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Abstract

Microarrays enable to measure the expression levels of tens of thou-

sands of genes simultaneously. One important statistical question in such

experiments is which of the several thousand genes are differentially ex-

pressed. Answering this question requires methods that can deal with

multiple testing problems. One such approach is the control of the False

Discovery Rate (FDR). Two recently developed methods for the identi-

fication of differentially expressed genes and the estimation of the FDR

are the SAM (Significance Analysis of Microarrays) procedure and an

empirical Bayes approach.

In the two group case, both methods are based on a modified version

of the standard t-statistic. However, it is also possible to use the Wilcoxon

rank sum statistic. While there already exists a version of the empirical
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Bayes approach based on this rank statistic, we introduce in this paper

a new version of SAM based on Wilcoxon rank sums. We furthermore

compare these four procedures by applying them to simulated and real

gene expression data.
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pression; Multiple Testing; False Discovery Rate
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1 Introduction

A recently developed biotechnology called microarray makes it possible to mea-

sure the expression levels of tens of thousands of genes simultaneously. Not only

the vast amount of data produced in a microarray experiment but also the fact

that the data are very noisy, and that there are usually only a few observations

(less than 50) but many variables (3, 000 − 30, 000+ genes), has opened this

field of molecular biology for statisticians. Interesting statistical questions reach

from experimental design and normalization to multiple testing, clustering and

classification.

In this paper, our interest is focused on multiple testing: Our goal is to

identify differentially expressed genes, i.e. genes whose expression levels strongly
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differ under several conditions (e.g., types of cancer, or treated vs. untreated).

In multiple testing problems, most commonly the family-wise error rate

(FWER) is used as an error measure and controlled by some procedure (for

a summary of such methods, see Shaffer 1995) like the Bonferroni correction or

the adjusted p-values of Westfall and Young (1993). The latter are applied to

gene expression data by Dudoit, Yang, Callow, and Speed (2002). It however

turns out that it is more appropriate to use the False Discovery Rate (FDR) as

an error measure in microarray experiments since the control of the FWER is

usually much too conservative for the purpose of a microarray analysis.

Two of the methods for the identification of differentially expressed genes and

the estimation of the FDR are the SAM (Significance Analysis of Microarrays)

procedure introduced by Tusher, Tibshirani, and Chu (2001) and an empirical

Bayes approach proposed by Efron, Tibshirani, Storey, and Tusher (2001). In

both procedures, a modified version of the standard t-statistic is used to find

genes whose expression levels strongly differ between two groups.

Instead of using a t-statistic, one can also compute a Wilcoxon rank sum

for the identification of such genes. While there already exists a version of the

empirical Bayes approach using Wilcoxon rank sums (see Efron and Tibshirani

2002), we here introduce a version of SAM based on Wilcoxon rank sums.

While Dudoit, Shaffer, and Boldrick (2003) compare SAM but not the empir-

ical Bayes method with procedures that either control the FWER or the FDR,

we here compare the empirical Bayes approaches and the SAM methods by ap-

plying them to simulated and real gene expression data. These applications

are performed by using the functions contained in our R package (Ihaka and

Gentleman 1996) called siggenes.

This paper is organized as follows. In Chapter 2, we give a description of

our testing situation and show how the FDR can be estimated. In Chapter 3,
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we present SAM and the two versions of the empirical Bayes approach. The

new version of SAM based on Wilcoxon rank sums is introduced in Chapter 4.

Chapter 5 contains the comparison of these four methods, and in Chapter 6, our

results are summarized and discussed.

2 Multiple Testing and the FDR

An important and common task that arises in microarray experiments is the

identification of differentially expressed genes. The goal in such an analysis is to

find a fairly large number of genes, typically a few hundred, for further analyses.

It will not even matter if a few of these findings are false positives, i.e. not

differentially expressed genes that are declared to be differentially expressed, as

long as the number of false positives is small in proportion to the number of

identified genes.

