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Abstract

A con�dence interval for the between group variance is proposed which is deduced

from Wald's exact con�dence interval for the ratio of the two variance components

in the one�way random e�ects model and the exact con�dence interval for the error

variance resp. an unbiased estimator of the error variance. In a simulation study

the con�dence coe�cients for these two intervals are compared with the con�dence

coe�cients of two other commonly used con�dence intervals. There, the con�dence

interval derived here yields con�dence coe�cients which are always greater than the

prescribed level.
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1 Introduction

In the present paper we consider con�dence intervals for the between group variance in the

unbalanced one�way random e�ects model of analysis of variance (ANOVA). In the case of

a balanced design one method for constructing a con�dence interval for the between group

variance was independently proposed by Tukey (1951) and Williams (1962). The Tukey�

Williams�method is based on two quadratic forms in normal variables which are exactly

distributed as multiples of �2�distributed random variables and the expectations of these

quadratic forms are parametric functions of the between group variance. Thus, for these

two parametric functions of the between group variance exact (1��)�con�dence intervals

can be calculated and by solving the intersection of these two con�dence intervals, a

con�dence interval of the between group variance is given which has a con�dence coe�cient

at least as great as 1�2� due to Bonferroni's inequality. The results of simulation studies

conducted by Boardman (1974) indicated that the con�dence coe�cient of the Tukey�

Wiliams�interval is near 1� � (cf. also Graybill (1976, p. 620)) and Wang (1990) showed

that the con�dence coe�cient of this interval is at least 1� �.

Following the Tukey�Williams approach Thomas and Hultquist (1978) proposed a con�-

dence interval for the between group variance in the unbalanced case where the distribu-

tions of the two involved quadratic forms in normal variables can only be approximated

by multiples of a �2�distributed random variable, but again the expected values of the

quadratic forms are parametric functions of the between group variance. The approxima-

tion to a �2�distribution is, however, not satisfactory if the ratio of between and within

group variances is less than 0.25 and the design is rather unbalanced. To overcome this

problem Burdick, Maqsood and Graybill (1986) considered a conservative con�dence in-

terval for the ratio of between and within group variance, which was used in Burdick and

Eickman (1986) to construct a con�dence interval for the between group variance based on

the ideas of the Tukey�Williams method. In Burdick and Eickman (1986) a comparison of

the con�dence coe�cients of the Thomas�Hultquist�interval and the Burdick�Eickman�

interval are given by simulation studies. The results of the simulations studies indicated

that the con�dence coe�cient is near 1� � in most cases. If the approximation to a �2�
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distribution in the Thomas�Hultquist approach is not so good, the resulting con�dence

interval can be very liberal, while in these situations the Burdick�Eickman�intervall can

be very conservative.

Now we propose a con�dence interval for the between group variance in the unbalanced

design which is constructed from an exact con�dence interval for the ratio of between and

within group variance derived from Wald (1940), cf. also Searle, Casella, and McCulloch

(1992, p. 78), Burdick and Graybill (1992, p. 186 f.), and an exact con�dence interval of

the error variance resp. an estimator of the error variance.

The structure of the paper is as follows: In section 2 a description of the unbalanced

model and the properties of the mean sum of squares are presented. In section 3 the

di�erent approaches for constructing a con�dence interval for the between group variance

are described in detail. The section 4 explains the conducted simulation studies concerning

the con�dence coe�cients of the three and contains the results of the simulation study.

Finally, some conclusions are given.

Note that all mean sum of squares considered in the following are assumed to be positive,

which is given with probability one.

2 The Model

We consider the unbalanced case of the one�way random e�ects model of ANOVA, i. e.

yij = �+ ai + eij ; i = 1 ; : : : ; r; j= 1 ; : : : ; ni > 1 ; (1)

where yij denotes the observable variable, � the �xed, but unknown grand mean, ai the

unobservable random e�ect with mean 0 and variance �2a, and eij the error term with

mean 0 and variance �2e . We assume that the random variables a1; : : : ; ar; e11; : : : ernr

are normally distributed and mutually stochastically independent. Furthermore, let n =Pr
i=1 ni denote the number of the total observations.
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In model (1) it holds that the mean sum of squares between the groups, i. e.

