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Abstract

A basic part in the risk assessment of potential carcinogens is the

determination of toxicokinetic parameters. The partition of the xenobiotic

in the body of experimental animals is a first step of the biochemical

pathway of the formation of DNA adducts which might lead to the

development of cancer.

Fundamental in the extrapolation from one species to another is the

characterisation of processes by means of population parameters.

Nevertheless, the consideration of individual parameters varying between

repeated experiments and different doses is of great importance to obtain

a more precise insight into the variability structure of the process so that a

valid basis for further research is the final result.

Two nonlinear four-stage hierarchical models for a repeated measurement

design and for repeated exposures to different doses are presented. The

estimation of the individual and population parameters as well as of the

covariance matrices is performed by an EM algorithm.

Key Words: ethylene, ethylene oxide, risk assessment, toxicokinetics, population

parameters, two-compartment model, nonlinear hierarchical model,

Bayes estimates, EM algorithm, repeated measurement
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1. Introduction

A basic part in the risk assessment of potential carcinogens is the determination of

toxicokinetic parameters. Most chemical carcinogens are transformed into a chemical

active form, its metabolite, that is able to interact with cellular macromolecules such as

DNA, RNA, and protein, and might finally lead to the development of cancer. The

relationship between applied dose and tumor response is nonlinear (Bolt and Filser,

1984). This nonlinearity is supposed to be connected with the kinetic processes involved

in the formation of DNA adducts (Hoel et al., 1983). Hence an important step to assess

the risk of a xenobiotic is to investigate the kinetic processes of its uptake, metabolism,

and elimination.

As the complete research depends on experiments with animals, a critical step is the

extrapolation from the risk observed in the experimental animals to the risk associated

with the human organism. The basis of such a species extrapolation are the so called

PBPK- models (physiologically-based pharmacokinetic models) which take

consideration of many strongly connected kinetic processes. These models require

detailed information about physiological parameters, as well as about the processes

involved. The physiological parameters are supposed to be valid for a whole population.

Determining kinetic population parameters the variation between individual parameters

which may also vary between repeated occasions and doses should be taken into

account.

The present study has been designed to elucidate interindividual and interoccasion

variabilities of toxicokinetic parameters relevant for the carcinogenicity of one of the

basic petrochemical industrial compounds, ethylene (ethene) (Selinski et al., 1999).
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Therefore two groups of inhalation experiments with male Sprague-Dawley rats were

performed at the Institute of Occupational Physiology at the University of Dortmund. In

the first group (group A) 10 rats were exposed 5 times each to a concentration of 100

ppm. In the second group (group B) another 10 animals were exposed to five different

concentrations of 20, 50, 100, 200, and 500 ppm ethylene each (Selinski and Urfer,

1998).

Ethylene is an important industrial bulk chemical, which is also present in the

environment. In mammalian organisms ethylene is metabolised to ethylene oxide, which

is directly alkylating different macromolecules. Ethylene oxide is a physiological body

constituent (Bolt, 1996; Bolt et al., 1997) and it’s carcinogenic in animal studies; the

carcinogenicity in humans is still discussed controversially (Bolt, 1998).

As previous inhalation experiments with ethylene have indicated the metabolism may be

well approximated by first order kinetics at concentrations below 800 ppm (parts per

million). This approximation is used in the present study where the maximum

concentration were about 500 ppm ethylene. At higher concentrations the metabolism of

ethylene becomes more and more saturated (Bolt and Filser, 1987).

A two-compartment model is applied to describe the processes of uptake, exhalation,

and metabolic elimination of ethylene. Two nonlinear four-stage hierarchical models

based on the approach of Racine-Poon and Smith (1990) are presented; the first one for

a repeated measurement design, the second for repeated exposures to different doses.