More formally, denote the number of false positives by V and the number

of rejected null hypotheses, i.e. the number of identified genes, by R. Our goal

is to keep V/R very small. So a first idea for an error measure would be the

expected value E(V/R). But this definition is useless, since Prob(R = 0) > 0 in

almost any case. Therefore Benjamini and Hochberg (1995) propose to use the

False Discovery Rate

FDR = E

(
V

R

∣∣∣∣ R > 0

)
Prob(R > 0),

where the FDR will be set to 0 if there is no significant finding, i.e. if R = 0.

Under the assumption that the test statistics are independent, Storey (in

press) shows that the FDR can be estimated by
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F̂DR(α) =
π̂0αm

max
{
#{pi ≤ α}, 1} ,

where m is the number of tests/genes, α is the acceptable error rate, pi is the

(uncorrected) p-value of the ith gene, i = 1, . . . , m, and π̂0 is an estimate of the

prior probability π0 that a gene is not differentially expressed.

There are several ways how π0 can be estimated. We use the following

estimate proposed by Storey and Tibshirani (2003):

1. For λ = 0, 0.01, . . . , 0.95, compute π̂0(λ) = #{pi > λ}/((1− λ)m
)
.

2. Fit a natural cubic spline h with 3 degrees of freedom through the data

points
(
λ, π̂0(λ)

)
, where each data point is weighed by 1− λ.

3. Estimate π0 by min
{
h(1), 1

}
.

All these estimates are obtained by assuming that the m test statistics are

independent. However, gene expression data can be highly correlated, and hence

the test statistics are not all independent. Nevertheless, for large m, these

estimates can also be used under dependence (Storey and Tibshirani 2001).

3 Identifying Differentially Expressed Genes

Suppose we have given a data matrix X containing the expression levels xij, i =

1, . . . , m, j = 1, . . . , n, of m genes and n biological samples, and we have observed

in addition a response y for each of these samples. Since we are interested in

two class unpaired data (e.g., case/control) we call the response 1 for each of

the n1 samples in group 1, and 2 for the n2 samples in group 2.
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3.1 Test Statistics

We now would like to identify the genes whose expression levels strongly differ

between the two groups. To test for this, one can compute the usual t-statistic

for unpaired data for each gene. There is however one problem concerned with

this t-statistic that is particularly encountered in microarray experiments: Genes

with low expression levels. Since the variance of such genes is very small, their

t-value can be very large. To avoid that these genes with low expression le-

vels dominate the results of our analysis, a small, strictly positive constant s0,

the so called fudge factor, is added to the denominator of the usual t-statistic.

This fudge factor is computed as the quantile of the standard deviations si,

i = 1, . . . , m, of the genes that fulfills an optimization criterion. For details on

the computation of the fudge factor, see Appendix A.1, and for details on the

effect of s0, see Appendix A.2.

Instead of using the usual t-statistic ti = ri/si, where ri is the difference in

mean expression levels between group 2 and group 1, we thus compute for each

gene i, i = 1 . . . ,m, the expression score

di =
ri

si + s0

. (3.1)

Since the null distribution of the di-values is unknown, this distribution is

estimated by taking B sets of permutations of the response variable, and com-

puting the permuted expression scores db
i , i = 1, . . . , m, for each permutation b,

b = 1, . . . , B.

An alternative to a modified t-statistic is a rank statistic like the Wilcoxon

rank sum to test for differentially expressed genes. The advantages of the

Wilcoxon rank sum are, on the one hand, that it is not necessary to adjust

for genes with low expression levels, and on the other hand, that the exact null
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distribution is known.