MS1 =
1

r � 1

rX
i=1

ni (yi: � y::)
2 (2)

with yi: =
Pni

j=1 yij=ni and y:: =
Pr

i=1

Pni

j=1 yij=n, has the expected value

E(MS1) = k�2a + �2e ; k =
1

r � 1
�
n2 �

Pr
i=1 n

2
i

n
; (3)

and

(r � 1)MS1

k�2a + �2e
� �2r�1 ; if �2a = 0 ; (4)

where �2� denotes a central chi�square distributed random variable with � degrees of

freedom.

The mean sum of squares within the groups, i. e.

MS2 =
1

n� r

rX
i=1

niX
j=1

(yij � yi:)
2 (5)

has expected value

E(MS2) = �2e (6)

and

(n� r)MS2=�2e � �2n�r : (7)

According to (7), a (1� �)�con�dence interval for �2e is given by

CI(�2e) :

"
(n� r)MS2

�2n�r; 1��=2
;
(n� r)MS2

�2n�r;�=2

#
; (8)

where �2�; 
 denotes the 
�quantile of a �
2�distribution with � degrees of freedom.

Due to (4) the approximation of the distribution ofMS1 by a multiple of a �2�distribution

is only satisfactory if the between group variance �2a is close to 0. Thus, the transfer of the

con�dence interval for �2a in the balanced case independently proposed by Tukey (1951)

and Williams (1962) to the unbalanced case is not possible. In the next section we will

therefore consider three di�erent approaches of constructing a con�dence interval for �2a

in the unbalanced case.
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3 Con�dence intervals on �
2
a

3.1 The Thomas�Hultquist con�dence interval

Instead of MS1 from (2) Thomas and Hultquist (1978) considered the sample variance

of the group means given by

MS3 =
1

r � 1

rX
i=1

 
yi: �

1

r

rX
i=1

yi:

!2

: (9)

They showed that it holds approximately

(r � 1)MS3

�2a + �2e=~n

appr:
� �2r�1 ; (10)

where ~n denotes the harmonic mean of the sample sizes of the r groups.

Furthermore, Thomas and Hultquist proved that MS2 and MS3 are stochastically inde-

pendent, so that

�2e
�2a + �2e=~n

�
MS3

MS2

appr:
� Fr�1; n�r ; (11)

where F�1; �2 denotes a F�distributed random variable with �1 and �2 degrees of freedom.

From (10) and (11) (1��)�con�dence intervals for �2a+�2e=~n and �2a=�
2
e can be constructed

and adopting the ideas of constructing a con�dence interval by Tukey and Williams to

the present situation, Thomas and Hultquist proposed the following con�dence interval

for �2a:

CITH(�
2
a) :

"
(r � 1)

�2r�1; 1��=2

�
MS3�

MS2

~n
Fr�1; n�r; 1��=2

�
;

(r � 1)

�2r�1;�=2

�
MS3�

MS2

~n
Fr�1; n�r;�=2

�#
: (12)

Due to Bonferroni's inequality the con�dence coe�cient of (12) is at least (1 � 2�), but

one may hope that the actual con�dence coe�cient is near (1� �). However, in Thomas

and Hultquist (1978) it is reported that the �2�approximation in (10) is not good for

extremely unbalanced designs where the ratio � = �2a=�
2
e is less than 0.25. Thus, in such

situations the con�dence interval (12) can be a liberal one, i. e. the con�dence coe�cient

substantially lies below (1� �).
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3.2 The Burdick�Eickman con�dence interval

Burdick, Maqsood and Graybill (1986) suggested a con�dence interval for the ratio � =

�2a=�
2
e which overcomes the problem with small ratios in the Thomas�Hultquist procedure

and has a con�dence coe�cient of at least 1� �. This interval is given by

CI(�) :

�
MS3

MS2
�

1

Fr�1; n�r; 1��=2

�
1

nmin

;
MS3

MS2
�

1

Fr�1; n�r; 1��=2

�
1

nmax

�
(13)

with nmin = minfn1; : : : ; nrg and nmax = maxfn1; : : : ; nrg.

