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Abstract
In this paper we investigate locally E- and c-optimal designs for exponential regres-

sion models of the form
∑k

i=1 ai exp(−λix). We establish a numerical method for the
construction of efficient and locally optimal designs, which is based on two results. First
we consider the limit λi → γ and show that the optimal designs converge weakly to the
optimal designs in a heteroscedastic polynomial regression model. It is then demonstrated
that in this model the optimal designs can be easily determined by standard numerical
software. Secondly, it is proved that the support points and weights of the locally opti-
mal designs in the exponential regression model are analytic functions of the nonlinear
parameters λ1, . . . , λk. This result is used for the numerical calculation of the locally
E-optimal designs by means of a Taylor expansion for any vector (λ1, . . . , λk). It is also
demonstrated that in the models under consideration E-optimal designs are usually more
efficient for estimating individual parameters than D-optimal designs.

AMS Subject Classification: 62K05, 41A50
Keywords and phrases: E-optimal design, c-optimal design, exponential models, locally optimal de-
signs, Chebyshev systems, heteroscedastic polynomial regression.
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1 Introduction

Nonlinear regression models are widely used to describe the dependencies between a response
and an explanatory variable [see e.g. Seber and Wild (1989), Ratkowsky (1983) or Ratkowsky
(1990)]. An important class of models in environmental and ecological statistics consists of
exponential regression models defined by

k∑
i=1

aie
−λix , x ≥ 0,(1.1)

[see, for example, Becka and Urfer (1996) or Becka, Bolt and Urfer (1993)]. An appropriate
choice of the experimental conditions can improve the quality of statistical inference substan-
tially and therefore many authors have discussed the problem of designing experiments for
nonlinear regression models [see for example Chernoff (1953), Melas (1978) and Ford, Torsney
and Wu (1992)]. Locally optimal designs depend on an initial guess for the unknown param-
eter, but are the basis for all advanced design strategies, [see Pronzato and Walter (1985),
Chaloner and Verdinelli (1995), Ford and Silvey (1980) or Wu (1985)]. Most of the literature
concentrates on D-optimal designs (independent of the particular approach), which maximize
the determinant of the Fisher information matrix for the parameters in the model, but much
less attention has been paid to E-optimal designs in nonlinear regression models, which max-
imize the minimum eigenvalue of the Fisher information matrix [see Dette and Haines (1994)
or Dette and Wong (1999), who gave some results for models with two parameters].
It is the purpose of the present paper to study locally c-optimal and E-optimal designs for
the nonlinear regression model (1.1). For this purpose we prove two main results. First we
show that in the case λi → γ (i = 1, . . . , k) the locally optimal designs for the model (1.1)
converge weakly to the optimal designs in a heteroscedastic polynomial regression model of
degree 2k with variance proportional to exp(2γx). It is then demonstrated that in most cases
the E- and c-optimal designs are supported at the Chebyshev points, which are the local
extrema of the equi-oscillating best approximation of the function f0 ≡ 0 by a normalized
linear combination of the form

∑2k−1
i=0 ai exp(−γx)xi. These points can be easily determined

by standard numerical software [see for examples Studden and Tsay (1976)]. Secondly it is
proved that the support points and weights of the locally optimal designs in the exponential
regression model are analytic functions of the nonlinear parameters λ1, . . . , λk. This result
is used to provide a Taylor expansion for the weights and support points as functions of the
parameters, which can easily be used for the numerical calculation of the optimal designs. It is
also demonstrated that in the models under consideration E-optimal designs are usually more
efficient for estimating individual parameters than D-optimal designs.
The remaining part of the paper is organized as follows. In Section 2 we introduce the nec-
essary notation, while the main results are stated in Section 3. In Section 4 we illustrate our
method considering several examples and compare locally D- and E-optimal designs. Finally
all technical details are deferred to an Appendix (see Section 5).
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2 Preliminaries

Consider the common exponential regression model with homoscedastic error

E(Y (x)) = η(x, β) =
k∑

i=1

aie
−λix, V(Y (x)) = σ2 > 0,(2.1)

where the explanatory variable x varies in the experimental domain X = [b, +∞) with b ∈ R,
βT = (a1, λ1, a2, . . . , λk) denotes the vector of unknown parameters and different measurements
are assumed to be uncorrelated. Without loss of generality we assume ai �= 0, i = 1, . . . , k and
0 < λ1 < λ2 < . . . < λk. An approximate design ξ is a probability measure

ξ =

(
x1 . . . xn

w1 . . . wn

)
(2.2)

with finite support on [b,∞), where x1, . . . , xn give the locations, where observations are taken
and w1, . . . , wn denote the relative proportions of total observations taken at these points [see
Kiefer (1974)]. In practice a rounding procedure is applied to obtain the samples sizes Ni ≈ wiN
at the experimental conditions xi, i = 1, 2, . . . , n [see e.g. Pukelsheim and Rieder (1993)]. If
n ≥ 2k, wi > 0, i = 1, . . . , n, it is well known that the least squares estimator β̂ for the
parameter β in model (2.1) is asymptotically unbiased with covariance matrix satisfying

lim
N→∞

Cov(
√

Nβ̂) = σ2M−1(ξ, a, λ),

where

M(ξ) = M(ξ, a, λ) =

(
n∑

s=1

∂η(xs, β)

∂βi

∂η(xs, β)

∂βj
ws

)2k

i,j=1

denotes the information matrix of the design ξ. Throughout this paper we will use the notation

f(x) =
∂η(x, β)