3.2 Empirical Bayes Analysis of Microarrays

Efron et al. (2001), and Efron and Tibshirani (2002) model the distribution of

the expression scores di, i = 1, . . . , m, as a mixture of two components, one

component for the differentially expressed genes, and the other for the not dif-

ferentially expressed genes. Denoting the density of the former by f1, and the

latter by f0, the mixture density of the expression scores is given by

f(d) = π0f0(d) + π1f1(d), (3.2)

where π1 or π0 = 1 − π1, respectively, is the prior probability that a gene is

differentially expressed respectively not. Applying Bayes’ rule to (3.2) results in

the posterior probability

p1(d) = 1− π0
f0(d)

f(d)
(3.3)

that a gene with expression score d is differentially expressed. Following Efron

et al. (2001), and Efron and Tibshirani (2002), a gene will be called differentially

expressed if its posterior probability (3.3) is larger than or equal to 0.9. The

FDR for the resulting rejection region Γ =
{
d : p1(d) ≥ 0.9

}
is then estimated by

F̂DR(Γ) = π̂0
#{db

i ∈ Γ}/B
max

{
#{di ∈ Γ}, 1} .

For the computation of (3.3), it is necessary to estimate both the prior pro-

bability π0 and the densities f0 and f .
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In the empirical Bayes approach (EBAM in the following) based on the mo-

dified t-statistic (3.1), both f and f0 have to be estimated. Instead of estimating

these densities individually by a density estimation procedure, it is more conve-

nient to estimate the ratio f/f0 directly by a logistic regression with repeated

observations, where a natural cubic spline with 5 degrees of freedom is used

as the regression function. A detailed description of this logistic regression is

given in Appendix B. In the empirical Bayes analysis using Wilcoxon rank sums

(EBAM-Wilc for short), only f has to be estimated since the null density f0

is known. Efron and Tibshirani (2002) estimate the density f of the observed

expression scores by a Poisson regression with offset ln{f0}, where f is modeled

by a natural cubic spline with 5 degrees of freedom.

Efron et al. (2001) recommend to use
∫
A f(z)dz/

∫
A f0(z)dz as an upper

bound for π0, where A is an interval near z = 0, and hence to estimate π0 by

π̂0 =

∫
A f̂(z)dz∫
A f̂0(z)dz

=
#{di ∈ A}

#{db
i ∈ A}/B

. (3.4)

If the lower and upper bound of A are now specified by qλ/2 and q1−λ/2, respec-

tively, where qλ is the λ quantile of the mB permuted db
i values, then (3.4) will

become

π̂0(λ) =
#

{
di ∈

(
qλ/2, q1−λ/2

)}

#
{

db
i ∈

(
qλ/2, q1−λ/2

)}
/B

=
#

{
pi > λ

}

(1− λ)m

which is exactly the same value that is computed in the first step of the π0

estimation procedure described in Section 2. The most natural choice for A is

A = {0}. It would hence be reasonable to estimate π0 by f̂(0)/f̂0(0) if this

choice was not that instable. Since the π0 estimation procedure described in

Section 2 deals with this instability and computes π̂0(1) which corresponds to
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using A = {0}, we use this algorithm to estimate π0.

Instead of using λ = 0, 0.01, . . . , 0.95 as in EBAM, we take

λp = 1−
Wmax−p∑

w=Wmin+p

f0(w), p = 0, . . . ,
[n1n2

2

]
(3.5)

in EBAM-Wilc, where Wmin is the minimum and Wmax is the maximum, respec-

tively, of the possible values of the Wilcoxon rank sum. Otherwise π̂0(λ) could

not be determined unambiguously. Then π̂0(λ) is computed by

π̂0(λp) =
1

1− λp

Wmax−p∑
w=Wmin+p

f̂(w), (3.6)

where f̂ is the Poisson regression estimate for f described above. Instead of using

the observed numbers, the estimated numbers of observations with expression

score w, w ∈ {
Wmin, . . . , Wmax

}
, are thus used, since it has been shown that

this results in a better estimation of π0 in our analyses. For example, in the

analysis of the simulated data described in Section 5.1, where π0 = 0.9, using

f̂ leads to a slightly conservative estimation of π0 since π̂0(λ) ∈ [0.9, 0.925] in

almost any case, whereas π̂0(λ) ∈ [0.68, 1], if fobs is used in (3.6), where fobs(w)

is the observed number of genes with expression score w divided by the number

of genes m.