The estimation of the individual and population parameters as well as of the covariance

matrices is performed by an EM algorithm as proposed by Dempster et al. (1977).
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2. Two-compartment model

The two-compartment model used by Filser (1992) for the characterisation of exposure

to volatile xenobiotics describes uptake, endogenous production, excretion, and the

metabolic elimination of the substance. The model is depicted as follows: a xenobiotic

gas, in this case ethylene, enters the body and is exhaled. This process is described by

introducing two compartments, the first, C1, representing the environment outside the

body, here the inhalation chamber of the exposition system, and the second

compartment, C2, the body itself. The volatile xenobiotic migrates from one

compartment to the other through a theoretical interface. During this process, some

portion of the xenobiotic within the organism, at any stage, is eliminated by metabolic

processes, and another portion is again exhaled (cf. Fig. 1).

com partm ent C 1 com partm ent C 2

a tm osphere

volum e V 1

organism

vo lum e  V2

k1 2
[R ]

k2 1
[R ]

kel
[R ]

Figure 1. Two-compartment block model in the case of metabolic turnover

In the case of ethylene this substance is partly transformed, by hepatic metabolising

enzymes (cytochrome P-450) to ethylene oxide (Filser and Bolt, 1983). Ethylene oxide is
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biologically reactive and thereby genotoxic (Kirkovski et al., 1998). The principles of the

toxicokinetics of this transformation have been extensively studied (Filser and Bolt,

1984; Bolt et al., 1984), and estimates of the carcinogenic risk of ethylene based on its

metabolic transformation to ethylene oxide were published (Bolt and Filser, 1984, 1987).

This paper concentrates on overall first order kinetic processes. Preceding investigations

have indicated that the initial concentrations from 20 to 500 ppm which we used here

were below the point of saturation of ethylene at about 800 ppm, so that the processes

may well be approximated by first order kinetics (Bolt and Filser, 1987).

Moreover, Becka (1998) showed that first order kinetics may also be used as

approximations for nonlinear kinetic processes, e.g., Michaelis-Menten kinetics, if the

observed maximum concentrations do not exceed the point of saturation.

Let yl(t), l = 1, 2, denote the concentration of a xenobiotic in compartment l at time t and

let Vl describe the volume of the compartment. A preliminary assumption is that the

compound, in this case ethylene, is metabolised within the body, and that there is no

metabolism back to the parent ethylene, the latter being very likely on toxicological

grounds.

In the case of overall first order kinetics, each partial process can be characterised by one

rate or velocity constant k, that is ][
12

Rk for the uptake, ][
21

Rk for the exhalation, and ][R
elk

for the metabolic elimination (cf. Fig. 1). Thus the two-compartment model can be

described by a system of linear differential equations (Becka et al., 1993):
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The solution is given by
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1λ and y(0) is the

initial concentration in compartment 1 (Urfer and Becka, 1996).

In the practical application we have to take into account, that the individual organisms

have different volumes which are also varying between repeated experimental occasions.

In general, the kinetic parameters of the individuals are estimated first and then

standardised to eliminate the effect of the volume (i.e., slightly different body weights of

the rats). As we use the estimated parameters of the individuals for further calculations,

we estimate the standardised kinetic parameters directly (Selinski et al., 1999).

According to Filser (1992) the individual rates of uptake ][
12

Rk , exhalation ][
21

Rk and

metabolic elimination ][R
elk are related to the respective rates k12, k21 and kel for a standard

rat of 1000 ml by

3/2
212

][
12 vkk R ⋅= ,

3/1
221

][
21 vkk R ⋅= , and (5)

2
][ vkk el

R
el ⋅= , where







=

2
2

1000

V
v depends on the actual volume of the organism V2 and the standard volume

1000 ml.
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Substituting the real kinetic parameters in the (3) and (4) yields
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and β = (k12, k21, kel, y(0))T is the vector of the standardised kinetic parameters and the

initial concentration y(0).

3. Population models

3.1 Notation

The observed concentrations of ethylene in the atmosphere of the exposition system

(compartment 1) are denoted by yijk, with

i = 1, . . ., I the number of the individual rat

j = 1, . . ., J the observations at time points tj and

k = 1, . . ., K the number of the experiment.

