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Abstract

A method for constructing approximative tests for arbitrary linear hypotheses on

variance components in unbalanced mixed linear models is derived. The idea of cell

mean models is used to derive independent and �
2{distributed mean squares. These

modi�ed mean squares are combined to generalized test statistics which lead to gener-

alized �xed level tests.

1 Introduction

Unbalanced mixed linear models are widely used instruments for the analyses of situations

where �xed as well as random factors inuence the response. Compared to the balanced

design, inference in such unbalanced models is substantially more complicated. The compli-

cation is caused by the fact that the partitioning of the total sums of squares is not unique.

Consequently the usual sums of squares in general are neither stochastically independent nor

distributed as multiples of �2{variates. Therefore the construction of exact test procedures

is only known for some very special models.

The �rst to construct exact tests in unbalanced variance components models was Wald

(1947). Wald's idea was then further developed by Seely and El-Bassiouni (1983), but

still restricted to special one{way and two{way random models and to only few hypothe-

ses. �Ofversten (1993) developed exact tests for hierarchical classi�cations, which then was

embedded into a uniform methodology by Christensen (1996).
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A general proceeding for deriving exact tests in unbalanced random models of arbitrary

structure was given by Khuri (1990). This technique leads to exact tests whenever in the

balanced case the exact test for the same testing problem also exists. The method from

Khuri is restricted to designs that are unbalanced on the last stage only (i.e. unequal cell

frequencies), which is a common case of unbalancedness. Moreover this proceeding does

not generate tests when in the corresponding balanced case nuisance parameters make exact

testing impossible. A powerful tool in such cases is the generalized �xed{level test (cf.

Weerahandi (1995)), which was �rst employed in a special unbalanced variance components

model by Zhou and Mathew (1994).

Now, this paper combines Khuri's technique of deriving stochastically independent and ex-

actly �2{distributed sums of squares in unbalanced mixed linear models with the approxi-

mate testing procedure by Weerahandi. The result is an approximate testing procedure for

arbitrary linear hypotheses in unbalanced mixed linear models that are unbalanced on the

last stage only. A preceding work of Weimann (1998) deals with the corresponding results

in the balanced case.

2 Notations in unbalanced mixed linear models

As mentioned in the introduction the unbalanced mixed linear model shall be restricted to

unbalancedness on the last stage only. Then, such models can be expressed as

y� =

qX
i=1


(i)

�i(��i)
+

mX
i=q+1

g
(i)

�i(��i)
+ e� ;(2.1)

g
(i)

�i(��i)
� (0; �2i ) ; �2i � 0 for i = q + 1 ; : : : ; m ;

e� � (0; �2e) ; �2e > 0 ;

g
(q+1)

�q+1(��q+1)
; : : : ; g

(m)

�m(��m)
and e� stochastically independent

where 
(i)

�i(��i)
for i = 1 : : : ; q are �xed e�ects and g

(i)

�i(��i)
for i = q + 1 ; : : : ; mrandom e�ects.

The random variable e� denotes the experimental error term. To identify a response y, the

complete set of subscripts of y is given by

� = ( k1; : : : ; ks) where kj = 1 ; : : : ; aj for j = 1 ; : : : ; s� 1

and ks = 1 ; : : : ; n! with ! = ( k1; : : : ; ks�1) :

(2.2)
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Therefore the design is balanced with respect to the �rst s � 1 subscripts and unbalanced

with respect to the last subscript ks.

The variables �i and ��i in the term for the ith �xed respectively random e�ect denote the

corresponding sets of rightmost y and nonrightmost bracket subscripts respectively, for i =

1; : : : ; m , while i = �i [ ��i denotes the set of all subscripts of the i
th e�ect.

Since 
(1)

�1(��1)
denotes the overall mean (usually denoted by �), which has no subscripts at all,

it follows that �1 = ��1 =  1 = ;. We assume the existence of one variance component at

minimum (i.e. m � q + 1) and a usual parametrization that leads to  m = !.

Let T be the set of all (s� 1){tuples de�ned by

T = f! j ki = 1 ; : : : ; ai; i = 1 ; : : : ; s� 1g ;(2.3)

with ! given in (2.2). Be N the total number of observations, c the number of all elements

in T , which is the number of all factor levels, and ci the number of factor levels of the i
th

factor:

N =
X
!2T

n! ;

c =
s�1Y
i=1

ai ;(2.4)

ci =
Y
kj2 i

aj for i = 2 ; : : : ; m and c1 = 1 :

In vector form model (2.1) can be displayed as

y =

qX
i=1

Xi�i +
mX

i=q+1

Wiei + e that is(2.5)

y � (X�;
mX

i=q+1

�2iUi + �2eIN)

Xi 2 R
N�ci for i = 1 ; : : : ; q ; X= ( X1 : : : : : Xq) ; � = ( �T1 : : : : : �Tq )

T

Wi 2 R
N�ci ; ei � (0ci; �

2
i Ici) ; Ui =WiW

T
i for i = q + 1 ; : : : ; m ;

e � (0N ; �
2
eIN ) :

yBy set of rightmost bracket subscripts ��i for the i
th e�ect those subscripts are meant that do not nest

any other subscript of that e�ect. Then, the nonrightmost bracket subscripts �i are the complement of ��i

with respect to set set of all subscripts  i of the corresponding e�ect. For detail cf. Khuri (1982)
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Then X1 is the 1N vector and �1 is equal to the grand mean 
(1)