∂β
= (e−λ1x,−a1xe−λ1x, . . . , e−λkx,−akxe−λkx)T(2.3)

for the gradient of the mean response function η(x, β). With this notation the information
matrix can be conveniently written as

M(ξ) =

n∑
i=1

f(xi)f
T (xi)wi.(2.4)

Note that for nonlinear models the information matrix depends on values of the unknown
parameters, but for the sake of brevity we only reflect this dependence in our notation, if it
is not clear from the context. An optimal design maximizes a concave real valued function of
the information matrix and there are numerous optimality criteria proposed in the literature
to discriminate between competing designs [see e.g. Silvey (1980) or Pukelsheim (1993)]. In
this paper we restrict ourselves to three well known optimality criteria. Following Chernoff
(1953) we call a design ξ locally D-optimal in the exponential regression model (2.1) if it
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maximizes det M(ξ). The optimal design with respect to the determinant criterion minimizes
the content of a confidence ellipsoid for the parameter β, based on the asymptotic covariance
matrix. Locally D-optimal designs in various non-linear regression models have been discussed
by numerous authors [see e.g. Melas (1978), He, Studden and Sun (1996) or Dette, Haines and
Imhof (1999) among many others]. For a given vector c ∈ R

2k a design ξ is called locally c-
optimal if c ∈ Range(M(ξ)) and ξ minimizes cT M−(ξ)c, which corresponds to the minimization
of the asymptotic variance of the least squares estimator for the linear combination cT β. If
c = ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ R

2k is the ith unit vector, the locally ei-optimal designs are
also called optimal designs for estimating the ith coefficient (i = 1, . . . , 2k). Locally c-optimal
designs for nonlinear models with two parameters have been studied by Ford, Torsney and
Wu (1992) among others. Finally we consider the E-optimality criterion, which determines
the design such that the minimal eigenvalue of information matrix M(ξ) is maximal. This
corresponds to the the minimization of the worst variance of the least squares estimator for
the linear combination pT β taken over all vectors p such that pT p = 1. Some locally E-optimal
designs for models with two parameters have been found by Dette and Haines (1994) and Dette
and Wong (1999).
In the following sections we determine and investigate locally E- and c-optimal designs for the
exponential regression model (1.1). Secondly, we compare these designs with the corresponding
locally D-optimal designs for the exponential model, which have been studied by Melas (1978).
We begin our investigations with an important tool for analyzing E-optimal designs. A proof
can be found in Pukelsheim (1993) or Melas (1982).

Theorem 2.1. A design ξ∗ is E-optimal if and only if there exists a nonnegative definite
matrix A∗ such that trA∗ = 1 and

max
x∈X

fT (x)A∗f(x) ≤ λmin(M(ξ∗)).(2.5)

Moreover, we have equality in (2.5) for any support point of ξ∗, and the matrix A∗ can be
represented as

A∗ =

s∑
i=1

αip(i)p
T
(i),

where s is the multiplicity of the minimal eigenvalue, αi ≥ 0,
∑s

i=1 αi = 1, {p(i)}i=1,...,s is a
system of orthonormal eigenvectors corresponding to the minimal eigenvalue.

3 Main results

In this section we study some important properties of locally c- and E-optimal designs in the
exponential regression model (2.1). In order to indicate the dependence of the optimal designs
on the nonlinear parameters of the model we denote the locally c- and E-optimal design by ξ∗c (λ)
and ξ∗E(λ), respectively. We begin with an investigation of the behaviour of the locally optimal
designs if the vector of nonlinear parameters λ = (λ1, . . . , λk) is contained in a neighbourhood
of a point γ(1, . . . , 1)T , where γ > 0 is an arbitrary parameter. The information matrix (2.4) of
any design becomes singular as λ → γ(1, . . . , 1)T . However we will show that the corresponding
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locally optimal designs are still weakly convergent, where the limiting measure has 2k support
points.
To be precise let

λi = γ − riδ , i = 1, . . . , k(3.1)

where δ > 0 and r1, . . . , rk ∈ R\{0} are arbitrary fixed numbers such that ri �= rj , i, j = 1, . . . , k.
If δ is small, locally c- and E-optimal designs in the exponential regression model (2.1) are
closely related to optimal designs in the heteroscedastic polynomial regression model

E(Y (x)) =

2k∑
i=1

aix
i−1, V(Y (x)) = exp(2γx) , x ∈ [b,∞)(3.2)

where γ > 0 is assumed to be known. Note that for a design of the form (2.2) the information
matrix in this model is given by

M̄(ξ) =
n∑

i=1

e−2γxi f̄(xi)f̄
T (xi)wi ,(3.3)

[see Fedorov (1972)], where the vector of regression functions defined by

f̄(x) = (1, x, . . . , x2k−1)T .(3.4)

The corresponding c-optimal designs are denoted by ξ̄∗c , where the dependence on the constant
γ is not reflected in our notation, because it will be clear from the context. The next theorem
shows that the e2k-optimal design ξ̄∗2k = ξ̄∗e2k

in the heteroscedastic polynomial regression ap-
pears as a weak limit of the locally c- and E-optimal design ξ∗c (λ) and ξ∗E(λ) in the model (2.1).
The proof is complicated and therefore deferred to the Appendix.

Theorem 3.1.

1) For any design with at least 2k support points and γ > 0 there exists a neighbourhood
Ωγ of the point γ(1, . . . , 1)T ∈ R

k such that for any vector λ = (λ1, . . . , λk)
T ∈ Ωγ the

minimal eigenvalue of information matrix M(ξ) in (2.4) is simple.