Equal time points of measurement are only assumed to simplify the notation. The index k

denotes the kth occasion of exposure to 100 ppm ethylene for the experiments of group

A and the kth dose for group B.
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First of all, we presume that our observations yijk vary across a nonlinear function

f tik j( , )β :

y f tijk ik j ijk= +( , )β ε , i = 1, . . ., 10, j = 1, . . ., J, k = 1, . . ., 5.

The function f tik j( , )β depends on the individual parameter vector βik and the time t. It

denotes the expected concentration-time curve of the ith individual at the kth occasion.

The parameter vector  βik = (k12ik, k21ik, kelik, yik(0))T = (
T
ikϕ , yik(0))T, where ϕik = (k12ik,

k21ik, kelik)
T represents the vector of the standardised kinetic parameters, differs from

individual to individual and is of dimension p = 4.

Due to the way of application, the initial concentrations yik(0) are not exactly known and

have to be treated as parameters, although we are merely interested in the kinetic

parameters.

Our main interest are not the individual responses to the experimental conditions but is

focussed on a population mean process, which underlies the different individual

processes. The individual kinetic parameter vectors ϕik may be regarded as to vary at

random across an individual mean parameter vector ϕi, which describes the general

behaviour of the respective processes for that individual. Furthermore the individual

mean processes are supposed to vary across a population mean process with parameter

vector ϕ in the manner of a random sample. Additionally we suppose that the variances

of the observed concentration-time curves differ from individual to individual and from

occasion to occasion.
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3.2 Hierarchical model for group A

Nonlinear hierarchical model

A Bayesian approach according to Racine-Poon (1985) and Racine-Poon and Smith

(1990) is applied to the data. We are interested especially in the variation of the

individual responses at different dosing occasions, the so called interoccasion variability,

and the variation between the individuals, the intersubject variability.

We propose a four-stage nonlinear hierarchical model assuming that our observations yijk

of the concentration of ethylene in the atmosphere of the exposition system are

independent and have the following distribution:

given βik,
2
ikτ : yijk ~ N( f(βik ,tj), 

2
ikτ ) i = 1, . . ., I, j = 1, . . ., J and k = 1, . . ., K,

with βik = ( T
ikϕ , yik(0) )T, and ϕik = (k12ik, k21ik, kelik)

T

given βi , Ωi: βik ~ N(βi , Ωi) i = 1, . . ., I and k = 1, . . .,K,

with βi = ( T
iϕ , yi(0) )T, and ϕi = (k12i, k21i, keli)

T,

given β, Σ: βi ~ N(β , Σ) i = 1, . . ., I,

with β = (ϕT, y(0) )T, and ϕ = (k12, k21, kel)
T

p(β) ∝ 1 ∀ β ∈ 3 4.
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Linear hierarchical model

We obtain the Bayes estimates for the population mean and individual parameter vectors

β, βi, and βik by transforming the nonlinear hierarchical model into a linear one, such as

provided by Lindley and Smith (1972). For that purpose the observations yijk are replaced

by an "almost" sufficient statistic ζik with

ζik ∼ N ( βik,
2
ikτ Cik) , i = 1, . . ., I, k = 1, . . ., K.

For example, ζik can be chosen as the mean of the posterior density of βik . In the case of

uninformative priors for the variances 2
ikτ , the posterior distribution of βik can be well

approximated by its likelihood, so that the maximum likelihood estimate of βik can be

used as a good approximation for ζik (Racine-Poon, 1985).

The resulting linear hierarchical model is given by:

given θ, V: ζ ∼ N (θ, V), 

where ζ = (ζ1,1, . . ., ζIK)T, θ = (θ1, . . ., θI)
T = (β1,1, . . ., βIK)T, θi = (βi1, . . ., βiK)T

and V = diag{ 2
1,1τ C1,1, . . ., 2

IKτ CIK}

given ψ ,Ω: θ ∼ N (Z2ψ, Ω), 

where θ = (β1,1, . . ., βIK)T, ψ = (β1, . . ., βI)
T,
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is a suitable design matrix.

given β, Λ: ψ ∼ N (Z3β, Λ), where ψ = (β1, . . ., βI)
T, Λ = diag{Σ, . . ., Σ}, and

Z3 = (I4, . . ., I4)
T is a suitable design matrix,

p(β) ∝ 1, ∀β ∈ 3 4.