�1(��1)
. For a given ! 2 T let

�y! denote the average over the corresponding y�'s with respect to the last subscript ks:

�y! =
1

n!

n!X
ks=1

y(k1;::: ;ks�1;ks) ; ! 2 T :(2.6)

Let �y denote the vector consisting of the values of �y!, then

�y = Dy where D = ( FTF )�1F T

and F =
M
!2T

1n! = diag (1n(1;::: ;1) ; : : : 1n(a1;::: ;as�1)) :

(2.7)

Then applying formula (2.7) to model (2.1) respectively (2.5) leads to

�y =

qX
i=1

Hi�i +
mX

i=q+1

Hiei + �e ;(2.8)

where �e is de�ned analogously to �y in (2.6) respectively (2.7), and Hi of course can be

displayed as

Hi =

8<: DXi for i = 1 ; : : : ; q

DWi for i = q + 1 ; : : : ; m
;(2.9)

but also in a more constructive way as

Hi =
s�1O
j=1

Lij ; Lij =

8<: Iaj for kj 2  i

1aj for kj 62  i
i = 1 ; : : : ; m :(2.10)
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Since  m = ! we get Hm = Ic. Let H = ( H1j � � � jHq) and � = ( �T1 ; : : : ; �
T
q )

T such that

formula (2.8) can de displayed as �y = H�+
Pm

i=q+1Hiei+ �e. Then, reducing model (2.8) by

invariance leads to

z = ProjR(H)? �y = M �y where M = Ic �HH+ :(2.11)

With Ai = HiH
T
i for i = q + 1 ; : : : ; mthe reduced model can be displayed as

z � (0;
mX

i=q+1

�2i Vi + �2eK) where Vi =MAiM for i = q + 1 ; : : : ; m

K =M

"M
!2T

�
1

n!

�#
M ;

(2.12)

which has to be proved:

E [ z] = E [ M�y] = MH� = ( IN �HH+)H� = 0

Cov [z] = Cov [ M�y] = M Cov

"
mX

i=q+1

Hiei + �e

#
M

= M

(
mX

i=q+1

�2iHiH
T
i + �2e

M
!2T

�
1

n!

�)
M

=
mX

i=q+1

�2iMAiM + �2eM

"M
!2T

�
1

n!

�#
M

=
mX

i=q+1

�2i Vi + �2eK :

Remark 2.1. A certain �y! has a corresponding row in Ai. This row is identical with n!

rows of Ui since 
(1)

�1(��1)
; : : : ; 

(q)

�q(��q)
; g

(q+1)

�q+1(��q+1)
; : : : ; g

(m)

�m(��m)
are not a�ected by averaging over

the last subscript.

It can easily be veri�ed that Vq+1; : : : ; Vm commute (i.e. ViVj = VjVi for i 6= j). Therefore

an orthogonal matrix of order c� c exists that diagonalizes Vq+1; : : : ; Vm simultaneously:
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QViQ
T = Di ; i = q + 1 ; : : : ; m ;(2.13)

where Di is a diagonal matrix. This statement is proven in the appendix in Corollary 5:1

and an algorithm for constructing Q is given.

Let vector u be de�ned by

u = Qz :(2.14)

Then we have from (2.12) and (2.14)

E [ u] = QE [ z] = 0(2.15)

Cov [u] = QCov [z]QT(2.16)

=
mX

i=q+1

�2iQViQ
T + �2eQKQ

T

=
mM

i=q+1

�iImi
+ �2eG ; G = QKQT

where �i (cf. (2.17)) and mi (cf. (2.19)) can be derived from the embedded balanced model,

that is model 2.1 with n! = 1 for all ! 2 T : �i is the expectation of the ith mean square (of

the embedded balanced model) and in a formal notation it is given by

�i =
X
j2'i

bj�
2
j ; with 'i = fj j q + 1 � j � m ;  i �  jg ;(2.17)

with bj from (5.7).

Since then Vq+1; : : : ; Vm with Vm =M is a basis of a commutative and quadratic subspace of

the space of symmetric matrices (the embedded model is a balanced model of ANOVA{type)

with g
(m)

�m(��m)
taking the role of the experimental error term, there exists a basis Pq+1; : : : ; Pm
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of orthogonal projectors of the same subspace. The basis transform is given by the matrix

� = ( 'ij)ij with

Vi =
mX

j=q+1

'ijPj for i = q + 1 ; : : : ; m :(2.18)

Moreover, P1; : : : ; Pm are the projectors of the sums of squares according to the embedded

balanced model. Then mi is the rank of projector Pi:

mi = Rank (Pi) ; i = 1 ; : : : ; m :(2.19)

This is veri�ed in detail in Khuri (1998). Since many balanced models are made explicit in

Hartung et al. (1997) the derivation of mi, �i, and Pi in general is straightforward.