2) If condition (3.1) is satisfied and δ → 0, then the locally E-optimal design ξ∗E(λ) in the
exponential regression model (2.1) converges weakly to the e2k-optimal design ξ̄e2k

in the
heteroscedastic polynomial regression model (3.2).

3) Assume that condition (3.1) is satisfied and define a vector l = (l1, . . . , l2k)
T with l2i = 0,

(i = 1, . . . , k),

l2i−1 = −
∏
j �=i

(ri − rj)
2
∑
j �=i

2

ri − rj
, i = 1, . . . , k.(3.5)

If lT c �= 0 and δ → 0 then the locally c-optimal design ξ∗c (λ) in the exponential regres-
sion model (2.1) converges weakly to the e2k-optimal design ξ̄e2k

in the heteroscedastic
polynomial regression model (3.2).
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Remark 3.2. It is well known [see e.g. Karlin and Studden (1966)] that the e2k-optimal design
ξ̄e2k

in the heteroscedastic polynomial regression model (3.2) has 2k support points, say

x∗
1(γ) < . . . < x∗

2k(γ).

These points are given by the extremal points of the Chebyshev function p∗(x) = q∗T f̄(x)e−γx,
which is the solution of the problem

sup
x∈[b,∞)

|p∗(x)| = min
α1,...,α2k−1

sup
x∈[b,∞)

exp(−γx)
∣∣∣1 +

2k−1∑
i=1

αix
i
∣∣∣.(3.6)

Moreover, also the weights w∗
1(γ), . . . , w∗

2k(γ) of the e2k-optimal design ξ̄e2k
(γ) in model (3.2)

can be obtained explicitly, i.e.

w∗(γ) = (w∗
1(γ), . . . , w∗

1(γ))T =
JF̄−1e2k

12kJF̄−1e2k

,(3.7)

where the matrixes F̄ and J are defined by

F̄ = (f̄(x∗
1(γ))e−γx∗

1(γ), . . . , f̄(x∗
2k(γ))e−γx∗

2k(γ)) ∈ R
2k×2k,

J = diag(1,−1, 1, . . . , 1,−1), respectively, 12k = (1, . . . , 1)T ∈ R
2k and the vector f̄(x) is

defined in (3.4) [see Pukelsheim and Torsney (1991)].

Remark 3.3. Let Ω denote the set of all vectors λ = (λ1, . . . , λk)
T ∈ R

k with λi �= λj, i �= j,
λi > 0, i = 1, . . . , k, such that the minimum eigenvalue of the information matrix of the locally
E-optimal design (with respect to the vector λ) is simple. The following properties of locally
E-optimal designs follow by standard arguments from general results on E-optimal designs
[see Dette and Studden (1993), Pukelsheim (1993)] and simplify the construction of locally
E-optimal designs substantially.

1. For any λ ∈ Ω the locally E-optimal design for the exponential regression model (2.1)
(with respect to the parameter λ) is unique.

2. For any λ ∈ Ω the support points of the locally E-optimal design for the exponential
regression model (2.1) (with respect to the parameter λ) do not depend on the parameters
a1, . . . , ak.

3. For any λ ∈ Ω the locally E-optimal design for the exponential regression model (2.1)
(with respect to the parameter λ) has 2k support points, moreover the point b is always
a support point of the locally E-optimal design. The support points of the E-optimal
design are the extremal points of the Chebyshev function pT f(x), where p is an eigenvector
corresponding to the minimal eigenvalue of the information matrix M(ξ∗E(λ)).
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4. For any λ ∈ Ω the weights of the locally E-optimal design for the exponential regression
model (2.1) (with respect to the parameter λ) are given by

w∗ =
JF−1c

cT c
,(3.8)

where cT = 1T
2kJF−1, J = diag(1,−1, 1, . . . , 1,−1),

F = (f(x∗
1), . . . , f(x∗

m)) ∈ R
2k×2k

and x∗
1, . . . , x

∗
2k denote the support points of the locally E-optimal design.

5. If λ ∈ Ω, let x∗
1;b(λ), . . . , x∗

2k;b(λ) denote the support points of the locally E-optimal
design for the exponential regression model (2.1) with design space X = [b, +∞). Then
x∗

1;0(λ) ≡ 0,

x∗
i;b(λ) = x∗

i;0(λ) + b, i = 2, . . . , 2k.

x∗
i;0(νλ) = x∗

i;0(λ)/ν, i = 2, . . . , 2k

for any ν > 0.

We now study some analytical properties of locally E-optimal designs for the exponential
regression model (2.1). Theorem 3.1 indicates that the structure of the locally E-optimal
design depends on the multiplicity of the minimal eigenvalue of its corresponding information
matrix. If the multiplicity is equal to 1 then the support of an E-optimal design consists of the
extremal points of the Chebyshev function pT f(x), where p is the eigenvector corresponding to
the minimal eigenvalue of the information matrix M(ξ∗E(λ)). If the multiplicity is greater than
1 then the problem of constructing E-optimal designs is more complex. Observing Remark
3.3(5) we assume that b = 0 and consider a design

ξ =

(
x1 . . . x2k

w1 . . . w2k

)

with 2k support points, x1 = 0, such that the minimal eigenvalue of the information matrix
M(ξ) has multiplicity 1. If p = (p1, . . . , p2k)

T is an eigenvector corresponding to the minimal
eigenvalue of M(ξ) we define a vector

Θ = (θ1, . . . , θ6k−3)
T = (q2, . . . , q2k, x2, . . . , x2k, w2, . . . , w2k)

