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Abstract

The FI-A-PARCH process has been developed by Tse (1998) to model essential

characteristics of financial market returns. However, due to the nonstationarity

described by Nı́guez (2002) the process exhibits infinite conditional second mo-

ments and no statements about the autocovariance function can be derived. Thus,

the new Hyperbolic A-PARCH model is considered, first introduced in Schoffer

(2003). Subsequently the characteristics of this extension of the FI-A-PARCH

process are inspected. It can be shown, that under certain parameter restrictions

the intrinsic process as well as the process of conditional volatilities is stationary.

Furthermore, for an asymmetric transformation of the conditional volatilities the

presence of long memory is proven. Thus, the introduced model is able to re-

produce the main characteristics of financial market returns such as volatility

clustering, leptokurtosis, asymmetry and long memory.

1Research supported by Deutsche Forschungsgemeinschaft under SFB 475



1 Introduction and summary

This paper generalizes existing ARCH models introduced by Engle (1982) and

Bollerslev (1986) to allow for long memory in conditional second moments. It

combines the FI-A-PARCH model of Tse (1998) and the HYGARCH model of

Davidson (2003) to produce a new model which exhibits all the features found

in empirical investigations for financial market returns: volatility clustering, lep-

tokurtosis, asymmetry and long memory.

The asymmetric behavior of certain financial market data as well as the per-

sistence of shocks in conditional volatilities are investigated in recent studies.

Asymmetry means that a decrease, e.g. for asset prices, is followed by an increase

of the conditional volatility, as observed by Black (1976) and Christie (1982).

Concerning persistence it is known that the empirical autocorrelations of the

conditional volatilities decay only very slowly by rising order, more precisely with

hyperbolic decay rate. That fact is called long memory. To model these charac-

teristics various extensions of the GARCH model like EGARCH, A-PARCH and

FIGARCH are introduced (for details see Andersen and Bollerslev, 1998).

Many of these extensions have an ARCH(∞) representation. Based on this a

representation can be derived, which allows the derivation of moment and sta-

tionarity properties using the Volterra series expansion (see Priestley, 1988). In

particular Giraitis et al. (2000) deduce sufficient conditions for strict and weak

stationarity. Furthermore, they derive conditions for the existence of certain mo-

ments as well as statements about the form of the autocovariance function. Con-

sequently the presence of long memory, based on the Volterra representation of

ARCH processes is given.

The fractional integrated models FIGARCH and FI-A-PARCH introduced by

Baillie et al. (1996) and Tse (1998) do not permit statements about the auto-

covariance function due to infinite conditional second moments. Thus, the new

Hyperbolic A-PARCH model is considered, first introduced in Schoffer (2003).

This model allows to reproduce all presented characteristics of returns of finan-

cial time series (volatility clustering, leptokurtosis, asymmetry, long memory).

Furthermore, it considers that the conditional volatility is represented at best by

non-integer power of the absolute value of the observations according to Ding
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et al. (1993). This extension of the A-PARCH approach is formulated analogous

to the HYGARCH model presented of Davidson (2003). Finally, first character-

istics of this model are derived based on its Volterra series expansion.

2 The Hyperbolic A-PARCH model

Consider first the above mentioned FI-A-PARCH model, which includes the

GARCH, A-PARCH and FIGARCH models as special cases. Let zt =
(
|yt|−ηyt

)δ
with |η| < 1 and νt = zt−σδ

t . Then the FI-A-PARCH process solves the equation

(
1− α(L)− β(L)

)
(1− L)d

(
{zt}

)
= α0 +

(
1− β(L)

)(
{νt}

)
. (2.1)

If (1− β(L))−1 exists, {σδ
t } can be represented as a function of {zt} as follows

{σδ
t } =

(
1−β(L)

)−1
(
α0−α(L)+

(
1−α(L)−β(L)

)(
1−(1−L)d

))(
{zt}

)
.

Denote by ϕ(L) the filter

ϕ(L) :=
(
1−β(L)

)−1
(
α0−α(L)+

(
1−α(L)−β(L)

)(
1−(1−L)d

))
.

Then we have from (2.1)

{σδ
t } = ϕ(L)

(
{zt}

)
.