Now, ifG were not present in (2.16), u could easily be used to construct exact tests concerning

�2q+1; : : : ; �
2
m, since then the components of u would be stochastically independent. In the

balanced case with n! = n0 for all ! 2 T we have K = Ic=n0 and because Q can be

constructed as a orthonormal matrix then G is a multiple of an identity matrix, too. Then

(2.16) coincides with the variance{covariance matrix of y� in the balanced case, except for the

factor 1=n0 of variance component �2e which is caused by averaging over the last subscript.

3 Derivation of exact tests

The technique of deriving exact tests in the case random models with unbalancedness on

the last stage only, was introduced by Khuri (1990). Khuri's method needs a further weak

assumption on the sample size (cf.(3.3)), which should be ful�lled in most cases.

The residual sum of squares for the unbalanced model (2.1) is given by

SS(e) = yTRy ; R = IN � FF+ ;(3.1)

where F is the block{diagonal matrix de�ned in (2.7). From Khuri (1990) we have the

following Lemma:
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Lemma 3.1.

1. R is idempotent of rank N � c, where N and c are de�ned in (2.4).

2. DR = 0 , whereD is given in (2.7).

3. RHi = 0 for i = 1 ; : : : ; m , whereH1; : : : ; Hm are given in (2.9) resp. (2.10).

With Lemma 3.1 R can be decomposed to

R = C�CT ;(3.2)

where C is an orthogonal and � a diagonal matrix. Furthermore the diagonal of � consists

of N � c ones and c zeroes. With the assumption of

N > 2c� 1 ;(3.3)

� can be partitioned such that

� = diag (Ic��; IN�2c+�; 0c) ; � =

pX
i=1

mi ;(3.4)

with mi from (2.19). Assume that C is partitioned analogously to �, that is

C = ( C1jC2jC3) ;with C1 2 R
N�(c��) ;

C2 2 R
N�(N�2c+�) ;

C3 2 R
N�c :

(3.5)

De�ne

� = u+ ( �maxIc�� �G)1=2CT
1 y ;(3.6)

where �max is the largest eigenvalue of G de�ned in (2.16). Let � be partitioned as � =

(�Tq+1j : : : j�
T
m)

T where �i is of order mi� 1. Then we have analogously to a Lemma given by

Khuri (1990):
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Lemma 3.2.

1. E [�i] = 0 for i = q + 1 ; : : : ; m .

2. �q+1; : : : ; �m are independently distributed as normal vectors and the variance{covari-

ance matrix of �i is given by

Var [� i] = ( �i + �max�
2
e)Imi

; i = q + 1 ; : : : ; m ;

where �i is given in (2.17).

3. �q+1; : : : ; �m are independent of SS2(e) = yTC2C
T
2 y, which is the portion of the resid-

ual sum of squares SS(e) corresponding to matrix C2 in formula (3.5).

This Lemma leads directly to the following Corollary (also given by Khuri (1990)), that will

be used to obtain independently �2{distributed sums of squares in the unbalanced case.

Corollary 3.3.

Let SSi = �Ti �i, where � is given in (3.6). Then,

1. SSq+1; : : : ; SSm are independent.

2. SSi=(�i + �max�
2
e) is distributed as a central �2{variate with mi degrees of freedom

(i = q + 1 ; : : : ; m ).

3. SSq+1; : : : ; SSm are independent of SS2(e)=�
2
e , which has the central �2{distribution

with N � 2c+ � degrees of freedom.

With modi�ed mean squaresMSi = SSi=mi for i = q+1; : : : ; m andMS2(e) = SS2(e)=(N�

2c + 1) F{tests can be constructed in the traditional way, such that a ratio of two mean

squares is exactly central F{distributed under a certain null hypothesis.

This technique of course can only be applied for a few hypotheses, for example for testing if

a single variance component is zero. But, even in such simple cases, sometimes exact testing

with traditional F{tests is impossible. Moreover arbitrary linear hypotheses in general will

not be testable with an exact F{test and, as a matter of course, there are no hypotheses

that are exactly testable in the unbalanced model if they are not exactly testable in the

corresponding balanced model.
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4 Approximate tests

Now the generated independent �2{distributed random variables SSq+1; : : : ; SSm; SS2(e)

are used to construct approximate tests on arbitrary linear hypotheses.

Let �2 = ( �2q+1; : : : ; �
2
m; �

2
e)
T 2 R

m�q+1 be the vector of all variance components. Then, as

demonstrated in Weimann (1998), general linear hypotheses of the form

HI
0 : dT�2 = c0 vs. HI

1 : dT�2 6= c0 ;

HII
0 : dT�2 � c0 vs. HII

1 : dT�2 > c0 ;

HIII
0 : dT�2 � c0 vs. HIII

1 : dT�2 < c0 ;

(4.1)

where d 2 R
m�q+1 and c0 2 R can be tested with an approximate generalized �xed level test.

As a preliminary step the vector of parameters has to be devided into one parameter, that

takes the role of the parameter of interest and the vector of the other parameters, which

in the context of the generalized �xed level test will function as nuisance parameters. The

parameter of interest is basically arbitrary, but has to occur in H0, that is, the corresponding

di must be nonzero.