T ,(3.9)

where the points wi and xi (i = 2, . . . , 2k) are the non-trivial weights and support points of
the design ξ (note that x1 = 0, w1 = 1 − w2 − . . . − w2k) and q = (1, q2, . . . , q2k)

T = p/p1 is
the normalized eigenvector of the information matrix M(ξ). Note that there is a one-to-one
correspondence between the pairs (q, ξ) and the vectors of the form (3.9). Recall the definition
of the set Ω in Remark 3.3. For each vector λ ∈ Ω the maximum eigenvalue of the information
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matrix of a locally E-optimal design ξ∗E(λ) (for the parameter λ) has multiplicity 1 and for
λ ∈ Ω let

Θ∗ = Θ∗(λ) = (q∗2, . . . , q
∗
2k, x

∗
2, . . . , x

∗
2k, w

∗
2, . . . , w

∗
2k)

T

denote the vector corresponding to the locally E-optimal design with respect to the above
transformation. We consider the function

Λ(Θ, λ) =

∑2k
i=1(q

T f(xi))
2wi

qT q

(note that x1 = 0, w1 = 1 − w2 − . . . − w2k), then it is easy to see that

Λ(Θ∗(λ), λ) =
q∗T M(ξ∗E(λ))q∗

q∗T q∗
= λmin(M(ξ∗E(λ))),

where λmin(M) denotes the minimal eigenvalue of the matrix M . Consequently Θ∗ = Θ∗(λ) is
an extremal point of the function Λ(Θ, λ). A necessary condition for the extremum is given by
the system of equations

∂Λ

∂θi
(Θ, λ) = 0, i = 1, . . . , 6k − 3,(3.10)

and a straightforward differentiation shows that this system is equivalent to


(M(ξ)q)− − Λ(Θ, λ)q− = 0,

2qTf(xi)q
T f ′(xi)wi = 0, i = 2, . . . , 2k,

(qT f(xi))
2 − (qT f(0))2 = 0, i = 2, . . . , 2k,

(3.11)

where the vector p− ∈ R
2k−1 is obtained from the vector the p ∈ R

2k−1 by deleting the first
coordinate. This system is equivalent to the following system of equations


M(ξ)p = Λ(Θ, λ)p,

pT f ′(xi) = 0, i = 2, . . . , 2k,

(pT f(xi))
2 = (pT f(0))2, i = 2, . . . , 2k,

(3.12)

and by the first part of Theorem 3.1 there exists a neighbourhood Ω1 of the point (1, . . . , 1)T

such that for any λ ∈ Ω1 the vector Θ∗(λ) and the locally E-optimal design ξ∗E(λ) and its
corresponding eigenvector p∗ satisfy (3.10) and (3.12), respectively.

Theorem 3.4. For any λ ∈ Ω the system of equations (3.10) has a unique solution

Θ∗(λ) = (q∗2(λ), . . . , q∗2k(λ), x∗
2(λ), . . . , x∗

2k(λ), w∗
2(λ), . . . , w∗

2k(λ))T .

The locally E-optimal design for the exponential regression model (2.1) is given by

ξ∗E(λ) =

(
0 x∗

2(λ) . . . x∗
2k(λ)

w∗
1(λ) w∗

2(λ) . . . w∗
2k(λ)

)
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where w∗
1(λ) = 1 − w∗

2(λ) − . . . − w∗
2k(λ) and q∗(λ) = (1, q∗2(λ), . . . , q∗2k(λ))T is an (normalized)

eigenvector of the information matrix M(ξ∗E(λ)). Moreover, the vector Θ∗(λ) is a real analytic
function of λ.

It follows from Theorem 3.4 that for any λ0 ∈ R
k such that the minimal eigenvalue of the

information matrix corresponding to the locally E-optimal design ξ∗E(λ) has multiplicity 1
there exists a neighbourhood, say U of λ0 such that for all λ ∈ U the function Θ∗(λ) can be
expanded in convergent Taylor series of the form

Θ∗(λ) = Θ∗(λ0) +

∞∑
j=1

Θ∗(j, λ0)(λ − λ0)
j.(3.13)

It was shown in Dette, Melas and Pepelyshev (2004) that the coefficients Θ∗(j, λ0) in this ex-
pansion can be calculated recursively and therefore this expansion provides a numerical method
for the determination of the locally E-optimal designs using the analytic properties of the sup-
port points and weights as function of λ. From a theoretical point it is possible that several
expansions have to be performed in order to cover the whole range of Ω of all values λ such that
the minimum eigenvalue of the information matrix of the locally E-optimal design has multi-
plicity 1. However, in all our numerical examples only one expansion was sufficient (although
we can not prove this in general).

Remark 3.5. Note that the procedure described in the previous paragraph would not give the
locally E-optimal design for the exponential regression model in the case, where the minimum
eigenvalue of the corresponding information matrix has multiplicity larger than 1. For this
reason all designs obtained by the Taylor expansion were checked for optimality by means of
Theorem 2.1. In all cases considered in our numerical study the equivalence theorem confirmed
our designs to be locally E-optimal and we did not find cases where the multiplicity of the
minimum eigenvalue of the information matrix in the exponential regression model (2.1) was
larger than 1. Some illustrative examples are presented in the following section.

4 Examples

Example 4.1. Consider the exponential model E(Y (x)) = a1e
−λ1x corresponding to the case

k = 1. In this case the Chebyshev function φ(x) = (1 + q∗2x)e−λ1x minimizing

sup
x∈[0,∞)

|(1 + αx)e−λ1x|

with respect to the parameter α ∈ R and the corresponding extremal point x∗
2 are determined

by the equations φ(x∗
2) = −φ(0) and φ′(x∗

2) = 0, which are equivalent to

e−λ1x2 − λ1x2 + 1 = 0 , αe−λ1x2 + λ1 = 0.