Hence, the model equation of a FI-A-PARCH process is given as

σδ
t = ϕ0 +

∞∑
j=1

ϕjzt−j = ϕ0 +
∞∑

j=1

ϕj(|yt−j| − ηyt−j)
δ , (2.2)

where ϕj denotes the weight of the filter ϕ(L) at jth lag (j ∈ IN).

Equation (2.2) presents {yt} as an A-PARCH(0,∞) process, and {zt} as an

ARCH(∞) process with innovations (|εt| − ηεt)
δ. Moreover, the filter ϕ(L) is

identical to that of the FIGARCH model using the appropriate ARCH(∞) repre-

sentation. Note that the restrictions δ = 2 and η = 0 in the FI-A-PARCH model

do not affect the form of ϕ(L).
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In order to eliminate the nonstationarity of the FIGARCH process, Davidson

(2003) introduces a Hyperbolic GARCH model. The modification in relation to

the FIGARCH model consists of replacing the fractional difference (1−L)d with(
(1− τ) + τ(1− L)d

)
where τ≥0. Under the condition τ < 1 and further restric-

tions on the remaining parameters of the model the resulting stochastic process

is weakly stationary. In addition the squared values of the series exhibit long

memory. Thus, the HYGARCH model is able to reproduce the characteristics

volatility clustering, leptokurtosis and long memory. As a result of the described

modification the model equation for HYGARCH is given by

(
1−α(L)−β(L)

)(
(1−τ)+τ(1−L)d

)({
y2

t

})
=α0+

(
1−β(L)

)({
y2

t −σ2
t

})
.

However, this model disregards asymmetry and the fact that the conditional

volatility is best represented by non-integer powers of the absolute value of the

observations. Therefore, Schoffer (2003) suggests a new approach to combine the

features of the HYGARCH model with those of the A-PARCH model. The nec-

essary modification in relation to the HYGARCH model consists of replacing y2
t

with zt =
(
|yt| − ηyt

)δ
and σ2

t with σδ
t .

Definition 2.1: A stochastic process {yt} is called Hyperbolic A-PARCH

Process of the orders p and q with memory parameter d or briefly

HY-A-PARCH(p, d, q) process, if for t ∈ ZZ, δ > 0, |η| < 1, 0 ≤ d ≤ 1 and

τ ≥ 0 the following equations are satisfied

yt = εt · σt, εt
iid.∼ P0,1(

1−α(L)−β(L)
)(

(1−τ)+τ(1−L)d
)(
{zt}

)
= α0+

(
1−β(L)

)(
{νt}

)
, (2.3)

where α(L) =
∑q

j=1 αjL
j, β(L) =

∑p
j=1 βjL

j, zt =
(
|yt| − ηyt

)δ
and νt = zt − σδ

t .

Since model (2.3) is a direct generalization of the HYGARCH and FI-A-PARCH

models it contains these as special cases. The HY-A-PARCH model corresponds

to the HYGARCH model for δ = 2, η = 0 and to the FI-A-PARCH model for

τ = 1.

Similar to the FI-A-PARCH model a HY-A-PARCH process has an

A-PARCH(0,∞) representation using

{σδ
t } = ϕ(L)

(
{zt}

)
.
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Then the required filter ϕ(L) has the form

ϕ(L) =
(
1−β(L)

)−1(
α0+α(L)

)
+ τ
(
1−β(L)

)−1(
1−α(L)−β(L)

)(
1−(1−L)d

)
. (2.4)

Therefore, the HY-A-PARCH model with the changed weights regarding

FI-A-PARCH ϕj can be described as A-PARCH(0,∞) process by equation (2.2).

Hence, in analogy to the nonnegativity constraint for A-PARCH models in Ding

et al. (1993) the following restriction ensures that the conditional variances σ2
t

remain nonnegative with probability 1:

ϕj ≥ 0 ∀ j ∈ IN .

To simplify the investigation of the weak stationarity of HY-A-PARCH processes

in section 4 let

φ(1)(L) :=
(
1−β(L)

)−1(
α0+α(L)

)
and

φ(2)(L) :=
(
1−β(L)

)−1(
1−α(L)−β(L)

) (
1−(1−L)d

)
.