Therefore the hypotheses (4.1) has to be transformed, leaving an arbitrary single parameter

(the parameter of interest) on the left side of the special null hypothesis:

HI
0 : �2i =

1

di

 
c0 �

X
j 6=i

dj�
2
j

!
vs. HI

1 : �2i 6=
1

di

 
c0 �

X
j 6=i

dj�
2
j

!
;

HII
0 : �2i �

1

di

 
c0 �

X
j 6=i

dj�
2
j

!
vs. HII

1 : �2i >
1

di

 
c0 �

X
j 6=i

dj�
2
j

!
;

HIII
0 : �2i �

1

di

 
c0 �

X
j 6=i

dj�
2
j

!
vs. HIII

1 : �2i <
1

di

 
c0 �

X
j 6=i

dj�
2
j

!
;

(4.2)

Now by de�nition �2i takes the role of the parameter of interest and all other �2j (j 6= i),

collected in the vector ~�2 := (�21; : : : ; �
2
i�1; �

2
i+1; : : : ; �

2
m�q)

T function as nuisance parameters.

For the problem of testing an arbitrary linear hypothesis of variance components as in (4.1)

resp. (4.2) consider the following random variable (cf. Weimann (1998))
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T (Y; y; �2) =

X
l2L

�l � (�l + �max�
2
e)
ssl
SSl

+ �0c0

�0A
ssi
SSi

+
X
k2K

�k � (�k + �max�
2
e)
ssk
SSk

;(4.3)

where ssl is the observed value of SSl, K;L � f q+ 1 ; : : : ; i� 1; i + 1 ; : : : ; m;m+ 1 g,

SSm+1 = SS2(e) from Lemma 3.2, �m+1 = 0, constants �k; �l 2 IR and

A = �i + �max�
2
e � �2i'ii + 'ii

"
1

di

 
c0 �

X
j 6=i

dj�
2
j

!#
;(4.4)

with 'ii an element of the basis transform de�ned in (2.18), such that

�0A+
X
k2K

�k � (�k + �max�
2
e) =

X
l2L

�l � (�l + �max�
2
e) + �0c0 ;(4.5)

and all added terms shall be nonnegative:

�k � (�k + �max�
2
e) � 0 8 k 2 K ; �0A � 0 ;

�l � (�l + �max�
2
e) � 0 8 l 2 L ; �0c0 � 0 :

(4.6)

Lemma 4.1. The random variable T (Y; y; �2) from (4.3) with assumptions (4.5) and (4.6)

possesses the three properties of a generalized test variable, that is

1. the observed value of T is independent of any parameter,

2. the probability distribution of T under H0 is free of the nuisance parameters ~�2i ,

3. Pr(T � tj�2i ) is a monotonic function of �2i for any given t.
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Proof.

1. The observed value of T

tobs = T (y; y; �2)
(4:3)
=

X
l2L

�l � (�l + �max�
2
e) + �0c

�0A+
X
k2K

�k � (�k + �max�
2
e)

(4:5)
= 1

is constant and therefore especially independent of any parameters.

2. Since �k; �l and si are constant and due to Corollary 3.3X
k2K

�k � (�k + �max�
2
e)
ssk
SSk

and
X
l2L

�l � (�l + �max�
2
e)
ssl
SSl

are linear combinations of independent 1=�2{expressions, free of any unknown para-

meter. �0 and c are constant. Finally, for the left term in the denominator of T in

(4.3) we get

�0A
ssi
SSi

= �0ssi
A

(�i + �max�2e)

(�i + �max�
2
e)

SSi

HI
0= �0ssi

(�i + �max�
2
e)

SSi
;(4.7)

also an 1=�2{expression, which at least under the assumption of HI
0 is free of nuisance

parameters (cf. Corollary 3.3).

3. By construction the parameter of interest �2i in T only appears in �0A � ssi=SSi in the

denominator of (4.3), since all other possibly appearing �2i belong to 1=�2{variates.

With respect to the vector of variance components �2 we have

T (Y; y; �2) /
q1

q2
A

�i + �max�2e
+ q3

:

Because of (4.6) it follows that q1; q2; q3 2 IR+
0 , and for that reason T is stochastically

increasing in �i and therefore also in �2i , since �i is the expected value of the ith mean

square in the embedded balanced model.

With 1., 2. and 3. T is a generalized test variable.

So, the generalized p{values for the three testing problems (4.2) are given for

HI
0 : p = 2 �min

�
Pr(T (Y; y; �2) � 1 j HI

0 ) ; Pr(T (Y; y; �2) � 1 j HI
0 )
�

HII
0 : p = Pr(T (Y; y; �2) � 1 j dT � = c)

HIII
0 : p = Pr(T (Y; y; �2) � 1 j dT � = c) ;

(4.8)
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and the generalized �xed-level test of level � is given by the rule

00reject H0 if p � �00 :

For a detailed description of the theory of generalized �xed level tests cf. Weimann (1998).

5 Appendix

Corollary 5.1. Let A1; : : : ; An be symmetric k � k matrices. Assume all Ai to be pairwise

commutative (i.e. AiAj = AjAi 8 i; j = 1 ; : : : ; n ), then, an orthogonal matrixQ exists, such

that QTAiQ is a diagonal matrix for all i = 1 ; : : : ; n .