Therefore, the second point of the locally E-optimal design is given by x∗
2 = t∗/λ1, where t∗ is

the unique solution of the equation e−t = t − 1 (the other support point is 0) and the locally
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E-optimal design is given by {0, x∗
2; w

∗
1, w

∗
2}, where the weights are calculated by the formula

given in Remark 3.3, that is

w∗
1 =

x∗
2e

−λ1x∗
2 + λ1

x∗
2e

−λ1x∗
2 + λ1 + λ1eλ1x∗

2
, w∗

2 =
λ1e

λ1x∗
2

x∗
2e

−λ1x∗
2 + λ1 + λ1eλ1x∗

2
.

j 0 1 2 3 4 5 6

x2(j) 0.4151 0.0409 0.0689 0.0810 0.1258 0.1865 0.2769

x3(j) 1.8605 0.5172 0.9338 1.2577 2.1534 3.6369 6.3069

x4(j) 5.6560 4.4313 10.505 20.854 44.306 90.604 181.67

w2(j) 0.1875 0.2050 0.6893 0.3742 -1.7292 -1.2719 7.0452

w3(j) 0.2882 0.2243 -0.0827 -0.8709 -0.1155 2.7750 1.8101

w4(j) 0.4501 -0.4871 -0.9587 0.2323 2.9239 -0.2510 -12.503

Table 1: The coefficients of the Taylor expansion (4.2) for the support points and weights of
the locally E-optimal design in the exponential regression model (4.1).

Example 4.2. For the exponential regression model

E(Y (x)) = a1e
−λ1x + a2e

−λ2x(4.1)

corresponding to the case k = 2 the situation is more complicated and the solution of the
locally E-optimal design problem can not be determined directly. In this case we used the
Taylor expansion (3.13) for the construction of the locally E-optimal design, where the point
λ0 in this expansion was given by the vector λ0 = (1.5, 0.5)T . By Remark 3.3 (5) we can restrict
ourselves to the case λ1 + λ2 = 2. Locally E-optimal designs for arbitrary values of λ1 + λ2

can be easily obtained by rescaling the support points of the locally E-optimal design found
under the restriction λ1 + λ2 = 2, while the weights have to be recalculated using Remark
3.3(4). We consider the parameterization λ1 = 1 + z, λ2 = 1 − z and study the dependence of
the optimal design on the parameter z. Because λ1 > λ2 > 0, an admissible set of values z is
the interval (0, 1). We choose the center of this interval as the origin for the Taylor expansion.
Table 1 contains the coefficients in the Taylor expansion for the points and weights of the locally
E-optimal design, that is

x∗
i = xi(z) =

∞∑
j=0

xi(j)(z − 0.5)j, w∗
i = wi(z) =

∞∑
j=0

wi(j)(z − 0.5)j,(4.2)

(note that x∗
1 = 0 and w∗

1 = 1 − w∗
2 − w∗

3 − w∗
4). The points and weights are depicted as a

function of the parameter z in Figure 1. We observe for a broad range of the interval (0, 1) only
a weak dependence of the locally E-optimal design on the parameter z. Consequently, it is of
some interest to investigate the robustness of the locally E-optimal design for the parameter
z = 0, which corresponds to the vector λ = (1, 1). This vector yields to the limiting model (3.2)
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Figure 1: Support points and weights of the locally E-optimal design ξ∗E(λ) in the exponential
regression model (2.1), where k = 2 and λ = (1 + z, 1 − z)T .

and by Theorem 3.1 the locally E-optimal designs converge weakly to the design ξ̄∗e2k
, which

will be denoted by ξ̄∗E throughout this section. The support points of this design can obtained
from the corresponding Chebyshev problem

inf
α1,α2,α3

sup
x∈[0,∞)

|(1 + α1x + α2x
2 + α3x

3)e−x|

The solution of this problem can be found numerically using the Remez algorithm [see Studden
and Tsay (1976)], i.e.

P3(x) = (x3 − 3.9855x2 + 3.15955x − 0.27701)e−x.

The extremal points of this polynomial are given by

x∗
1 = 0, x∗

2 = 0.40635, x∗
3 = 1.75198, x∗

4 = 4.82719.

and the weights of design ξ̄∗E defined in Theorem 3.1 are calculated using formula (3.7), that is

w∗
1 = 0.0767, w∗

2 = 0.1650, w∗
3 = 0.2164, w∗

4 = 0.5419.

Some E-efficiencies

IE(ξ, λ) =
λmin(M(ξ))

λmin(M(ξ∗E(λ)))
(4.3)

of the limiting design ξ̄∗E are given in Table 2 and we observe that this design yields rather high
efficiencies, whenever z ∈ (0, 0.6). In this table we also display the E-efficiencies of the locally
D-optimal design ξ∗D(λ), the D-efficiencies

ID(ξ, λ) =

(
det M(ξ)

supη det M(η)

)1/2k

(4.4)

of the locally E-optimal design ξ∗E(λ) and the corresponding efficiencies of the weak limit of the
locally D-optimal designs ξ̄∗D. We observe that the design ξ̄∗D is very robust with respect to the
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z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ID(ξ̄∗D) 1.00 1.00 1.00 0.99 0.98 0.95 0.90 0.80 0.61