3.3 Significance Analysis of Microarrays

In the following, the SAM (Significance Analysis of Microarrays) procedure is

described.

1. Compute the expression score di for each gene i, i = 1, . . . , m, and order

these values to obtain the observed order statistics d(i) ≤ . . . ≤ d(m).
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2. Draw B random permutations of the group labels. For each permutation b,

compute the permuted expression scores db
i , i = 1 . . . ,m, and order them.

Estimate the expected order statistics by d̄(i) =
∑

b db
(i)/B, i = 1, . . . , m.

3. Plot the observed order statistics d(i) against the expected order statistics

d̄(i) to obtain the SAM plot (see Figure 1).

4. For a fixed threshold ∆ > 0, find the first data point
(
d̄(i1), d(i1)

)
to the

right of the origin for which d(i) − d̄(i) ≥ ∆, and set d(i1) = cutup(∆). Call

any gene i with di ≥ cutup(∆) positive significant. Similarly, find the first

data point
(
d̄(i2), d(i2)

)
to the left of the origin for which d(i) − d̄(i) ≤ −∆,

set d(i2) = cutlow(∆), and call any gene i with di ≤ cutlow(∆) negative

significant.

-4 -2 0 2 4

expected d(i)

-4
-2

0
2

4

ob
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rv
ed

 d
(i)

positive significant

negative significant
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2∆

Figure 1: SAM Plot for ∆ = 0.7 using the Hedenfalk et al. (2001) data set (see Section

5). Plot of the ordered observed expression scores di against the ordered expected expression

score d̄i. Each gene is represented by a dot. Differentially expressed genes, i.e. genes lying

outside
(
cutlow, cutup

)
, are marked by big dots.
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5. Estimate the FDR by

F̂DR(∆) = π̂0

(1/B)
∑

b #
{

db
i 6∈

(
cutlow(∆), cutup(∆)

)}

max
{

#
{
significant genes

}
, 1

} ,

where π̂0 is the natural cubic spline based estimate described in Section 2.

6. Repeat steps 4 and 5 for several values of the threshold ∆. Choose the value

of ∆ that provides the best balance between the number of identified genes

and the estimated FDR.

4 SAM Using Wilcoxon Rank Sums

Because of the advantages of rank statistics (no need to adjust for genes with

low expression levels, exact null distribution is known) it is not surprising that

there already exists a SAM procedure based on rank sums called SAM-RS that

is proposed by van de Wiel (2002). He suggests to estimate the null distribution

of the rank sum by a permutation method. Thus, his approach exactly fits into

the original SAM procedure, and one only has to replace the modified t-statistic

by the rank statistic.

We argue that we know the null distribution, and hence should use this exact

null distribution instead of van de Wiel’s estimated one that is less exact and

takes a lot of time to compute. Therefore, we here introduce a new Wilcoxon

rank sum based SAM method called SAM-Wilc using the exact null distribution,

and show in the following how the SAM procedure described in Section 3.3 has

to be modified for SAM-Wilc:
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1. Obtain the observed order statistics W(1) ≤ . . . ≤ W(m) by computing the

Wilcoxon rank sum Wi for each gene i, i = 1, . . . , m, and by ordering these

rank sums.

2. Compute the ith expected order statistic W 0
(i), i = 1, . . . , m, by the (i −

0.5)/m quantile of the exact null distribution of the Wilcoxon rank sum

statistic.

3. For a positive integer ∆, find the first data point
(
W 0

(i1), W(i1)

)
to the

right of the mean of the null distribution given by Wmean = n1(n + 1)/2

for which W(i) − W 0
(i) ≥ ∆. Set W(i1) = cutup(∆), and call any gene

i with Wi ≥ cutup(∆) positive significant. Similarly, find the first data

point
(
W 0

(i2),W(i2)

)
to the left of Wmean for which W(i) − W 0

(i) ≤ −∆, set

W(i2) = cutlow(∆), and call any gene i with Wi ≤ cutlow(∆) negative signifi-

cant.

