

lim inf
q→−∞

Gq(t
∗ + ε) ≥ ε,

so that Gq(t
∗ + ε) > 0 for q ≤ q0 = q0(ε), say. Since Gq is increasing, this implies that

tq < t∗ + ε for q ≤ q0. As ε > 0 was arbitrarily small, lim supq→−∞ tq ≤ t∗, which is trivially

true if t∗ = θmax. A similar argument shows that lim infq→−∞ tq ≥ t∗, completing the proof of

Lemma 5.1. �
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