ID(ξ∗E(λ)) 0.75 0.74 0.75 0.75 0.78 0.82 0.87 0.90 0.89

ID(ξ̄∗E) 0.74 0.74 0.76 0.77 0.78 0.79 0.78 0.72 0.58

IE(ξ̄∗E) 1.00 1.00 0.98 0.94 0.85 0.72 0.58 0.45 0.33

IE(ξ∗D(λ)) 0.66 0.66 0.66 0.67 0.70 0.74 0.79 0.82 0.80

IE(ξ̄∗D) 0.65 0.64 0.62 0.59 0.56 0.52 0.47 0.41 0.33

Table 2: Efficiencies of locally D- and E-optimal design in the exponential regression model
(4.1) (λ1 = 1 + z, λ2 = 1 − z). The locally D- and E-optimal design are denoted by ξ∗D(λ)
and ξ∗E(λ), respectively, while ξ̄∗D and ξ̄∗E denote the weak limit of the locally D- and E-optimal
design as λ → (1, 1), respectively.

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

I1(ξ̄
∗
E, λ) 1.00 1.00 0.98 0.93 0.84 0.69 0.53 0.40 0.27

I1(ξ̄
∗
D, λ) 0.65 0.64 0.61 0.57 0.50 0.41 0.32 0.26 0.19

I2(ξ̄
∗
E, λ) 0.99 0.97 0.92 0.85 0.76 0.65 0.55 0.44 0.34

I2(ξ̄
∗
D, λ) 0.68 0.70 0.70 0.68 0.65 0.60 0.54 0.46 0.37

I3(ξ̄
∗
E, λ) 1.00 1.00 0.98 0.93 0.85 0.73 0.56 0.38 0.20

I3(ξ̄
∗
D, λ) 0.65 0.64 0.62 0.58 0.52 0.45 0.35 0.24 0.13

I4(ξ̄
∗
E, λ) 1.00 0.99 0.97 0.94 0.88 0.76 0.57 0.33 0.10

I4(ξ̄
∗
D, λ) 0.63 0.59 0.54 0.49 0.42 0.34 0.24 0.13 0.04

Table 3: Efficiencies (4.5) of the designs ξ̄∗D and ξ̄∗E [obtained as the weak limit of the corre-
sponding locally optimal designs as λ → (1, 1)] for estimating the individual coefficients in the
exponential regression model (4.1) (λ1 = 1 + z, λ2 = 1 − z).
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D-optimality criterion. On the other hand the D-efficiencies of the E-optimal designs ξ∗E(λ)
and its corresponding limit ξ̄∗E are substantially higher than the E-efficiencies of the designs
ξ∗D(λ) and ξ∗D.
We finally investigate the efficiencies

Ii(ξ, λ) =
infη eT

i M−1(η)ei

eT
i M−1(ξ)ei

, i = 1, . . . , 2k,(4.5)

of the optimal designs ξ̄∗D and ξ̄∗E for the estimation of the individual parameters. These
efficiencies are shown in Table 3. Note that in most cases the design ξ̄∗E is substantially more
efficient for estimating the individual parameters than the design ξ̄∗D. The design ξ̄∗E can be
recommended for a large range of possible values of z.

Example 4.3. For the exponential model

E(Y (x)) = a1e
−λ1x + a2e

−λ2x + a3e
−λ3x(4.6)

corresponding to the case k = 3 the locally E-optimal designs can be calculated by similar
methods. For the sake of brevity we present only the limiting designs [obtained from the
locally D- and E-optimal designs if λ → (1, 1, 1)] and investigate the robustness with respect
to the D- and E-optimality criterion. The support points of the e6-optimal designs in the
heteroscedastic polynomial regression model (3.2) (with γ = 1) can be found as the extremal
points of the Chebyshev function

P5(x) = (x5 − 11.7538x4 + 42.8513x3 − 55.6461x2 + 21.6271x − 1.1184)e−x

which are given by

x∗
1 = 0, x∗

2 = 0.2446, x∗
3 = 1.0031, x∗

4 = 2.3663, x∗
5 = 4.5744, x∗

6 = 8.5654.

For the weights of the limiting design ξ̄∗E := ξ̄∗e6
we obtain from the results of Section 3

w∗
1 = 0.0492, w∗

2 = 0.1007, w∗
3 = 0.1089, w∗

4 = 0.1272, w∗
5 = 0.1740, w∗

6 = 0.4401.

For the investigation of the robustness properties of this design we note that by Remark 3.3(5)
we can restrict ourselves to the case λ1 + λ2 + λ3 = 3. The support points in the general case
are obtained by a rescaling, while the weights have to be recalculated using Remark 3.3(4). For
the sake of brevity we do not present the locally E-optimal designs, but restrict ourselves to
some efficiency considerations. For this we introduce the parameterization λ1 = 1 +u + v, λ2 =
1 − u, λ3 = 1 − v, where the restriction λ1 > λ2 > λ3 > 0 yields

u < v, v < 1 , u > −v/2.