The matrix ( ) 12 −
ikikCτ denotes the Information matrix:

( ) ( )
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First of all, we suppose that our concentration-time curves can be well approximated by

first order kinetic processes, adapting the main idea of the approach of Becka (1998).

With the notation of chapter 2 the concentration-time curve in the exposition system is

given by
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with λ2ik < λ1ik < 0 (cf. Selinski and Urfer, 1998, for further details).

The vectors of parameters βik in (9) are substituted by their maximum likelihood

estimates ζik, i = 1, . . ., 10, k = 1, . . ., 5.

Estimates in the case of known covariance matrices

In the case of known variances 2
ikτ , and covariance matrices Ω and Λ estimates of the

individual and population mean parameters vectors βik, βi, and β can be calculated

following the approach of Lindley and Smith (1972) for linear hierarchical models.

Thus, the posterior distribution of β, given ζ , V, Ω, and Λ is p-variate normal, p = 4,

with mean β* and covariance matrix A, where

β* = Aa with (10)

{ } 32

1

2223
1 ZZZZVZZA TTT −− Λ+Ω+= and { } ζ1

2223

−
Λ+Ω+= TTT ZZVZZa is the Bayes

estimator of the population mean parameter vector β .

The Bayes estimate β* is normally distributed with mean β and covariance matrix A.

The individual kinetic processes are characterised by an individual mean parameter

vector βi and experiment specific parameter vectors βik..

The posterior distribution of β1, . . ., βI, given ζ, β and Λ, are independent p-variate

normals, p = 4, with means ∗
iβ , i = 1, . . ., I, and covariance matrices Bi, where
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with ( ) 1

1
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So the Bayes estimate ψ* = (β1
*, . . ., βI)

T is given by ψ* = Bb
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The posterior distribution of the parameter vectors θi = (βi1, . . ., βiK)T, i = 1, . . ., I,

given ζ, β, Ω and Λ are p-variate normal, p = 4, with means ∗
iφ and covariance matrices

Di. Thus the Bayes estimate θ* is given by
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The estimators are normally distributed with means
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As β will be unknown in the practical application we replace it in (11) and (12) by its

Bayes estimate β*.

The previous estimators are based on known covariance matrices. However, we have

only vague knowledge about these covariance matrices, and the aim of our investigation

is to gain information about just these covariances, especially with regard to the

interoccasion and interindividual variability. Hence, we need a method to estimate both

the parameter vectors and the covariance matrices. Such a method is presented in the

following section.

Estimators in the case of unknown covariance matrices

In the case of unknown variances 2
ikτ , i = 1, . . ., I, k = 1, . . ., K, Racine-Poon and Smith

(1990) suggest to replace them by suitable estimates 2
îkτ . Under the assumptions of our

model and furthermore assuming independent variances 2
ikτ with vague prior distribution

( ) 12 ∝ikp τ , the posterior mode of 2
ikτ is equivalent to its maximum likelihood estimate

2
îkτ . Thus, we approximate the Bayes estimate of 2

ikτ by

( )( )∑
=

−⋅=
J

j
jikijkik tfy

J 1

22 ,
1

ˆ ζτ , i = 1, . . ., I, k = 1, . . ., K. (13)



15

For unknown covariance matrices Racine-Poon and Smith (1990) suggest an EM-type

iterative algorithm as proposed by Dempster et al. (1977) to estimate the individual and

the population mean parameters as well as the covariance matrices Ω and Λ. We adapt

this algorithm to our four stage model assuming that the inverse covariance matrices

1−Ω i , i = 1, . . ., I, and 1−Σ follow Wishart distributions with degrees of freedom ρ1 and

ρ2 and matrices R1 and R2, respectively. Thus 1
1
−R /(ρ1- p-1) and 1

2
−R /(ρ2- p-1) play the

role of prior estimates of Ωi and Σ and the joint posterior density for β1,1, . . ., βIK,