Then for HY-A-PARCH processes the following relation for the weights of the

filters ϕ(L), φ(1)(L) and φ(2)(L) holds

ϕj = φ
(1)
j + τφ

(2)
j . (2.5)

3 Volterra series expansion of Asymmetric

Power GARCH models

The Volterra series expansion (see Priestley, 1988, p. 25) facilitates asymptotic

statements about stationarity, moments and the autocorrelation structure of non-

linear stochastic processes. It is exemplified here using the Asymmetric Power

GARCH models. The HY-A-PARCH model and its special cases can be described
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using equation (2.2) with appropriate weights ϕj (j ∈ IN). Thus, this equation is

the initial point for Volterra series expansion.

Because yt = εt · σt holds, it follows from (2.2) that

σδ
t = ϕ0 +

∞∑
j=1

ϕj(|εt−jσt−j| − ηεt−jσt−j)
δ

= ϕ0 +
∞∑

j=1

ϕj(|εt−j| − ηεt−j)
δσδ

t−j .

The following recursive representation, which is equivalent to equation (2.2), re-

sults using the notation ζt :=
(
|εt| − ηεt

)δ
σδ

t = ϕ0 +
∞∑

j=1

ϕjζt−jσ
δ
t−j . (3.1)

Solving equation (3.1) iteratively produces

σδ
t = ϕ0 +

∞∑
j1=1

ϕj1ζt−j1

(
ϕ0 +

∞∑
j2=1

ϕj2ζt−j1−j2σ
δ
t−j1−j2

)

= ϕ0 +
∞∑

j1=1

ϕ0ϕj1ζt−j1 +
∞∑

j1=1

∞∑
j2=1

ϕj1ϕj2ζt−j1ζt−j1−j2σ
δ
t−j1−j2

...

= ϕ0

∞∑
`=0

∞∑
j1,...,j`=1

ϕj1 . . . ϕj`
· ζt−j1 . . . ζt−j1−...−j`

.

This expression is called the Volterra series expansion of Asymmetric Power

GARCH models. Here
∑∞

j1,...,j`=1 denotes the `-fold execution of the summation

with the indices j1 to j`.

Thus,
{
|yt|δ

}
can be represented as a function of {εt} using ζt =

(
|εt| − ηεt

)δ
:

|yt|δ = ϕ0|εt|δ
∞∑

`=0

∞∑
j1,...,j`=1

ϕj1 . . . ϕj`
· ζt−j1 . . . ζt−j1−...−j`

. (3.2)

In order to be able to use the statements based on the Volterra series expansion of

ARCH processes directly for the Asymmetric Power GARCH models the following
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representation is necessary

zt = ϕ0

∞∑
`=0

∞∑
j1,...,j`=1

ϕj1 . . . ϕj`
· ζtζt−j1 . . . ζt−j1−...−j`

. (3.3)

Let Xt = zt and ξt = ζt. Then the equation (3.3) is identical with the Volterra

series expansion of ARCH processes described in equation (2.1) in Giraitis et al.

(2000). However, by using this identity it is only possible to derive directly con-

clusions on zt and not on |yt|δ or yt, respectively.

Consider the relation

zδ
t =

(
|yt|−ηyt

)δ
=
(
1−η ·sign(yt)

)δ · |yt|δ =
(
1−η ·sign(εt)

)δ · |yt|δ ,

where sign(x) =
{

1, x≥0
−1, x<0

.

According to Randles and Wolfe (1979), p. 49 sign(εt) and |εt| are stochastically

independent if the distribution of εt is symmetric about zero. Since σt in addition

depends only on the values εt−k with k ≥ 1 also σt is independent of sign(εt).

Thus, sign(εt) and the product |yt| = σt · |εt| are stochastically independent as

well as their monotonous transformations
(
1−η ·sign(εt)

)δ
and |yt|δ.