The di�erence between (13) and the con�dence interval for � = �2a=�
2
e in the Thomas�

Hultquist procedure is that due to (11) Thomas and Hultquist subtract 1=~n in both

bounds instead of 1=nmin and 1=nmax, respectively, in (13).

Using (13) and the con�dence interval for �2a + �2e=~n due to (10), Burdick and Eick-

man (1986) investigated the con�dence interval for �2a constructed by the Tukey-Williams

method.

This interval is given by

CIBE(�
2
a) :

"�
~nL

1 + ~nL

�
�
(r � 1)MS3

�2r�1; 1��=2
;

�
~nU

1 + ~nU

�
�
(r � 1)MS3

�2r�1; 1��=2

#
; (14)

with

L = max

�
0;

MS3

MS2
�

1

Fr�1; n�r; 1��=2

�
1

nmin

�
and

U = max

�
0;

MS3

MS2
�

1

Fr�1; n�r;�=2
�

1

nmax

�

3.3 Con�dence interval based on Wald's con�dence interval for �

Instead of approximative con�dence intervals for � as in the Thomas�Hultquist and

Burdick-Eickman approach we consider the exact con�dence interval for � given in Wald

(1940) to construct a con�dence interval for �2a.
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Following Wald (1940) we observe that

Var(yi:) = �2a + �2e=ni = �2e=wi (15)

with wi = ni=(1 + �ni), i = 1 ; : : : ; r.

Now, Wald considered the sum of squares

(r � 1)MS4 =
rX

i=1

wi

�
yi: �

Pr
i=1wiyi:Pr
i=1wi

�2

(16)

and proved that

(r � 1)MS4=�2e � �2r�1 :

Furthermore, MS4 and MS2 are stochastically independent so that

Fw(�) =
MS4

MS2
� Fr�1; n�r : (17)

According to (17), an exact con�dence interval for the ratio � can be constructed.

Wald showed that (r � 1)MS4 is a strictly monotonously decreasing function in �, and

so the bounds of the exact con�dence interval are given as the solutions of the following

two equations:

lower bound: Fw(�) = Fr�1; n�r;1��=2

upper bound: Fw(�) = Fr�1; n�r; �=2

(18)

Since Fw(�) is a strictly monotonously decreasing function in � the solution of (18), if it

exists, is unique. But due to the fact that � is nonnegative, (r � 1)MS4 is bounded at

� = 0 , namely it holds

(r � 1)MS4 �
rX

i=1

ni

�
yi: �

Pr
i=1 niyi:Pr
n=1 ni

�2

: (19)

Thus, a nonnegative solution of (18) may not exist. If such a solution of one of the

equations in (18) does not exist, the corresponding bound in the con�dence interval is set

equal to zero. Note that the existence of a nonnegative solution in (18) only depends on

the chosen �.
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Let us denote by �L and �U the solutions of the equations in (18), so we propose, using

the con�dence bounds from (8) for �2e , the following con�dence interval for �
2
a

CI(�2a) :

�
(n� r)MS2

�2n�r; 1��
� �L ;

(n� r)MS2

�2n�r;�
� �U

�
; (20)

which has a con�dence coe�cient of at least (1�2�) according to Bonferroni's inequality.

But due to the fact that the con�dence coe�cient of [�2e � �L; �
2
e � �U ] is exactly 1� �, the

resulting con�dence interval (20) may be very conservative, i. e. the con�dence coe�cient

is larger than (1��). So, we also consider a con�dence interval for �2a with the estimator

MS2 for �2e instead of the bounds of the con�dence interval for �2e , i. e.

fCI(�2a) : [ MS2 � �L ; MS2 � �U ] : (21)

4 Simulation studies

In simulation studies we compare the con�dence coe�cients of the four di�erent con�dence

intervals (12), (14), (20), and (21) for �2a in the unbalanced one�way random e�ects model.