β1, . . ., βI, β, 1
1
−Ω , . . ., 1−Ω I and 1−Σ , given ζ1,1, . . ., ζIK, is proportional to

( ) ( )

( ) ( )

( ) ( )
( )

( )
( ) ( )







 Σ⋅−⋅Σ

⋅






 Ω⋅−⋅Ω

⋅






 −Σ−−⋅Σ

⋅






 −Ω−−⋅












Ω

⋅








−⋅−−⋅





−−−−−

−−

=

−−−

=

=

−−

= =

−
−

=

= =

−

= =

−

∑∏

∑

∑∑∏

∑∑∏∏

11
2

12
1

11
1

1

12
1

1

1

12

1 1

1
2

1

1 1

1
2

1 1

2
1

2

2

1
exp

2

1
exp

2

1
exp

2

1
exp

ˆ
1

2

1
expˆ

2

1

Rtr

Rtr

CC

p

i

I

i

pI

i
i

I

i
i

T
i

I

I

i

K

k
iiki

T
iik

K
I

i
i

I

i

K

k
ikikik

T
ikik

ik

I

i

K

k
ikik

ρ

ρ

ββββ

ββββ

βζβζ
τ

τ

(14)

Vague knowledge about the inverse covariance matrices 1
1
−Ω , . . ., 1−Ω I , and 1−Σ can be

expressed by choosing ρ1 and ρ2 as small as possible, i. e. ρ1 = ρ2 = p = 4. The choice of

R1 and R2, respectively, seems to have little influence on the estimates (Racine-Poon,

1985).

Substituting 2ˆikτ for 2
ikτ , if necessary, we obtain the approximations of the Bayes

estimates at the lth iteration of the EM-algorithm, )(lβ ,

( )Tl
I

ll )()(
1

)( ,, ββψ K= , ( )Tl
IK

ll )()(
1,1

)( ,, ββθ K= , )(lΩ and )(lΛ , by replacing the covariance

matrices in (3.1), (3.2), and (3.4) by their current approximations )1( −Ω l , and )1( −Λ l (E-
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Step) and subsequent calculation of )(lΩ and )(lΛ as the posterior modes using )(lβ ,

)(lψ , and )(lθ ( M-Step).

E-Step

Approximating Ω and Λ in (10) by )1( −Ω l and )1( −Λ l we obtain

{ } { } ζβ
1

2
)1(

2
)1(

23
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23
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 Λ+Ω+= TllTTTllTTl ZZVZZZZZZVZZ ,

(15)

where ( ) ( ){ }ikikikik CCdiagV 22 ˆ,,ˆˆ ττ K= .

Substituting β, Ω, and Λ in (3.2) by )(lβ , )1( −Ω l , and )1( −Λ l , respectively, yields
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In the same way we get )(lθ by replacing the unknown parameters by their current

estimates in (12):
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−−−−− Λ+Ω+Λ+Ω+= . (17)
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M-Step

Setting β, ψ and θ equal to their current values )(lβ , ( )Tl
I

ll )()(
1

)( ,, ββψ K= and

( )Tl
IK

ll )()(
1,1

)( ,, ββθ K= the conditional posterior mode of (14) is given by

( ) ( )
11

)()(

1

)()(1
1

)(

−−+

−⋅−+
=Ω

∑
=

−

pK

R
Tl

i
l

ik

K

k

l
i

l
ik

l
i ρ

ββββ
, i = 1, . . ., I, and (18)

( )( )
12

)()(

1

)()(1
2

)(

−−+

−−+
=Σ

∑
=

−

pI

R
Tll

i

I

i

ll
i

l

ρ

ββββ
(19)

Both steps are repeated until )(
1
lΩ , . . ., )(l

IΩ , and )(lΣ converge. Racine-Poon (1985)

suggests as criterion for convergence, that the maximum change in the elements of the

covariance matrices between successive iterations should be less than 0.001.