Therefore, if the distribution of εt is symmetric about zero the following equation

holds for arbitrary moments of zt

E
(
zk

t

)
= E

(
(1− η · sign(εt))

kδ · |yt|kδ
)

= E
(
(1− η · sign(εt))

kδ
)
· E
(
|yt|kδ

)
. (3.4)

Since E
(
(1− η · sign(εt))

kδ
)

is a constant, statements about moments of |yt|δ

follow directly from statements about moments of zt using equation (3.4).
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Under the mentioned assumption of symmetry it also follows that

E
(
(1− η · sign(εt))

kδ
)

=

∞∫
−∞

(1− η · sign(x))kδ fεt(x) dx

=

0∫
−∞

(1 + η)kδ fεt(x) dx+

∞∫
0

(1− η)kδ fεt(x) dx

= (1 + η)kδ

0∫
−∞

fεt(x) dx+ (1− η)kδ

∞∫
0

fεt(x) dx

= (1 + η)kδ · 1

2
+ (1− η)kδ · 1

2

=
1

2

(
(1 + η)kδ + (1− η)kδ

)
,

where fεt is the unconditional density of εt.

Thus, equation (3.4) can be further simplified to

E
(
zk

t

)
=

1

2

(
(1 + η)kδ + (1− η)kδ

)
· E
(
|yt|kδ

)
.

In section 4 the characteristics of HY-A-PARCH processes are examined. Some

findings are based on Giraitis et al. (2000) using the Volterra series expansion of

ARCH processes.

According to theorem 2.1 in Giraitis et al. (2000) and under the conditions

E(ζt) <∞ and E(ζt)
∞∑

j=1

ϕj < 1 (3.5)

the equation (3.3) is a strict stationary solution to zt = σδ
t · ζt and (2.2) with the

finite first moment E(zt). If in addition the conditions

E(ζ2
t ) <∞ and

(
E(ζ2

t )
) 1

2

∞∑
j=1

ϕj < 1 (3.6)

hold, the stochastic process described by equation (3.3) is a unique and weak

stationary solution to zt = σδ
t · ζt and (2.2).

Consider that the weights ϕj fulfill the condition

c1j
−γ ≤ ϕj ≤ c2j

−γ (3.7)
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for sufficiently large j ∈ IN and for fixed values γ > 1, c1 > 0, c2 > 0. Then there

exist constants C1 > 0 and C2 > 0 such that for sufficiently large k ∈ IN

C1k
−γ ≤ Cov(zt, zt−k) ≤ C2k

−γ . (3.8)

Thus, under assumption (3.6) {zt} is a stationary process with long memory if

the weights ϕj decay hyperbolically in j according to proposition 3.2 in Giraitis

et al. (2000). Note that inequality (3.8) is equivalent to the widely used definition

of long memory for a stochastic process {zt} given in Campbell et al. (1997), p.61:

Cov(zt, zt−k) �

{
kνf(k) , ν ∈ (−1, 0) or

−kνf(k) , ν ∈ (−2,−1)
as k →∞ ,

where limk→∞
f(tk)
f(k)

= 1 holds for any t ≥ 1. αk � βk means that there are positive

constants C1 and C2 such that C1βk < αk < C2βk, k > k0 for some k0 > 0.

4 Properties of HY-A-PARCH processes

The HY-A-PARCH approach enables the modelling of many characteristics of

financial market returns in the framework of stationary processes. To see this

parameter restrictions are presented, which ensure the weak stationarity of these

processes. Then follows the derivation of stationarity constraints for the trans-

formed process {zt} =
{
(|yt| − ηyt)

δ
}

using the findings of Giraitis et al. (2000).

Based on this the presence of long memory in {zt} concludes.

Let ϕ(L) the ARCH(∞) filter belonging to the HYGARCH model (see Davidson,

2003). Then equation (2.2) describes a HY-A-PARCH process. In accordance to

the law of iterated expectations

E
(
σδ

t

)
= ϕ0 +

∞∑
j=1

ϕjE
(
(|yt−j| − ηyt−j)

δ
)

= ϕ0 +
∞∑

j=1

ϕjE
(
(|εt−j| − ηεt−j)

δ
)
E(σδ

t−j)

εt iid.
= ϕ0 +

∞∑
j=1

ϕjE
(
(|εt| − ηεt)

δ
)
E(σδ

t )

8



under the condition

∞∑
j=1

ϕjE
(
(|εt| − ηεt)