The simulations are conducted using SAS 6.12 under Windows NT. The means of the r

groups, yi:, i = 1 ; : : : ; r, are independently generated using the SAS function RANNOR

and the sum of squares within the groups, (n � r) � MS2, is generated independently

from yi:, i = 1 ; : : : ; r, using the SAS function RANGAM. During all simulations the error

variance �2e is set equal to one, and for the variance between the groups, �2a, we consider

the values 0; 0:01; 0:05; 0:1; 0:25; 0:5; 0:75; 1; 2; 3; 4; 6; 8; and10. The di�erent unbalanced

designs, which we examined, are given in table 1, whereby eight of these patterns were

also analysed by Burdick and Eickman (1986). For r = 3 and r = 6 we extend the analysis

by considering some patterns which are not so extremely unbalanced as in Burdick and

Eickman.

We consider two-sided con�dence intervals with � = 0 :1and � = 0 :05, respectively.

All estimated con�dence coe�cients are based on 10,000 replications for every set of

parameters. Based on normal approximation it means that a 95%�con�dence interval for

an estimated con�dence coe�cient p̂ = 0 :95is given by [0:9456 ; 0:9541] and for p̂ = 0 :9

by [0:8940 ; 0:9057].
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Table 1: Patterns of unbalanced designs used in simulations

Pattern r ni

1� 3 5, 10, 15

2 3 10, 20, 30

3 3 5, 10, 100

4� 3 1, 1, 100

5� 3 2, 2, 100

6 6 5, 10, 15, 5, 10, 15

7 6 10, 20, 30, 10, 20, 30

8 6 5, 10, 15, 20, 25, 30

9� 6 1, 1, 1, 1, 1, 100

10� 6 2, 2, 2, 2, 2, 100

11� 10 1, 1, 4, 5, 6, 6, 8, 8, 10, 10

12� 10 2, 2, 4, 5, 6, 6, 8, 8, 10, 10

13� 10 3, 3, 4, 5, 6, 6, 8, 8, 10, 10

� These patterns were also considered in Burdick and Eickman (1986)

For solving the system of equations (18), we use the bisection method and choose as the

precision of the solutions 10�14. As starting values of the bisection method we use the

ones proposed by Wald (1940), who showed that for the solutions of (18), say ~� = �L or

�U , it holds with � = �=2 or � = 1� �=2

MS3

MS2
�

1

Fr�1; n�r; �

�
1

nmin
� ~� �

MS3

MS2
�

1

Fr�1; n�r; �

�
1

nmax

: (22)

Note that the lower bound for �L and the upper bound for �U coincide with the con�dence

interval for � considered by Burdick, Maqsood and Graybill (1986), cf. (13).

In table 2 the results of the simulation study are explicitly shown for all values of �2a

with � = 0 :1in pattern 5, where CITH denotes the Thomas�Hultquist�interval from (12),

CIBE the Burdick�Eickman�interval from (14), CI the interval from (20) and fCI from
(21). We choose this pattern as an example to illustrate the characteristics we found in

all simulation studies.

If �2a = 0 all con�dence intervals are rather conservative. For small �2a > 0 the estimated
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Table 2: Estimated con�dence coe�cients for the four di�erent con�dence intervals in

pattern 5 with � = 0 :1

Pattern �2a CITH CIBE CI fCI
5 0 0.9377 0.9796 0.9465 0.9465

5 0.01 0.8874 0.9683 0.9026 0.9007

5 0.05 0.8890 0.9555 0.9070 0.8986

5 0.1 0.8912 0.9452 0.9141 0.9022

5 0.25 0.8961 0.9292 0.9227 0.9058

5 0.5 0.8946 0.9122 0.9244 0.9013

5 0.75 0.8984 0.9088 0.9280 0.9021

5 1 0.9035 0.9098 0.9352 0.9084

5 2 0.9000 0.9030 0.9363 0.9052

5 3 0.9084 0.9099 0.9414 0.9127

5 4 0.9049 0.9059 0.9404 0.9074

5 6 0.9028 0.9036 0.9422 0.9069

5 8 0.9000 0.9003 0.9394 0.9049

5 10 0.8969 0.8973 0.9380 0.9020

con�dence coe�cients of the Thomas�Hultquist interval lie below 1��, but the di�erence