4. Estimate the FDR by

F̂DR(∆) = π̂0

m
(
1−∑cutup(∆)−1

w=cutlow(∆)+1f0(w)
)

max
{

#{significant genes}, 1
} ,

where f0 is the null density of the Wilcoxon rank sum, and π̂0 is the natural

cubic spline based estimate of π0 computed by using (3.5) and (3.6).

5. Repeat steps 3 and 4 for a set of positive integers ∆. Choose the value of ∆

that provides the best balance between the number of identified genes and

the estimated FDR.
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5 Comparison of SAM and EBAM

In this section, the performance of the two SAM procedures and the two em-

pirical Bayes approaches is compared by applying these four methods to one

simulated and two real gene expression data sets. In SAM and EBAM, B=1000

permutations are used to assess the null distribution.

5.1 Data Sets

Simulated data. The simulation is performed as follows:

1. Generate a 5,000 x 50 matrix Z containing random draws from the stan-

dard normal distribution. Compute the expression level xij of the ith gene,

i = 1, . . . , 5000, and the jth sample, j = 1, . . . , 50, by

xij = zij +





δij, if i ≤ 250 and j ≤ 25

θij, if 251 ≤ i ≤ 500 and j ≤ 25

0 otherwise

,

where δij ∼ N(1.5, 1) and θij ∼ N(−1.5, 1), and suppose that the first 25

columns/samples belong to group 1, and the remaining samples belong to

group 2. Thus, a data matrix is constructed that contains expression levels

of 50 samples – 25 from each group – and 5000 genes from which 10% are

differentially expressed.

2. Apply each of the four procedures to this data set, and record the numbers

of differentially expressed genes and the FDRs obtained by these methods.

3. Repeat steps 1 and 2 k times (we have used k = 100). For each procedure,

compute the mean number of differentially expressed genes and the mean
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FDR by averaging over the iterations.

Hedenfalk data. An excerpt from the data set on hereditary breast cancer

of Hedenfalk et al. (2001) is considered that contains the gene expression levels

of 3,226 genes and 15 samples that were measured by using cDNA microarrays.

7 of the 15 samples come from patients who carry the BRCA1 mutation, and

the remaining 8 samples correspond to carriers of the BRCA2 mutation, where

mutations of the two genes BRCA1 and BRCA2 are known to lead to a greatly

increased breast cancer risk.

Golub data. The Golub et al. (1999) data set consists of the expression lev-

els of 3,051 genes from 38 patients with leucemia, where the expression values

were measured by using Affymetrix high-density oligonucleotide chips. 27 of

the 38 patients have acute lymphoblastic leucemia (ALL), and the remaining 11

patients have acute myeloid leucemia (AML).

5.2 Results

In the following, we take a closer look at these results of the SAM and the

empirical Bayes analyses summarized in Table 1.

Simulated data. While controlling about the same FDR, SAM identifies more

differentially expressed genes than EBAM and SAM-Wilc. In the analysis of

this data set, SAM is hence more powerful than EBAM which in turn is more

powerful than SAM-Wilc. To compare EBAM-Wilc with these three methods,

the rejection region in EBAM-Wilc is chosen such that this approach controls

about the same FDR as the other methods. This leads to calling a gene differen-

tially expressed if its posterior probability p1(z) is larger than or equal to 0.933.
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Table 1: Comparison of the SAM and the EBAM procedures applied to three data sets. For

each method and data set, the number of identified genes, R, and the estimated FDR (in %)

are listed.