Reasonable starting values )0(
1Ω , . . ., )0(

IΩ , and )0(Σ are given by

( )( )
22

.
1

.
1

1
)0(

−−+

−−+
=Ω

∑
=

−

pK

R
T

iik

K

k
iik

i ρ

ζζζζ
, i = 1, . . ., I

( )( )
32

...
1

...
1

2
)0(

−−+

−−+
=Σ

∑
=

−

pI

R
T

i

I

i
i

ρ

ζζζζ
,

where ∑
=

=
K

k
iki K 1

.

1 ζζ and ∑∑∑
= ==

==
I

i

K

k
ik

I

i
i IKI 1 11
...

11 ζζζ .

3.3 Hierarchical model for group B

Analysing the experiments of group B it has to be taken into account that the initial

concentration varies from occasion to occasion. Thus the individual and day-dependent
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initial concentration yik(0) varies across a day-dependent mean yk(0), about 20 ppm for

k = 1, for instance. Therefore the model for group A has to be modified for the

experimental design of group B.

Nonlinear hierarchical model

As we are merely interested in the kinetic parameter we ignore the potential dependence

between their estimates and the initial concentration. Otherwise we would receive a more

complex model which would be much more difficult to estimate as it was the case for

model A. Moreover, assuming overall first order kinetics implies this independence,

although we have to verify this assumption, of course. A suitable test will be presented in

a further paper. Thus, we developed our hierarchical model only for the kinetic

parameters using the Maximum-Likelihood estimates of the initial concentration if

necessary, i.e. for the calculation of the residuals.
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Hence, we propose a four-stage nonlinear hierarchical model assuming that our

observations yijk of the concentration of ethylene in the atmosphere of the exposition

system are independent and have the following distribution:

given ϕik, yik(0), 2
ikτ : yijk ~ N( f(ϕik, yik(0), tj), 

2
ikτ ) i = 1, . . ., I, j = 1, . . ., J and

k = 1, . . ., K, with βik = ( T
ikϕ , yik(0) )T, and ϕik = (k12ik, k21ik, kelik)

T

given ϕi, Ωi: ϕik ~ N(ϕi , Ωi), i = 1, . . ., I and k = 1, . . ., K,

with ϕi = (k12i, k21i, keli)
T,

given ϕ, Σ: ϕi ~ N(ϕ, Σ) i = 1, . . ., I,

with ϕ = (k12, k21, kel)
T

p(ϕ) ∝ 1 ∀ ϕ ∈ 3 3.

Linear hierarchical model

The nonlinear hierarchical model is transformed into a linear one by substituting the

observations yijk by the Maximum-Likelihood estimates ζik. Thus, we receive the

following linear model:
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given θ, V: ζ~ ∼ N (θ, V), 

where ζ~ = ( 1,1

~ζ , . . ., IKζ~ )T, ( )Telikikikik kkk ˆ,ˆ,ˆ~
2112=ζ are the three first

components of the Maximum-Likelihood estimate ζik of βik, θ = (θ1, . . ., θ I)
T, θ i =

(ϕi,1, . . ., ϕiK)T, V = diag{( 1,1
2
1,1

~
Cτ ), . . ., ( IKIKC

~2τ )}, and ikik C
~2τ denotes the left

upper 3×3 matrix of the inverse of the Information matrix ( ) 12 −
ikikCτ .

given ψ, Ω: θ ∼ N (Z2ψ, Ω), 

where , θ = (θ1, . . ., θ I)
T, θ i = (ϕi,1, . . ., ϕiK)T, ψ = (ϕ1, . . ., ϕI)

T
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is a suitable design matrix.

given ϕ, Λ: ψ ∼ N (Z3ϕ, Λ),

where ϕ = (k12, k21, kel)
T, Λ = diag{Σ, . . ., Σ}, and Z3 = (I3, . . ., I3)

T is a suitable

design matrix,

p(ϕ) ∝ 1, ∀ϕ ∈ 3 3.
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The Bayes estimates θ*, ψ*, and ϕ* are the same as the estimates in section 3.2 for group

A. Note, that using (10) to (12) in the case of known covariance matrices or rather (15)

to (19) in the case of unknown covariance matrices that the dimension p of the parameter

vectors is three instead of four.