to 1 � � in this pattern is not so severe. If �2a becomes larger, the estimated con�dence

coe�cient lies near 1 � �. The Burdick�Eickman�interval possesses for small �2a > 0 a

high con�dence coe�cient, i. e. in these situations the interval is very conservative. The

estimated con�dence coe�cient of this interval declines, if �2a becomes larger, and lies

near 1 � � for large �2a. The con�dence interval CI, where the bounds of the (1 � �)�

con�dence interval for �2e are taken as estimates of the error variance, has a con�dence

coe�cient near 1�� for small �2a > 0, and the estimated con�dence coe�cient increases if

�2a becomes larger. Thus, for large �
2
a this con�dence interval may be rather conservative.

For the con�dence interval fCI with the mean squared error as the estimator of the error

variance we get estimated con�dence coe�cients which lie near 1� � for all �2a > 0.

If an increase or a decline of the estimated con�dence coe�cients is found, the estimated
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con�dence coe�cients attain a certain level near �2a = 1 , so that for�2a > 1 there is little

variation between the estimated con�dence coe�cients. Thus, for simplifying the presen-

tation of all simulations we present in table 3 and 4 ranges of the estimated con�dence

coe�cients for 0 < �2a � 1 and �2a > 1 separately for all patterns with � = 0 :1, and

� = 0 :05, respectively, where in the case0 < �2a � 1 we omit the values for �2a = 0 ,

because as stated above the con�dence intervals are rather conservative in this situation.

The most extreme result in table 3 and 4, respectively, is given in pattern 11. There, the

Thomas�Hultquist�interval is very liberal for 0 < �2a � 1, whereas the Burdick�Eickmann-

interval produces estimated con�dence coe�cients greater than 0.99 in these situations.

Generally speaking, the results just described for � = 0 :1in pattern 5 are re�ected in a

similar way in all conducted simulations as well for � = 0 :1as for � = 0 :05.

5 Conclusions

In our simulation studies we con�rm the results of Burdick and Eickman (1986) that the

Thomas�Hultquist�interval may be very liberal for small �2a, i. e. the con�dence coe�-

cient considerably lies below 1� �. In these situation the Burdick�Eickman�interval has

a con�dence coe�cient which is always larger than 1 � �, but the interval can be very

conservative. If �2a becomes larger, both intervals are very similar. The con�dence in-

terval CI deduced from Wald's con�dence interval for the ratio � with the bounds of the

con�dence interval of the error variance as estimates for the error variance has always a

con�dence coe�cient at least as great as 1� �, but this interval can be very conservative

for large �2a. A good compromise for the whole range of �2a is the con�dence interval fCI
from (21), which has a con�dence coe�cient at least as great as 1 � � for small �2a, and

for growing �2a the con�dence interval only becomes moderately conservative.
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Table 3: Ranges of estimated con�dence coe�cients for the four di�erent con�dence intervals

(12), (14), (20), and (21) with � = 0 :1
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4 <= 1 0.8885 � 0.8968 0.9155 � 0.9714 0.9016 � 0.9263 0.8988 � 0.9063

> 1 0.8971 � 0.9021 0.8999 � 0.9084 0.9333 � 0.9409 0.9020 � 0.9062

5 <= 1 0.8874 � 0.9035 0.9088 � 0.9683 0.9026 � 0.9352 0.8986 � 0.9084

> 1 0.8969 � 0.9084 0.8973 � 0.9099 0.9363 � 0.9422 0.9020 � 0.9127
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12 <= 1 0.8666 � 0.9068 0.9220 � 0.9926 0.9090 � 0.9779 0.9026 � 0.9281