Simulation Hedenfalk Golub

Method R FDR R FDR R FDR

SAM 386.5 0.84 158 5.93 707 2.72
SAM-Wilc 369.1 0.88 206 7.25 714 2.75
EBAM 380.9 0.86 162 5.52 714 2.76
EBAM-Wilc 395.8 1.25 178 6.04 711 2.68

In this case, the mean number of genes called differentially expressed is 367.08,

and the mean FDR is 0.0087. The two methods based on Wilcoxon rank sums

thus have about the same power.

Hedenfalk data. Here both EBAM procedures are more powerful than SAM

since they find more differentially expressed genes than SAM, while all three

methods control about the same FDR. If the rejection region in the EBAM

analysis is chosen such that 178 genes are called differentially expressed, the

FDR will be almost the same as in EBAM-Wilc, and hence both approaches

have almost the same power. It is a bit harder to compare SAM-Wilc with the

other approaches since the small number of samples results in only eight different

values for the threshold ∆. For this comparison, the rejection regions of the other

methods are computed such that 206 genes are identified. Using these rejection

regions, the FDR in both EBAM procedures is 0.067, and in SAM 0.073. Since

SAM-Wilc controls the FDR at a level of 0.072, the EBAM approaches are also

more powerful than SAM-Wilc, whereas SAM-Wilc has about the same power

as SAM.
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A total of 248 genes are called differentially expressed by at least one pro-

cedure, where 108 genes are identified by all four methods, and 48 are called

significant by only one approach.

Golub data. In the analysis of the Golub et al. (1999) data set, all four

procedures have about the same power since they all identify about the same

number of genes while the estimated FDRs differ only slightly.

There are 812 genes that are identified by at least one method. While 611

genes are called differentially expressed by all procedures, 38 are identified by

only one method.

6 Discussion

In this paper, three procedures for the identification of differentially expressed

genes and the estimation of the false discovery rate (FDR) have been presented.

These are, on the one hand, the Significance Analysis of Microarrays (SAM)

based on a modified t-statistic, and on the other hand, two empirical Bayes

approaches – one based on the same modified t-statistic that is used by SAM,

and the other one based on the Wilcoxon rank sum statistic.

We have furthermore introduced a new version of SAM that is based on

Wilcoxon rank sums. Although it has only been shown how the SAM algorithm

has to be modified when Wilcoxon rank sums are used, our approach called

SAM-Wilc can easily be adjusted for other rank statistics by just exchanging the

Wilcoxon rank sum statistic and its null distribution with the other rank statistic

and its null distribution. The disadvantage of SAM-Wilc is that Wilcoxon rank

sums can be too discrete, especially when the number of samples is small. In

such a case, the use of normal rank scores might improve the analysis.
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These four procedures have then been applied to one simulated data set and

two real microarray data sets. While SAM is the most powerful method in the

analysis of the simulated data set, it performs worse in the applications to the

real data sets. There are however no big differences in the performance of the

procedures. In particular, all four methods have almost the same power in the

analysis of the Golub et al. (1999) data set. In the analysis of the simulated

data, the approaches based on the modified t-statistic have shown a better per-

formance than the procedures based on the Wilcoxon rank sum. A reason for

this is that the data have been generated from normal distributions. In this

case, the t-test is more powerful than the Wilcoxon test. In the analysis of

the Hedenfalk et al. (2001) data, both EBAM approaches have shown a better

performance than the SAM procedures.

There is one disadvantage in the way SAM and EBAM estimate the FDR:

Both the computation of the rejection region and the estimation of the FDR are

performed by using the same data set. This is comparable with using the same

data set in a discrimination problem for both building a classifier and estimating

the misclassification rate. The FDR is hence estimated anti-conservatively.

All the procedures presented here are long run methods in the sense that

they only should be used if the number of genes is very large. If only 50 or 100

genes are to be analyzed, it will be likely that the results of these analyses are

not meaningful, and thus other methods such as a Northern Blot analysis should

be preferred.

The analyses described above were performed by using the functions con-

tained in the R package siggenes. This package was programmed at the Univer-

sity of Dortmund and can be downloaded from http://www.bioconductor.org.