In Table 4 we show the E-efficiency defined in (4.3) of the design ξ̄∗E , which is the weak limit
of the locally E-optimal design ξ∗E(λ) as λ → (1, 1, 1) (see Theorem 3.1). Two conclusions can
be drawn from our numerical results. On the one hand we observe that the optimal design
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u 0 0 0 -0.2 -0.2 0.2 0.2 0.4 0.4 0.7

v 0.2 0.5 0.8 0.6 0.8 0.3 0.8 0.5 0.8 0.8

ID(ξ̄∗D) 1.00 0.98 0.83 0.97 0.86 0.99 0.79 0.92 0.70 0.48

ID(ξ∗E(λ)) 0.78 0.85 0.90 0.86 0.90 0.66 0.90 0.61 0.86 0.50

ID(ξ̄∗E) 0.75 0.78 0.74 0.78 0.75 0.77 0.71 0.78 0.65 0.47

IE(ξ̄∗E) 0.98 0.76 0.43 0.71 0.48 0.93 0.36 0.53 0.19 0.02

IE(ξ∗D(λ)) 0.65 0.73 0.79 0.74 0.79 0.55 0.79 0.52 0.74 0.48

IE(ξ̄∗D) 0.63 0.57 0.37 0.53 0.40 0.46 0.31 0.23 0.09 0.01

Table 4: Efficiencies of locally D-, E-optimal designs and of the corresponding limits ξ̄∗D and
ξ̄∗E (obtained as the weak limit of the corresponding locally optimal designs as λ → (1, 1, 1)) in
the exponential regression model (4.6) (λ1 = 1 + u + v, λ2 = 1 − u, λ = 1 − v).

ξ̄∗E is robust in a neighbourhood of the point (1, 1, 1). On the other hand we see that the
locally E-optimal design ξ∗E(λ) is also robust if the nonlinear parameters λ1, λ2, λ3 differ not
too substantially (i.e. the “true” parameter is contained in a moderate neighbourhood of the
point (1, 1, 1)). The table also contains the D-efficiencies of the E-optimal designs defined in
(4.4) and the E-efficiencies of the locally D-optimal design ξ∗D(λ) and its corresponding weak
limit as λ → (1, 1, 1). Again the D-efficiencies of the E-optimal designs are higher than the
E-efficiencies of the D-optimal designs.
We finally compare briefly the limits of the locally E- and D-optimal designs if λ → (1, 1, 1) with
respect to the criterion of estimating the individual coefficients in the exponential regression
model (4.6). In Table 5 we show the efficiencies of these designs for estimating the parameters
in a1, b1, a2, b2, a3, b3 in the model (4.6). We observe that in most cases the limit of the locally
E-optimal designs ξ̄∗E yields substantially larger efficiencies than the corresponding limit of the
locally D-optimal design ξ̄∗D. Moreover this design is robust for many values of the parameter
(u, v).

5 Appendix

5.1 Proof of Theorem 3.1.

Using the notation δj = rjδ and observing the approximation in (3.1) we obtain from the Taylor
expansion

e−(γ−rjδ)x = e−γx(1 +

2k−1∑
i=1

δi
jx

i/i!) + o(δ2k−1) , (j = 1, . . . , k)

the representation
f(x) = Lf̄(x)e−γx + H(δ),

14



u 0 0 0 -0.2 -0.2 0.2 0.2 0.4 0.4 0.7

v 0.2 0.5 0.8 0.6 0.8 0.3 0.8 0.5 0.8 0.8

I1(ξ̄
∗
E) 0.98 0.77 0.43 0.71 0.48 0.86 0.35 0.52 0.26 0.11

I1(ξ̄
∗
D) 0.63 0.56 0.36 0.53 0.40 0.59 0.30 0.41 0.22 0.10

I2(ξ̄
∗
E) 0.97 0.74 0.43 0.70 0.48 0.80 0.37 0.49 0.29 0.19

I2(ξ̄
∗
D) 0.65 0.59 0.42 0.55 0.43 0.63 0.38 0.48 0.33 0.23

I3(ξ̄
∗
E) 0.90 0.73 0.43 0.71 0.48 0.93 0.38 0.53 0.16 0.02

I3(ξ̄
∗
D) 0.71 0.59 0.38 0.53 0.40 0.46 0.47 0.23 0.04 0.01

I4(ξ̄
∗
E) 0.99 0.82 0.41 0.73 0.47 0.93 0.31 0.53 0.17 0.02

I4(ξ̄
∗
D) 0.60 0.50 0.29 0.51 0.36 0.48 0.20 0.25 0.10 0.01

I5(ξ̄
∗
E) 0.99 0.85 0.30 0.76 0.35 0.93 0.21 0.53 0.11 0.02

I5(ξ̄
∗
D) 0.55 0.39 0.12 0.33 0.14 0.46 0.09 0.23 0.05 0.01

I6(ξ̄
∗
E) 0.99 0.84 0.26 0.75 0.31 0.93 0.18 0.53 0.09 0.02

I6(ξ̄
∗
D) 0.53 0.34 0.08 0.27 0.10 0.45 0.06 0.22 0.03 0.01

Table 5: Efficiencies (4.5) of the designs ξ̄∗D and ξ̄∗E (obtained as the weak limit of the corre-
sponding locally optimal designs as λ → (1, 1, 1)) for estimating the individual coefficients in
the exponential regression model (4.6) (λ1 = 1 + u + v, λ2 = 1 − u, λ = 1 − v).

where the vectors f and f̄ are defined in (2.3) and (3.4), respectively, the remainder term is of
order

H(δ) =
(
o(δ2k−1), o(δ2k−2), . . . , o(δ2k−1), o(δ2k−2)

)T
and the matrix L is given by

L =




1 δ1
δ2
1

2!

δ3
1

3!
. . .

δ2k−1
1

(2k−1)!

0 1 δ1
δ2
1

2!
. . .

δ2k−2
1

(2k−2)!

...
...

...
...

...
...

1 δk
δ2
k

2!

δ3
k

3!
. . .

δ2k−1
k

(2k−1)!

0 1 δk
δ2
k

2!
. . .