Proof. For n = 2: cf. Graybill (1983, p. 406�). For n > 2: complete induction.

A) n = 1

A1 is a symmetric Matrix. Therefore matrices Q1 and D1 exist, such that

QT
1A1Q1 = D1 ;

where Q1 is orthogonal and D1 diagonal. So, for n = 1 the Corollary is proven.

B) n! n+ 1

Let Qn be given such that:

QT
nAiQn = Di 8 i = 1 ; : : : ; n ;(5.1)

where Qn is orthogonal and Di is diagonal for i = 1 ; : : : ; n . In factDi can be written as
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Di =

266666666666664

�i1Ii1 0 � � � 0

0 �i2Ii2 � � � 0

...
...

...

0 0 � � � �iliIili

377777777777775
;

where �i1; : : : ; �ili are the distinct characteristic roots of Ai. If nij is the multiplicity of

characteristic root �ij then the identity matrix Iij is of order nij � nij. Let

C := QT
nAn+1Qn :(5.2)

Then with (5.1), the commutativity of Ai for i 2 f 1; : : : ; n gand the orthogonality of Qn it

holds:

DiC = QT
nAiQnQ

T
nAn+1Qn = QT

nAiAn+1Qn

= QT
nAn+1AiQn = QT

nAn+1QnQ
T
nAiQn = CDi :

(5.3)

By Partitioning of C it follows especially from (5.3) with DnC = CDn
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266666666666664

�n1In1 0 � � � 0

0 �n2In2 � � � 0

...
...

...

0 0 � � � �nlnInln

377777777777775
�

266666666666664

C11 C12 � � � C1n

C21 C22 � � � C2n

...
...

...

Cn1 Cn2 � � � Cnn

377777777777775

=

266666666666664

C11 C12 � � � C1n

C21 C22 � � � C2n

...
...

...

Cn1 Cn2 � � � Cnn

377777777777775
�

266666666666664

�n1In1 0 � � � 0

0 �n2In2 � � � 0

...
...

...

0 0 � � � �nlnInln

377777777777775
:

This implies Crs = 0 for r 6= s since �nr 6= �ns for r 6= s and C only consists of diagonal

blocks. As Am+1 is symmetric, C from (5.2) is symmetric too, and therefore also Cjj. This

once again implies the existence of matrices eQj and Dj, such that

eQT
j Cjj eQj = Dj for all j = 1 ; : : : ; l ;(5.4)

where the eQj are orthogonal and Dj diagonal. Let

eQ :=
lM
i=1

eQi = diag( eQ1; : : : ; eQl) ;

then according to (5.4) eQ is orthogonal and for i 2 1; : : : ; n it follows

eQTQT
nAiQn

eQ (5:1)
= eQTDi

eQ = Di for all i = 1 ; : : : ; n

eQTQT
nAn+1Qn

eQ (5:2)
= eQTC eQ = D� ;

(5.5)
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where even D� is diagonal (cf. (5.4)).

Finally let

Qn+1 := Qn
eQ ;

so Qn+1 according to (5.4) diagonalizes A1; : : : ; An as well as An+1 simultaneously. Qn+1 is

orthogonal, as Qn and eQ are orthogonal. With A) and B) Corollary 5.1 is proven.

Remark 5.2. Corollary 5.1 even holds in the opposite direction: if there exists an orthogonal

matrix P that diagonalizes symmetric matrices A1; : : : ; An simultaneously, then the set of

Ai commutes. (cf. Graybill (1983, p. 408)).

5.1 Construction of the diagonalization matrix

Of course Corollary 5.1 can be used to construct the diagonalization matrix Q. Since this

would take some e�ort in programming, we give a straighter method to construct Q:

For the construction of Q, one should �rst write down the expressions for the Pi matrices

using the following formula:

Pi =
mX
j=1

�ij
bj
Aj ; i = q + 1 ; : : : ; m ;(5.6)

with Aj = HjH
T
j (cf. formula (2.10)), �ij is �1, 0 or 1 which is the coe�cient of the jth

admissible mean in the ith component of the balanced model (cf. Khuri (1982)) and bj is

given by

bj =

8>>>><>>>>:
Q

kl 62 j

al; if  j 6= !

1; if  j = !

j = 1 ; : : : ; s� 1 ;(5.7)

where al, s and ! are introduced in (2.2) and  j = �j [ ��j is de�ned as before.
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Now, let Qi be the matrix whose rows are orthonormal and form a basis for the rows of

Pi. The rows of Qi are in fact orthonormal eigenvectors of the idempotent matrix Pi which

correspond to the eigenvalue 1 of Pi. These are easily obtained using, for example, the

EIGEN subroutine in PROC IML of SAS. Note that Qi is not unique, and hence Q is not

unique. Then diagonalization matrix Q is given by Q = ( QTq+1j : : : jQ
T
m)

T . This is the result

of a Lemma given by Khuri (1998, p.123f).

5.2 An alternative principle of construction

An alternative proceeding (via singular value decomposition instead of eigenvalue detection)

which can be directly transferred into program code of any computer language is given by

the following:

1. Singular value decomposition of A1: Compute QTA1Q = D with R orthogonal and D

diagonal.