There also exists an Microsoft Excel based SAM software programmed at Stan-

ford (see http://www-stat.stanford.edu/∼tibs/SAM/index.html).
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Appendix

A Fudge Factor

In this appendix, we take a closer look on the fudge factor s0. First, details

on the computation of the fudge factor in both EBAM and SAM are given.

Afterwards, it is shown how s0 affects the expression score of a gene, in particular

the expression score of a gene with low expression values.

A.1 Computation of the Fudge Factor

In both the EBAM and the SAM analysis, the fudge factor s0 is specified by the

quantile of the standard deviations si, i = 1, . . . , m, of the genes that fulfills an

specific optimization criterion.

Efron et al. (2001) argue that the information loss is reflected by the re-

duction of the number of genes with a convincingly large posterior probability.

Thus, the larger the number of genes called differentially expressed is, the less in-

formation is lost. Efron et al. (2001) hence suggest to specify the optimal choice

of the fudge factor in an EBAM analysis by running the EBAM procedure for

several values of s0, and by selecting the value of s0 that leads to the most

differentially expressed genes. When comparing the performance of the EBAM

procedure for several values of s0, one has to keep in mind that it is necessary to

always have the same marginal distribution for the observed expression scores.

Efron et al. (2001) therefore monotonically transform the observed expression

scores to have a standard normal distribution. The permuted expression scores

are then transformed accordingly.

In the SAM analysis, the fudge factor is computed by the following algorithm

provided by Chu, Narasimhan, Tibshirani, and Tusher (2002):
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1. Compute the 100 percentiles qk, k = 1, . . . , 100, of the si values.

2. For α ∈ R = {0, 0.05, 0.1, . . . , 1}

(a) compute dα
i = ri/(si + sα), where sα denotes the α quantile of the si

values, and s0 = q0 = min
i=1,...,m

{si},

(b) calculate vα
k = 1.4826 ·MAD

{
dα

i |si ∈ [qk−1, qk)
}
, k = 1, . . . , 100,

(c) compute the coefficient of variation CV(α) of the vα
k values.

3. Set α̂ = arg min
α∈R

{
CV(α)

}
, and s0 = sα̂.

A.2 Effects of the Fudge Factor

In this Section, we take a look on how the fudge factor affects the expression

score of a gene (with low expression levels). As an example, the Hedenfalk et

al. (2001) data set presented in Section 5.1 is used. The fudge factor for the
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Figure 2: Boxplots of the t- and the d-statistics of the genes contained in the Hedenfalk et

al. (2001) data set. Adding a small strictly positive constant s0 to the denominator of a test

statistic leads to a less dispersed distribution.
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Hedenfalk data is calculated using the algorithm of Chu et al. (2002) described

in Appendix A.1. The result of this computation is s0 = 0.1585, the 5% quantile

of the standard deviations of the genes. Furthermore, both the d-statistic (3.1)

and the standard t-statistic for each of the 3226 genes are computed.

Figure 2 shows what generally happens when a small strictly positive con-

stant is added to the denominator of a test statistic. The distribution of the

d values (s0 = 0.1585) is less dispersed than the distribution of the t values

(s0 = 0).

For the investigation of the influence of the fudge factor on genes with low

expression levels, the rank of the di value of gene i, i = 1, . . . , m, is plotted

against the rank of its t-statistic (see Figure 3(a)). The bold black circles in

Figure 3(a) symbolize genes with a standard deviation smaller than s0 = 0.1585.

