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Abstract 
 
In this note we examine the relevance of  Sheppard’s correction for variances and (both the 
original and a valid weak form of) the so-called “quantization noise model” to understanding the 
effects of integer-rounding on continuous random variables.  We further consider whether there 
is any real relationship between the two.  We observe that the strong form of the model is not 
really relevant to describing rounding effects, demonstrate using simple cases the substantial 
limitations of the Sheppard correction, and use simple versions of a weak form of the model to 
establish that there is no real connection between the correction and the model. 
 
 

I.  Introduction 
 

The famous analysis of Sheppard (see [1] and [2]) provides approximate relationships 
between the moments of a continuous distribution and those of a corresponding approximating 
discrete distribution.  For example, if X  has probability density ( )f x  and 

 [ ]  rounded to the nearest integerX X=  

the Sheppard analysis suggests that under smoothness conditions on ( )f x  and the negligibility 
of a remainder term, 
 

 [ ] 1Var Var
12

X X≈ −    . (1) 

This suggests in turn that integer rounding/quantization “typically” increases variance.  
Additionally, the (actually completely fortuitous) fact that the ( )Uniform  .5,.5−  distribution has 
variance 1/12  makes it tempting to (incorrectly) suspect that somehow independence and a 
variable with such distribution are lurking in the background. 
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Engineers regularly deal with the issue of quantization.  In the present context, one might 
call 
 [ ]Q X X= −  (2) 
a quantization error.  With this notation, it is trivially true that 
 [ ]X X Q= +  (3) 

Now it would be consistent with (1) if Q  could be treated as ( )Uniform  .5,.5−  and independent 
of X .  In fact, (3) under such assumptions is sometimes called the “quantization noise model” 
(see [3],[4], and [5]) and there is motivation in the electrical engineering literature and folklore 
apart from the Sheppard result to perhaps consider such a model. 
 

The folklore in the measurement community seems to be that Sheppard’s correction and 
the quantization noise model are closely connected and widely applicable.  But that folklore is 
fraught with confusing internal contradictions.  It is our purpose here to spell out in simple terms 
what really does and does not follow from a careful analysis of the nature of Q , models like the 
quantization noise model, and the Sheppard analysis. 
 

II.  The Nature of the Joint Distribution of and X Q  and “Histogram Densities” 
 

It is obvious from (2) (and well-recognized by electrical engineers) that Q  is a 
deterministic function of X  and is certainly not independent of it.  It is perhaps not so well-
recognized that Sheppard’s approximation really has nothing to do with the quantization noise 
model, and can further be grossly inappropriate for some very simple continuous distributions.  
Let us elaborate. 

 
The function 

 ( ) [ ]q x x x= −  (4) 

that transforms ( ) to X Q q X=  is pictured in Figure 1.  It is clear that the joint distribution of 
 and X Q  is singular and in fact concentrated on set of line segments that make up 

( )( ){ }2, |x q x x∈ℜ ∈ℜ . 

 

 
Fig. 1.  Plot of ( )q x  (and thus the support of the joint distribution of and X Q ). 
 

One condition sufficient to make ( )U .5,.5Q −∼  is that X  have what we will here call a 

“histogram density,” that is for ( )f x  to be constant on each interval ( ).5, .5i i− +  for integer i .  
In fact, more can be said about such simple cases.  Though and Q X  are of necessity dependent 
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(and can not be described by the quantization noise model), it is very easy to see that Q  is 
( )U .5,.5−  and independent of [ ]X  exactly when X  has a histogram density.  (The conditional 

distributions of | [ ] [ ]Q X x=  are all ( )U .5,.5−  exactly when X  has a histogram density.)  

Notice that independence of [ ]  and X Q  is something quite different from independence of 
 and X Q . 

For X  with histogram density it is then the case that 

 [ ]( ) [ ] [ ] 1Var Var Var Var Var
12

X X Q X Q X= − = + = +    . (5) 

Although the number 1/12  appears in both equations (1) and (5), they are quite different!  There 
is, of course, no contradiction between them, as a histogram density does not satisfy the 
conditions under which Sheppard derived (1).  But (5) shows that one should not assume that 
quantization necessarily increases variance.  For a histogram density, making the Sheppard 
correction to variance of the quantized variable is exactly the wrong thing to do.  Quantized 
observations from a histogram density are less variable than their unquantized counterparts, in 
complete contradiction to any intuition drawn from (1) and naively taken to be general. 
 

III.  Weak Forms of the Quantization Noise Model? 
 

Notice that (3) and (5) imply that for X  with a histogram density 

 
[ ] ( )

( )

[ ] ( )

Var Var

             Var Var 2Cov ,

1 1             Var 2Cov ,
12 12

X X Q

X Q X Q

X X Q

= +

= + +

 = + + + 
 

 (6) 

so that 

 ( ) 1Cov ,
12

X Q = −  (7) 

and X  and its quantization error are negatively correlated.  The question then arises as to 
whether there are simple densities for X  that produce a ( )U .5,.5−  distribution for Q  and (not 
negative, but rather) 0 correlation between and X Q .  Such a distribution would produce a valid 
“weak” form of the quantization noise model and suffice to make (1) exact. 
 

One simple positive answer to this existence question can be motivated as follows.  It’s 
obvious from Figure 1 that if one begins with ( )U .5,.5X −∼ , Q  will also be ( )U .5,.5− , but 
will be perfectly negatively correlated with X .  However, if one were to take some part of the 
( )U .5,.5−  probability for X  just below .5x =  and move it to just above .5x = , and 

simultaneously move the corresponding part of the probability just above .5x = −  and to just 
below .5x = − , it should be possible to reduce the correlation between and X Q .  So for 
0 .5c≤ ≤  consider the density for X  

 ( ) ( ) ( ) ( )1 if 1, .5 , .5,1
0 otherwise

x c c c c
f x

 ∈ − − − −
= 


∪ ∪
 (8) 

It is clear from Figure 1 that Q  is ( )U .5,.5− , and since Q  has mean 0 
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( ) ( )

( ) ( ) ( )
.5 1

1 .5

2

Cov , E

                 1 1

1                 
6

c c

c c

X Q XQ

x x dx x x dx x x dx

c

− −

− −

=

= − − + − + −

= −

∫ ∫ ∫  (9) 

So the choice 1/ 6c =  is one that produces a valid weak version of the quantization noise 
model, and for which (1) consequently holds.  This is a model in which quantization increases 
variance by exactly the amount suggested by the Sheppard correction. 
 

But note in this last regard, that any 0 1/ 6c≤ <  produces a positive correlation between 
 and X Q  and a distribution for X  under which (1) represents an under-correction of [ ]Var X  

as an approximation for Var X .  And on the other hand, 5 / 24c =  gives a case where 
 and X Q  are negatively correlated, but [ ]Var VarX X=  exactly, quantization doesn’t change 

variance, and no “correction” is called for.  The point here is that these simple cases show that 
the Sheppard correction is not really related to even a weak form of the quantization noise 
model.  While there are simple valid versions of that model for which it is appropriate, there are 
others for which it is wildly inappropriate (in both directions). 
 

IV.  Conclusion 
 
 In view of the considerations raised in this note, it would seem wise to be very careful 
before assuming that either the Sheppard correction or any form of a quantization noise model is 
appropriate for describing a particular case of integer rounding of a continuous variable.  The 
two are not related, and neither need be particularly helpful in even simple situations involving 
such rounding. 
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