5. Discussion

The present approach simplifies the complex biological processes of highly organised

living organisms by the reduction to two-compartment models and the approximation of

nonlinear kinetics by linear ones. Using linear kinetics we have to be aware of the

possible errors which result from the dependence of the parameters on the concentration

if the underlying processes are nonlinear. Assuming first order kinetics the processes of

uptake, exhalation, and metabolic elimination are independent from the dose. Before

summarising the information provided by experiments within a range of concentrations,

like in group B, it is necessary to verify that a first order approximation of the processes

is valid. In fact, the experiments of group A show a correlation between the metabolism

and the initial concentration. In a further paper a procedure will be presented to detect

such critical departures from linearity.

A further step in the reduction of complexity was the presentation of a simpler model for

a repeated measurement design which ignored the correlation between βi1, βi2, . . ., and

βiK (Selinski and Urfer,1998; Selinski et al., 1999). Assuming independence between βi1,

βi2, . . ., and βiK estimates for each parameter vector βik can be calculated separately and

the estimation of βik and β requires only the inversion of matrices of size 4×4. Moreover,
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it has to be checked if the estimation procedure for model A can be improved by

considering only the kinetic parameters like in model B. The size of the matrices which

have to be inverted numerically would reduce to 15 × 15.

Including the initial concentration as parameter in the hierarchical model of group B

leads to a more complicated model which requires the calculation of inverse matrices of

size 35 × 35.

As with increasing size of matrices the error increases exponentially the question is which

model has to be preferred: a quite simple model ignoring the dependency between the

parameter vectors, a more complex model which ignores the initial concentration as

parameter or a model requiring matrix manipulations which produce possibly huge

errors? Furthermore, it has to be checked which model copes better with outliers,

missing data and departure from first order kinetics.

Determining the processes involved in the formation of reactive metabolites is a crucial

step to establish a dose-response relationship for the interesting chemical. The

metabolites may be transformed partly into an inactive form, and others form various

DNA, RNA, and protein adducts. These processes may also contribute to the

nonlinearity of the dose-tumor response curve. Hoel et al. (1983) presume a linear DNA

adduct–tumor relation and conclude that a valid characterisation of the processes of

uptake, elimination, and metabolism is a necessary part of the risk assessment of

potential mutagens and carcinogens.

Various attempts have been published to determine toxicokinetic parameters. Holländer

et al. (1998) compared log-linear regression, a noncompartmental method, unweighted

and weighted nonlinear least squares regression, multicompartmental methods, using

different weighting schemes. They found that the parameters depended on the model and
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the weighting scheme and stressed the importance of correct assumptions with respect to

the variability, presenting an approach to use information about the analytical method in

order to estimate the variability of the observation.

Gilberg et al. (1999) discussed an extension of the nonlinear random effects model for

the Michaelis-Menten enzyme kinetic by adding a flexible transformation to both sides of

the model. The so called weighted transform-both-sides models are very adaptable with

respect to the error structure. An EM algorithm, which updates the transformation and

weighting parameters every iteration step, was applied to estimate regression and

covariance parameters.

Toxicological data reflect profound complexities of the biology of living individuals.

Recent research on Gibbs sampling has great potential for estimating the parameters of

complex models, because it reduces the problem of dealing simultaneously with a large

number of related parameters into a much simpler problem of dealing with one unknown

quantity at a time. Gilks et al. (1993) have reviewed applications of Gibbs sampling in

immunology, pharmacology, cancer screening, industrial and genetic epidemiology.

Wikle et al. (1998) propose the use of hierarchical Bayesian space-time model with five

stages to achieve more flexible models and methods for the analysis of environmental

data distributed in space and time. They implement their models in a Markov chain

Monte Carlo framework using the Gibbs sampler approach. Increasing familiarity and

experimentation with new Markov chain Monte Carlo methods for exploring and

summarising posterior distributions in Bayesian statistics will lead to new insights in

toxicokinetics.
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