This figure reveals that if s0 is added to the denominator of the standard t-

statistic the value of a gene with a small variance will much more shrink towards
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Figure 3: Influence of the fudge factor on genes with small variances contained in the Heden-

falk et al. (2001) data set: (a) Scatter plot of the ranks of the d values vs. the ranks of the

corresponding t values, (b) box-percentile plots of the differences between these ranks of both

genes with standard deviation smaller than s0 = 0.1585 and larger than s0 = 0.1585.
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zero than the value of a gene with a higher variance, since in comparison to genes

with a standard deviation larger than 0.1585, the rank of small variance genes

with negative expression score increases very strongly, and the rank of small

variance genes with positive expression score decreases very strongly. Figure

3(a) therefore indicates that the fudge factor has more influence on the small

variance genes, and hence on genes with low expression values since most of the

small variance genes have low expression levels.

To confirm this, two side-by-side box-percentile plots of the absolute diffe-

rences between the ranks of the t values of the genes and the ranks of the

corresponding d values are generated, one plot for genes with standard deviation

smaller than or equal to s0 = 0.1585, and the other for genes with a standard

deviation larger than 0.1585.

Figure 3(b) shows that the differences between the ranks of small variance

genes are much larger than the differences between the ranks of the genes with

large variances, since about 75% of the former differences are larger than 100,

whereas more than 80% of the latter differences are smaller than 100, and 50%

are at most 34. The fudge factor has hence an increased influence on small

variance genes which are mostly genes with low expression levels.

B Logistic Regression Estimate of f0/f

Instead of estimating the two densities f0 and f individually, it is more conve-

nient to estimate the ratio f0/f directly. For this, consider the observed expres-

sion scores di, i = 1, . . . , m, as successes, and the permuted expression scores db
i ,

i = 1, . . . , m, b = 1, . . . , B, as failures. If these m(B + 1) scores are plotted on

a line, then the probability ϕ(d) of a success at point d can be computed by
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ϕ(d) =
f(d)

f(d) + Bf0(d)
,

and the posterior probability (3.3) is given by

p1(d) = 1− π0
f0(z)

f(d)
= 1− π0

1− ϕ(d)

Bϕ(d)
.

ϕ(d) can now be estimated by a logistic regression. This is usually done by

maximizing the log-likelihood function

`(β1, . . . , βp) =

m(B+1)∑
i=1

yig(di)−
m(B+1)∑

i=1

ln
(
1 + exp

{
g(di)

})
, (B.1)

where β1, . . . , βp are the parameters of the regression function g(d), and yi = 1

if di is an observed expression score, and yi = 0 if di is a permuted expression

score. In the EBAM analysis, a natural cubic spline with five degrees of freedom

is used as regression function g(d). The probability ϕ(d) of a success at point d

is then estimated by

ϕ̂(d) =
exp

{
ĝ(d)

}

1 + exp
{
ĝ(d)

} . (B.2)

In an EBAM analysis, this means that we have to maximize over millions of

components which is computationally not feasible. A solution to this problem

is provided by the logistic regression with repeated observations. For such a

logistic regression, the range of the observed expression scores is divided into K

equally spaced intervals Ak, k = 1, . . . , K. Efron et al. (2001), e.g., use K = 139

intervals.

We do not use the range of all expression scores, i.e. the observed and per-

muted d values, since it has turned out that the very few permuted expression
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scores that lie outside the range of the observed d values can totally destabilize

the logistic regression. Rather than excluding such permuted d values, they are

set either to the minimum or the maximum of the observed expression scores so

that we do not lose all the information in these expression scores.

For each interval Ak, k = 1, . . . , K, the number Rk of the observed expres-

sion scores in Ak, the total number Nk of expression scores in Ak, and the center

point d̃k of Ak is computed. If now each of the m(B + 1) expression scores di is

replaced by the center point d̃k of the interval Ak into which di falls, then (B.1)

becomes

`(β1, . . . , βp) =
K∑

k=1

{
ln

(
Nk

Rk

)
+ Rkg(d̃k)−Nk ln

(
1 + exp

{
g(d̃k)

})}
.

Instead of maximizing over 2m(B + 1) components, i.e. over millions of com-

ponents, we thus only have to maximize over 2K components, i.e. over a few

hundred components. The probability ϕ(d) of a success at point d can still be

estimated by (B.2).
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