δ
)
< 1 (4.1)

the following equation holds

E
(
σδ

t

)
=

ϕ0

1−
∑∞

j=1 ϕjE
(
(|εt| − ηεt)δ

) .
According to Ding et al. (1993) the inequality (4.1) is a sufficient and necessary

condition for the existence of E(σδ
t ) and E(|yt|δ). Under the restrictions δ = 2

and η = 0 using the relation

∞∑
j=1

ϕjE
(
(|εt| − 0εt)

2
)

=
∞∑

j=1

ϕjE(ε2
t )

εt
iid.∼ P(0,1)

=
∞∑

j=1

ϕj

the inequality (4.1), which ensures the existence of the moments E(σ2
t ) and

E(|yt|2), reduces to

∞∑
j=1

ϕj < 1 .

According to Davidson (2003) a HYGARCH process with the restrictions

0 ≤ τ < 1 and
(
1 − β(1)

)−1(
α0 − α(1)

)
> 0 is weakly stationary. However, due

to infinite second moments this process is nonstationary if τ = 1, i.e. for the

special case FIGARCH. Since (4.1) is a sufficient and necessary condition for the

existence of these moments, one has for stationary HYGARCH processes that

∞∑
j=1

ϕj < 1

and for FIGARCH processes that

∞∑
j=1

ϕj ≥ 1 .

Thus, with (2.5) for 0 ≤ τ̃ < 1 holds

∞∑
j=1

φ
(1)
j + τ̃φ

(2)
j < 1 as well as

∞∑
j=1

φ
(1)
j + φ

(2)
j ≥ 1 . (4.2)
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The inequalities correspond to the stationary HYGARCH process and the non-

stationary FIGARCH process, respectively. Using the relation

∞∑
j=1

φ
(1)
j + τφ

(2)
j =

∞∑
j=1

φ
(1)
j + τ

∞∑
j=1

φ
(2)
j ∀ τ ∈ [0, 1]

follows from (4.2) that

∞∑
j=1

φ
(1)
j + φ

(2)
j = 1 . (4.3)

Note that the condition (4.1) for the HY-A-PARCH model in the notation of

equation (2.5) is given by

∞∑
j=1

(
φ

(1)
j + τφ

(2)
j

)
E
(
(|εt| − ηεt)

δ
)
< 1 .

Thus, using equation (4.3) this condition is equivalent to

τ < 1 +
1

E
(
(|εt| − ηεt)δ

) ∞∑
j=1

φ
(2)
j

− 1
∞∑

j=1

φ
(2)
j

. (4.4)

Thus, the moments E(σδ
t ) and E(|yt|δ) exist under the constraints (4.4) and(

1−β(1)
)−1(

α0−α(1)
)
> 0. If in addition δ ≥ 2 is fulfilled it can be concluded that

the respective HY-A-PARCH process {yt} is weakly stationary on the analogy to

appendix B in Ding et al. (1993).

In condition (4.4) as well as in theorem 2.1 from Giraitis et al. (2000)

E(ζt) = E
(
(|εt| − ηεt)

δ
)

(4.5)

is considered. Since εt are iid this value is a constant depending only on the dis-

tribution of εt. This constant is specified for the distributions N (0, 1), GED(0, 1)

and t(0, 1) in Ding et al. (1993), Laurent and Peters (2002) and Lambert and

Laurent (2001), respectively.

In order to prove the presence of long memory for the transformed process {zt}
it is sufficient to examine whether the condition (3.6) is fulfilled and wether the
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weights of the associated filter ϕ(L) decay hyperbolically (see Giraitis et al.,

2000).

In condition (3.6) the expectation E(ζ2
t ) is considered. However, E(ζ2

t ) = E
(
(|εt|−

ηεt)
2δ
)

result from E(ζt) = E
(
(|εt| − ηεt)

δ̃
)

using δ̃ = 2δ. Thus, this constant can

be computed using the expectation value (4.5), too. Therefore, the condition

E(ζ2
t ) < ∞ is fulfilled for the distributions considered in this work. The second

inequality from (3.6) can be transformed equivalently to

τ < 1 +
1(

E(ζ2
t )
) 1

2

∞∑
j=1

φ
(2)
j

− 1
∞∑

j=1

φ
(2)
j

. (4.6)

Thus, for values of τ , which satisfy this inequality the condition (3.6) as first

assumption for proposition 3.2 in Giraitis et al. (2000) is fulfilled. Then {zt}
represents a weak stationary process.