2. Let C := QTAnQ.

3. C consists of diagonal blocks and can be displayed as C = diag(C1; : : : ; Cl).

4. Singular value decomposition of Ci: Compute eQT
i Ci eQi = Di with eQi orthogonal and

Di diagonal for all i = 1 ; : : : ; l.

5. Let eQ := diag( eQ1; : : : ; eQ�).

6. Let P := Q � eQ
7. If the diagonalization of all Ai is not yet completed, go on with item 3 and Q := P ,

C := QTAn+1P ; otherwise matrix P = Q for simultaneously diagonalization is given.

As noted above this proceeding is the consequence of using Corollary 5.1.

6 Examples

Example 1

The following example is taken from Khuri and Littell (1987) and deals with variation in

fusiform rust in Southern pine tree plantations. Trees with female parents from di�erent

families were evaluated in several test locations. The data from �ve families and four test

locations are extracted, while the male parents are disregarded for purpose of illustration.

17



Table 1: Proportions of symptomatic trees from �ve families and four test locations

Test Family number
number 288 352 19 141 60

.804 .734 .967 .917 .850

.967 .817 .93034

.970 .833 .889
.304

.867 .407 .896 .952 .486

.667 .511 .717 .46735

.793 .274

.458 .428

.409 .411 .919 .408 .275

.569 .646 .669 .435 .25636

.715 .310 .669 .500

.487 .450

.587 .394 .928 .367 .525

.538 .428 .85537

.961 .655

.300 .800

The number of plots in each family � test combination ranged from one to four. Proportions

of symptomatic trees in each plot are recorded in Table 1.

Here �i is the random e�ect of the ith family, bj the random e�ect of the jth test location

and (ab)ij denotes the random interaction term of the ith family and the jth test location.

The overall mean ist given by � and the error term by eijk.

For the data in Table 1 an unbalanced 2{way crossed classi�cation model with random e�ects

is used:

yijk = �+ ai + bj + ( ab)ij + eijk ;(6.1)

i = 1 ; : : : ; r ; j= 1 ; : : : ; s ; k= 1 ; : : : ; n(i;j) ;

ai � (0; �2a) ; bj � (0; �2b ) ; (ab)ij � (0; �2ab) ; eijk � (0; �2e) ;

ai; bi; (ab)ij and eijk stochastically independent :

With section 2 the following results are easily obtained:
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i �i ��i  i 
(i)

�i(��i)
g
(i)

�i(��i)
ci Hi Ai Vi Pi

1 ; ; ; � � 1 1c Jc 0c
1
c
Jc

2 ; fig f ig �ai r Ir 
 1s Ir 
 Js Kr 
 Js Kr 

1
s
Js

3 ; fjg f jg � bj s 1r 
 Is Jr 
 Is Jr 
Ks
1
r
Jr 
Ks

4 ; fi; jg f i; jg � (ab)ij c Ic Ic Kc Kr 
Ks

5 fi; jg f kg f i; j; kg � eijk � � � � �

i bi �2i �i mi

1 c � � 1

2 s �2a s�2a + �2ab r � 1

3 r �2b r�2b + �2ab s� 1

4 1 �2ab �2ab (r � 1)(s� 1)

5 � � � �

Moreover we have

c = r � s = 20 ; N =
X
!2T

n! = 53 ; ! = ( i; j) ; � = ( i; j; k) ; q = 1 ; m = 4 ;

and the basis transformation matrix � from (2.18) and matrix �, used for constructing the

diagonalization matrix Q in formula (5.6), are given by

� =

0BBB@
0 0 0 0

0 s 0 0

0 0 r 0

0 1 1 1

1CCCA ; � =

0BBB@
1 0 0 0

�1 1 0 0

�1 0 1 0

1 �1 �1 1

1CCCA :

Using SAS/IML the following results are obtained (cf. section 3):

SS(e) = 0 :846; �max = 1

SS2(e) = 0 :256; SSa = 0 :203; SSb = 0 :628; SSab = 0 :168

Then the generalized p{value for

H0 : �
2
a = �2b vs. H1 : �

2
a 6= �2b(6.2)

according to (4.8) can be computed as

p = 2 �minfPr (T (Y; y; �) > 1); Pr (T (Y; y; �) < 1)g(6.3)
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with

T (Y; y; �) =
r � (s�2a + �2ab + �max�

2
e)
ssa
SSa

+ s � (�2ab + �max�
2
e)
ssab
SSab

s � (r�2a + �2ab + �max�
2
e)
ssb
SSb

+ r � (�2ab + �max�
2
e)
ssab
SSab

(6.4)

and the result returned by 50.000 simulations is

p = 0 :272;

such that the di�erence between the two variance components is not signi�cant at the 5%{

level.

Example 2

The second example is taken from Zhou and Mathew (1994) and concerns an experiment to

compare a new tube (NT) with a control tube (CT) to be used for �ring ammunition from

tanks. The problem is to test is tube{to{tube variability is less for the new tube compared to

the control tube. Twenty NT's and twenty CT's were randomly selected for the experiment

with four tanks each for mounting the NT's and CT's. Five NT's were mounted on each of

four tanks, and �ve CT's were mounted on each of the four other tanks. Three rounds were

�red from each tube, and the observations consisted of a miss distance (the unit used was

6.400 mils per 365 degrees).