> 1 0.8990 � 0.9031 0.8992 � 0.9059 0.9813 � 0.9847 0.9245 � 0.9294

13 <= 1 0.8791 � 0.9062 0.9115 � 0.9874 0.9093 � 0.9807 0.9006 � 0.9280

> 1 0.8945 � 0.9044 0.8946 � 0.9047 0.9799 � 0.9836 0.9215 � 0.9293
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Table 4: Ranges of estimated con�dence coe�cients for the four di�erent con�dence intervals

(12), (14), (20), and (21) with � = 0 :05

Pattern �
2
a CITH CIBE CI fCI

1 <= 1 0.9456 � 0.9541 0.9535 � 0.9772 0.9561 � 0.9841 0.9518 � 0.9625

> 1 0.9484 � 0.9532 0.9484 � 0.9532 0.9841 � 0.9874 0.9597 � 0.9627

2 <= 1 0.9484 � 0.9527 0.9507 � 0.9760 0.9584 � 0.9818 0.9535 � 0.9571

> 1 0.9483 � 0.9538 0.9484 � 0.9538 0.9784 � 0.9811 0.9537 � 0.9591

3 <= 1 0.9365 � 0.9524 0.9499 � 0.9871 0.9546 � 0.9711 0.9503 � 0.9550

> 1 0.9478 � 0.9523 0.9478 � 0.9524 0.9717 � 0.9745 0.9506 � 0.9551

4 <= 1 0.9384 � 0.9485 0.9585 � 0.9874 0.9503 � 0.9673 0.9496 � 0.9544

> 1 0.9454 � 0.9525 0.9457 � 0.9560 0.9710 � 0.9749 0.9491 � 0.9551

5 <= 1 0.9390 � 0.9527 0.9542 � 0.9853 0.9502 � 0.9707 0.9490 � 0.9554

> 1 0.9492 � 0.9566 0.9492 � 0.9574 0.9728 � 0.9754 0.9516 � 0.9588

6 <= 1 0.9406 � 0.9540 0.9501 � 0.9849 0.9570 � 0.9882 0.9508 � 0.9624

> 1 0.9489 � 0.9522 0.9493 � 0.9522 0.9882 � 0.9897 0.9598 � 0.9627

7 <= 1 0.9436 � 0.9548 0.9474 � 0.9839 0.9583 � 0.9840 0.9512 � 0.9604

> 1 0.9479 � 0.9553 0.9479 � 0.9553 0.9813 � 0.9846 0.9531 � 0.9600

8 <= 1 0.9306 � 0.9528 0.9510 � 0.9906 0.9580 � 0.9825 0.9518 � 0.9575

> 1 0.9447 � 0.9529 0.9447 � 0.9529 0.9812 � 0.9859 0.9519 � 0.9595

9 <= 1 0.9357 � 0.9496 0.9611 � 0.9876 0.9516 � 0.9733 0.9472 � 0.9574

> 1 0.9496 � 0.9525 0.9505 � 0.9566 0.9781 � 0.9830 0.9546 � 0.9582

10 <= 1 0.9362 � 0.9494 0.9525 � 0.9858 0.9524 � 0.9761 0.9503 � 0.9569

> 1 0.9473 � 0.9551 0.9485 � 0.9559 0.9783 � 0.9841 0.9526 � 0.9592

11 <= 1 0.8875 � 0.9463 0.9682 � 0.9971 0.9528 � 0.9912 0.9490 � 0.9682

> 1 0.9454 � 0.9528 0.9491 � 0.9588 0.9925 � 0.9950 0.9639 � 0.9681

12 <= 1 0.9264 � 0.9546 0.9615 � 0.9968 0.9588 � 0.9932 0.9538 � 0.9686

> 1 0.9500 � 0.9530 0.9504 � 0.9537 0.9929 � 0.9958 0.9658 � 0.9687

13 <= 1 0.9398 � 0.9528 0.9578 � 0.9950 0.9569 � 0.9940 0.9511 � 0.9681

> 1 0.9483 � 0.9532 0.9484 � 0.9542 0.9928 � 0.9954 0.9647 � 0.9693

14