The second condition for proposition 3.2 in Giraitis et al. (2000), i.e. the hyper-

bolic decay of the weights ϕj for the filter belonging to a HY-A-PARCH process

can be traced back to the behavior of the weights for the appropriate HYGARCH

filter, since the transformation g(x) =
(
|x| − ηx

)δ
does not change this filter.

In Davidson (2003) the filter ϕ(L) of the HYGARCH model is approximated by

ϕ(L) ≈
(
1−β(L)

)−1(
α0+α(L)

)
+τ
(
1−β(L)

)−1(
1−α(L)−β(L)

)
ψ(L)

and

ψ(L) = ζ(1 + d)−1

∞∑
j=1

j−1−dLj ,

where ζ(.) denotes the Riemann zeta function. From this the hyperbolic descent

behavior of the weights can be derived. This holds for the HYGARCH model

as well as for the HY-A-PARCH model. With this characteristic and a value

for τ , which satisfies inequality (4.6) the presence of long memory in {zt} ={
(|yt| − ηyt)

δ
}

according to proposition 3.2 in Giraitis et al. (2000) is ensured.

The process {zt} can be construed as representation of the asymmetric conditional

volatilities, so that HY-A-PARCH can be regarded as a stationary process which

reproduces all characteristics presented above.
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However, it is not yet possible to derive a statement for the process
{
|yt|δ

}
of the

conditional volatilities in Asymmetric Power GARCH models. Properties of the

autocovariances of
{
|yt|δ

}
do not result directly from properties of the autoco-

variances of {zt} since by construction of the A-PARCH models
(
1−η·sign(εt−k)

)δ
and |yt|δ are not independent for k > 0 and η 6= 0. Thus, it holds that

Cov(zt, zt−k) = Cov
((

1−η ·sign(εt)
)δ|yt|δ,

(
1−η ·sign(εt−k)

)δ|yt−k|δ
)

= E
((

1−η ·sign(εt)
)δ)·Cov

(
|yt|δ,

(
1−η ·sign(εt−k)

)δ|yt−k|δ
)

6= E
((

1−η ·sign(εt)
)δ)2·Cov

(
|yt|δ, |yt−k|δ

)
.

It is supposed that the generic form of the autocovariance function for lags of

higher order is not changed by the transformation of
(
|yt| − ηyt

)δ
to |yt|δ. I.e.

the hyperbolic decay rate remains intact. However, the final answer to the ques-

tion about the memory of
{
|yt|δ

}
remains for future research. First it can be

examined whether the empirical autocorrelation function of
{
|yt|δ

}
exhibits be-

havior appropriate to long memory using simulations of different HY-A-PARCH

processes. In order to examine the behavior of the autocovariance function un-

der above transformation analytically the method of the Appell Polynomials is

recommended (see Avram and Taqqu, 1987).

5 Conclusion

The Hyperbolic GARCH model introduced by Davidson (2003) allows for long

memory in the process of conditional volatilities. However, using this model no

asymmetry can be described. Therefore, in this work the extension of A-PARCH

processes to the Hyperbolic A-PARCH process is considered.

Characteristics of the new model are derived using the Volterra series expansion of

Asymmetric Power GARCH models. Thus, necessary conditions for stationarity

and the existence of second moments are derived. Furthermore, the presence of

long memory in
{
(|yt| − ηyt)

δ
}
, which can be construed as representation of the

asymmetric conditional volatilities, is proven. However, for the process
{
|yt|δ

}
,

which represents the conditional volatilities, it is not yet possible to derive such a

statement about the autocorrelation structure. Thus, the HY-A-PARCH process
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enables to model the main characteristics of financial market returns such as

volatility clustering, leptokurtosis and asymmetry as well as the presence of long

memory at least for a transformation of the conditional volatilities.

It should be mentioned at last that the Hyperbolic A-PARCH model is imple-

mented in the package ’Time Series Modelling’ by James Davidson. The pack-

age is free for download under http://www.cf.ac.uk/carbs/econ/davidsonje/

software.html.
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