Table 2: Miss distances for the tube{to{tube variability experiment

Tank i CTi1 CTi2 CTi3 CTi4 CTi5 NTi1 NTi2 NTi3 NTi4 NTi5
2.76 1.83 1.60 1.53 2.20 1.92 1.98 2.28 1.52 1.61

i = 1 2.10 1.65 1.56 2.29 2.59 1.77 1.56 1.90 1.82 1.48
1.61 1.73 2.06 1.91 1.83 2.10 1.79
1.35 1.15 1.71 1.70 1.26 1.70 1.61 1.78 1.60 1.69

i = 2 1.64 1.83 1.63 1.26 1.69 1.82 1.71 1.73 1.65 1.72
1.56 1.92 1.64 1.65 1.76
1.28 1.65 1.94 1.72 1.81 1.79 1.64 1.84 1.80 1.73

i = 3 1.76 1.86 1.56 2.13 1.39 1.88 1.67 1.49 1.83
1.81 2.00 1.91 1.86 1.52 1.60 1.64 1.92 1.79

1.64 1.77 1.01 1.78 1.27 1.60 1.88 1.77 1.46 2.10
i = 4 1.80 1.63 1.63 1.86 1.38 1.63 1.60 1.56 1.29 1.46

1.89 1.51 1.46 1.55 1.61 1.62 1.72 1.60

Originally the data set was balanced. For purpose of demonstration some observations are

assumed to be missing. Therefore the design is unbalanced.
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Let CTij and NTij respectively denote the jth CT and the jth NT mounted on the ith tank

(i = 1 ; : : : ; r; j = 1 ; : : : ; s ). From the above it is clear, thatr = 4 and s = 5. The

measurements (the miss distances) corresponding to each CTij and NTij are given in Table

2. Let yijk and zijk respectively denote the kth observation corresponding to CTij and NTij ,

�i denote the e�ect due to the ith tank on which a CT was mounted, i denote the e�ect

due to the ith tank on which a NT was mounted, bij denote the e�ect due to CTij, and dij

denote the e�ect due to NTij . The 2{way hierarchical models with mixed e�ects to be used

for analyzing the data in Table 2 are

yijk = �1 + �i + bij + eijk ;(6.5)

zijl = �2 + i + dij + fijl ;(6.6)

with i = 1 ; : : : ; r ; j= 1 ; : : : ; s

k = 1 ; : : : ; ny(i;j) ; l = 1 ; : : : ; nz(i;j)

where �1 and �2 are the overall means and eijk and fijl denote random{error terms. The

tank e�ects �i and i (i = 1 ; : : : ; r) are �xed unknown parameters. We also assume that

bij � N(0; �2b ) ; dij � N(0; �2d) ; eijk � N(0; �2e) ; fijl � N(0; �2e) ;

and all the random variables are independent. Note that models (6.5) and (6.6) are unbal-

anced two{way nested models with mixed e�ects.

Once again with section 2 the following results for both models are easily obtained:

i �i ��i  i 
(i)

�i(��i)
g
(i)

�i(��i)
ci Hi Ai Vi Pi

1 ; ; ; �1 = �2 � 1 1rs Jrs 0rs
1
rs
Jrs

2 ; fig f ig�i = i � r Ir 
 1s Ir 
 Js 0rs Kr 

1
s
Js

3 fig f jg f i; jg � bij = dij rs Irs Irs Ir 
Ks Ir 
Ks

4 fi; jg f kg f i; j; kg � eijk = fijl � � � � �

i bi �2i �i mi

1 rs � � 1

2 s � � r � 1

3 1 �2b = �
2
d �2b = �

2
d r(s� 1)

4 � � � �

In this example we have

c = r � s ; ! = ( i; j) ; � = ( i; j; k) ; q = 2 ; m = 3 ;
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the number of observations is given by

Ny =
X
!2T

ny! = 55 ; N z =
X
!2T

nz! = 54 ;

and matrix �, used for constructing the diagonalization matrix Q in formula (5.6), is given

by

� =

0B@0 0 0

0 0 0

0 �1 1

1CA :

Using SAS/IML the following results are obtained (cf. section 3) for the CT's from model

(6.2):

SSCT (e) = 2 :302; SSCT2 (e) = 0 :567; SSCTb = 1 :781; �CTmax = 0 :87 ;

and for the NT's from model (6.3):

SSNT (e) = 0 :913; SSNT2 (e) = 0 :570; SSNTd = 0 :223; �NTmax = 0 :5:

To asses whether tube{to{tube dispersion is less among the NT's compared to the CT's, we

have to test the hypothesis

H0 : �
2
b � �2d vs. �2b > �2d :(6.7)

The generalized p{value for testing the hypothesis in (6.7) according to (4.8) is given by

p = Pr ( T(Y; Z; y; z; �) � 1)j�2b = �2d)(6.8)

with

T (Y; Z; y; z; �) =

(�2d + �NTmax � �
2
f )
ssNTd
SSNTd

+ �CTmax � �
2
e

ssCT2 (e)

SSCT2 (e)

(�2d + �CTmax � �
2
e)
ssCTb
SSCTb

+ �NTmax � �
2
f

ssNT2 (e)

SSNT2 (e)

:(6.9)

and the result returned by simulation (50.000 runs in SAS/IML) is

p = 0 :002;
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such that the di�erence between the two variance components is highly signi�cant. So, the

test in this case decides for a smaller tube-to-tube dispersion among the new tubes.