δ2k−2
k

(2k−2)!




.

Consequently the information matrix in the general exponential regression model (2.1) satisfies

M−1(ξ) = L−1T
M̄−1(ξ)L−1 + o(δ4k−2) ,

where M̄(ξ) is the information matrix in the heteroscedastic polynomial regression model (3.2)
defined by (3.3). It can be shown by a straightforward but tedious calculation [see the technical
report of Dette, Melas and Pepelyshev (2002)] that for small δ

δ2k−1L−1 = (2k − 1)!(0
...l)T + o(1),
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where 0 is 2k × (2k − 1) matrix with all entries equals 0 and the vector l is defined by (3.5) in
Theorem 3.1. This yields for the information matrix of the design ξ

δ4k−2M−1(ξ) = ((2k − 1)!)2
(
M̄−1(ξ)

)
2k,2k

l lT + o(1).

Therefore, if δ is sufficiently small, it follows that maximal eigenvalue of the matrix M−1(ξ) is
simple.
For a proof of the second part of Theorem 3.1 we note the locally E-optimal design ξ∗E(λ) is
defined by

ξ∗E(λ) = arg min
ξ

max
c,cT c=1

cT M−1(ξ)c .

If δ → 0 it therefore follows from the arguments of previous paragraph that this design converges
weakly to the design ξ̄∗e2k

, which minimizes a function

max
c, cT c=1

(cT l)2eT
2kM̄

−1(ξ)e2k,

Finally, the proof of the third part of Theorem 3.1 can be obtained by similar arguments and
is left to the reader. �

5.2 Proof of Theorem 3.3.

In Section 3 we have already shown that the function Θ∗(λ) as solution of (3.10) is uniquely
determined. In this paragraph we prove that the Jacobi matrix

G = G(λ) =

(
∂2Λ

∂θi∂θi

(Θ∗(λ), λ)

)3m−3

i,j=1

is nonsingular. It then follows from the Implicit Function Theorem (see Gunning, Rossi, 1965)
that the function Λ(Θ, λ) is real analytic. For this purpose we note that a direct calculation
shows

qT q ∂2Λ
∂w∂w

(Θ∗(λ), λ) = 0,

qT q ∂2Λ
∂x∂w

(Θ∗(λ), λ) = 0,

qT q ∂2Λ
∂x∂x

(Θ∗(λ), λ) = E = diag{(qTf(x∗
i ))

2wi}i=2,...,2k,

qT q ∂2Λ
∂q−∂q− (Θ∗(λ), λ) = (M(ξ∗) − ΛI2k)−,

qT q ∂2Λ
∂q−∂x

(Θ∗(λ), λ) = BT
1 ,

qT q ∂2Λ
∂q−∂w

, (Θ∗(λ), λ) = BT
2 ,

where the matrices B1 and B2 are defined by

BT
1 = 2

(
qTf(x∗

2)w2f
′
−(x∗

2)
... . . .

...qT f(x∗
2k)w2kf

′
−(x∗

2k)

)
,

BT
2 = 2

(
qTf(x∗

2) f−(x∗
2) − qTf(0) f−(0)

... . . .
...qTf(x∗

2k) f−(x∗
2k) − qTf(0) f−(0)

)
,
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respectively, and w = (w2, . . . , w2k)
T and x = (x2, . . . , x2k)

T . Consequently the Jacobi matrix
of the system (3.10) has the structure

G =
1

qT q


 D BT

1 BT
2

B1 E 0
B2 0 0


 .(A.1)

Because (p∗T f(x∗
i ))

2 = λmin we obtain q∗T f(x∗
i ) = (−1)ic̃ (i = 1, . . . , 2k) for some constant c̃,

and the matrices B1 and B2 can be rewritten as

BT
1 = 2c̃

(
w2f

′
−(x∗

2)
... − w3f

′
−(x∗

3)
...w4f

′
−(x∗

4)
... . . .

... − w2k−1f
′
−(x∗

2k−1)
...w2kf

′
−(x∗

2k)

)
,

BT
2 = 2c̃

(
f−(0) + f−(x∗

2)
...f−(0) − f−(x∗

3)
... . . .

...f−(0) − f−(x∗
2k−1)

...f−(0) + f−(x∗
2k)

)
.

In the following we study some properties of the blocks of the matrix G defined in (A.1). Note
that the matrix D in the upper left block of G is nonnegative definite. This follows from

min
v

vT M(ξ∗)v
vT v

≤ min
u

uT M−(ξ∗)u
uT u

and the inequality

λmin(M−(ξ∗)) ≥ λmin(M(ξ∗)) = Λ(Θ∗(λ), λ) ,

where M− denotes the matrix obtained from M deleting the first row and column. Thus we
obtain for any vector u ∈ R

2k−1

uTDu = uTM−(ξ∗)u − ΛuTu ≥ uT u(λmin(M−(ξ∗)) − Λ) ≥ 0,

which shows that the matrix D is nonnegative definite. The diagonal matrix E is negative
definite because all it’s diagonal elements are negative. This property follows from the the
equivalence Theorem 2.1, which shows that the function (q∗T f(x))2 is concave in a neighbour-
hood of every point x∗

i , i = 2, . . . , 2k. Moreover, the matrices B1 and B2 are of full rank and
we obtain from the formula for the determinant of block matrix that

detG = −detE det(D − BT
1 E−1B1) det(BT

2 (D − BT
1 E−1B1)

−1B2).

Since each determinant is nonzero, the matrix G is nonsingular, which completes the proof of
the theorem. �
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