It is striking that even if the construction principle for generalized �xed level tests was

not designed for this situation of more than one model, it works in the same manner as

before. The reason is, that the construction principle uses nothing more than independent

�2{variates, no matter from which model they come from.

Example 3

This example is taken from Gallo and Khuri (1990). The average daily gains (in pounds)

of 65 steers from 9 sires and 3 ages of dam were reported in Damon and Harvey (1987, pp.

131,140). The data are given in table 3. The actual experiment was conducted at the U.S.

Range Livestock Experiment Station in Miles City, Montana, over a 10{year period from

1947 through 1956 (see Shelby et al. (1963)). A total of 616 Hereford topcross steers were

actually fed in this experiment.

Table 3: Average Daily Gain (in Punds) for 76 Steers

Age Age Age
Sire 3 4 5{up Sire 3 4 5{up Sire 3 4 5{up
1 2.24 2.41 2.58 4 2.50 2.44 2.54 7 2.57 2.64 2.37

2.65 2.25 2.67 2.44 2.15 2.74 2.37 2.22
2.71 2.50 1.90
2.47 2.54 2.61

2.13
2.31

2 2.15 2.29 1.97 5 2.65 2.52 2.79 8 2.16 2.45 1.44
2.26 2.14 2.67 2.33 3.33 1.72

2.44 2.67 2.52 2.17
2.52 2.69
1.72
2.75

3 2.38 2.46 2.29 6 2.30 3.00 2.25 9 2.68 2.43 2.66
2.30 2.49 2.49 2.36 2.46
2.94 2.02 2.44 2.52

2.31 2.42

For the data in Table 3 an unbalanced 2{way crossed classi�cation model with mixed e�ects

is used:
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yijk = �+ �i + bj + ( �b)ij + eijk ;(6.10)

i = 1 ; : : : ; r ; j= 1 ; : : : ; s ; k= 1 ; : : : ; n(i;j) ;
rX
i=1

�i = 0 ; bj � (0; �2b ) ; (�b)ij � (0; �2�b) ; eijk � (0; �2e) ;

bi; (�b)ij and eijk stochastically independent :

Note, that the structure is the same as in Example 1, i.e. the model given in (6.1). The

only di�erence is, that in (6.10) the �rst main e�ect is �xed while in (6.1) it is random. The

following results show wide correspondence with the results from Example 1:

i �i ��i  i 
(i)

�i(��i)
g
(i)

�i(��i)
ci Hi Ai Vi Pi

1 ; ; ; � � 1 1c Jc 0c
1
c
Jc

2 ; fig f ig �i � r Ir 
 1s Ir 
 Js 0c Kr 

1
s
Js

3 ; fjg f jg � bj s 1r 
 Is Jr 
 Is Jr 
Ks
1
r
Jr 
Ks

4 ; fi; jg f i; jg � (�b)ij c Ic Ic Kc Kr 
Ks

5 fi; jg f kg f i; j; kg � eijk � � � � �

i bi �2i �i mi

1 c � � 1

2 s � r � 1

3 r �2b r�2b + �2�b s� 1

4 1 �2�b �2ab (r � 1)(s� 1)

5 � � � �

Especially we have

c = r � s ; N =
X

n! = 65 ; ! = ( i; j) ; � = ( i; j; k) ; q = 2 ; m = 4 ;

and the basis transformation matrix � from (2.18) and matrix �, used for constructing the

diagonalization matrix Q in formula (5.6), are given by

� =

0BBB@
0 0 0 0

0 0 0 0

0 0 r 0

0 0 1 1

1CCCA ; � =

0BBB@
1 0 0 0

�1 1 0 0

�1 0 1 0

1 �1 �1 1

1CCCA :
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Using SAS/IML the following results are obtained (cf. section 3):

SS(e) = 2 :267; �max = 1

SS2(e) = 0 :614; SSb = 0 :857; SS�b = 1 :539:

Then the generalized p{value for

H0 : �
2
b = �2�b vs. H1 : �

2
b 6= �2�b(6.11)

according to (4.8) can be computed as

p = 2 �minfPr (T (Y; y; �) > 1); Pr (T (Y; y; �) < 1)g(6.12)

with

T (Y; y; �) =

(r�2b + �2�b + �max�
2
e)
ssb
SSb

+ r � (�max�
2
e)
ss2(e)

SS2(e)

r � (�2b + �max�
2
e)
ss�b
SS�b

+ ( �2�b + �max�
2
e)
ss�b
SS�b

(6.13)

and the result returned by 50.000 simulations is

p = 0 :34;

such that the di�erence between the two variance components is not signi�cant.
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