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A Self{Designing Rule for Clinical Trials with
Arbitrary Response Variables

Abstract. For testing one{sided but also two{sided hypotheses concerning several

treatment arms in group sequentially performed clinical trials with arbitrary out-

come variables, a general learning method is considered that allows for a complete

self{designing of the study. All information available prior to a stage is used for

estimating the sample size and the weight for the next step. In 'using up' the vari-

ance, the test statistic is built in a bounded �nite but random number of stages to

test just once the null{hypothesis on rejecting.

1 Introduction

In a recent paper L. Fisher [1] introduces in a general setting for normal variables

with known variances self{designing trials, for which Shen and L. Fisher [2] with

regard to a one{sided hypothesis give a concrete proposal for building the test

statistic. There the sequence of sample sizes is �xed prior to the beginning of the

study, although in [1] there is already pointed out that this can be chosen adaptively

using information prior to the respective stage. One continues to assign groups of

subjects until the variance of the test statistic is 'used up'. Related for two{stage

procedures or relative updating within one stage are [3], [4], [5], [6], [7], [8]. The

aim of the self{designing procedures [1], [2] is not to test the null{hypothesis on a

rejection after each stage like for instance in the classical group sequential trials,

cf. [9], [10] and references given there.

An adaptive procedure designed for up to two interim analyses is given by Bauer

and K�ohne [11] for a general setting by use of p{values related to the tests carried

out at each stage, which then are combined by R. A. Fisher's method, cf. [12] and

also [13].

In the present paper we employ the inverse normal transformation of the p{values

suiting so under the null{hypothesis to the assumptions of L. Fisher's [1] main
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result. In [14] this p{value transformation is taken in connection with the classical

group sequential trials.

By a reformulation of the original hypothesis also two{sided cases can be considered

for arbitrary response variables in several treatment arms.

A general learning rule for completely self{designing trials is presented below which

at each stage adaptively estimates the sample size and the weight associated to that

stage upon all prior data knowledge.

2 The basic procedure

In a clinical trial let corresponding to a medication i be xi an outcome variable

with mean #i = Exi, i = 1 ; : : : ; I . Denote

� =
IX

i=1

 
#i � (1=I) �

IX
j=1

#j

!2

;

then the two{sided test problem H0;# : #1 = : : : = #I vs. H1;# : #i1 6= #i2 , i1 6= i2,

for at least two i1; i2 2 f 1; : : : ; Ig, becomes equivalent to the one{sided testing of

H0 : � = 0 vs. H1 : � > 0;

for instance with the known homogeneity tests. In the case of I = 2 and e.g. i = 1:

verum, i = 2: placebo, for a one{sided comparison one puts � = #1�#2. Note that
in the general formulation here #i may represent a probability if the trial deals with

binary variables. The study is formally divided into an in�nite number of disjoint

study parts: stp(1), : : : , stp(k), : : : , and it is the aim of a designing rule, that of

those only a �nite number, say K, has to be carried out really.

In stp(k) nk patients are randomized across the I treatment groups, each con-

sisting so of nik patients,
PI

i=1 nik = nk. Upon their responses xik;1; : : : ; xik;nik ,

i = 1 ; : : : ; I, we test in stp(k) H0 vs. H1 by a, { with respect to H0 and H1 one{

sided {, test statistic Tk, where large values of Tk may lead to a rejection of H0.

Under H0 let Tk have a continuous distribution function Fk;0 (otherwise the results

are known to tend to be usually somewhat conservative), then the p{values

pk = 1� Fk;0(Tk)
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are uniformly distributed on the interval (0; 1), such that

zk = ��1(1� pk)

is standard normally distributed, zk
H0� N(0; 1), where ��1 denotes the inverse of

the N(0; 1){distribution function �, cf. [12].

For a quantity a to be used in or for stp(k) let us introduce the notation

a = âfk � 1g; i. e. a = âfstp(0), stp(1), : : : , stp(k � 1)g;

to indicate that a is determined or estimated upon all the knowledge obtained in

the previous study parts before the beginning of stp(k), where stp(0) may denote

the prior information, implying âf0g to be in any case a constant in the present

trial.

De�ning now an in�nite sequence of nonnegative weights w1; : : : ; wk; : : : , such that

with probability one under H0 there exists a �nite (random) K with

KX
k=1

w2

k =
1X
k=1

w2

k = 1 ; where wk = ŵfk � 1g;

then by theorem 1 of L. Fisher [1] we can deduce, that under H0 the statistic

Z =
P
1

k=1wk � zk is standard normally distributed,

Z =
KX
k=1

wk � zk =
1X
k=1

wk � zk
H0

� N(0; 1):

That means, at given size �G the null{hypothesisH0 is rejected, if Z > ��1(1� �G).

Furthermore, if the sample sizes nk are determined upon data{knowledge from

the previous study parts, this does not in
uence under H0 the distribution of

the p{values pk, or of zk, and even not the independence of pk1, pk2 , or zk1 , zk2 ,

k1 6= k2; cf. also the respective extensive discussions by L. Fisher [1], Proschan and

Hundsberger [8], Bauer and K�ohne [11]. Hence the statements above remain valid,

if we allow: nk = n̂fk � 1g.

In the case of multiple endpoints, i. e. with xi a random vector, a multivariate

extension is provided by putting � =
Pn

i=1 b
t
i bi with bi = ( #i� (1=I) �PI

j=1 #j) and

bti the transpose of the vector bi.
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3 A general rule for completely self{designing

The distributions of x1; : : : ; xI might depend on further parameters  1; : : : ;  `,

for example variances (and correlations in a multivariate setting), and denote

 = (  1; : : : ;  `), analogously # = ( #1; : : : ; #I). For given Type I and II error

rates � and � let in dependence on the involved test statistic T a sample size

spending function S = ST be de�ned, such that by

n = S(�; � j #;  ; � 6= 0)

the smallest, �nite n is delivered such that in a sample of size n the test of H0 by T

has at least level � and power 1��. For example in the simple originally two{sided

normal case of H0;# with I = 2 this is the well known formula

n = n1 + n2 = 2 � f (��1(1� �=2) + ��1(1� �)) �
p
2 � ��(#1 � #2)g2

with �2 the common variance of x1, x2, respectively n = [ n1 + 1] + [ n2 + 2] with

n1 = n2, where [m] denotes the largest natural number less than m.

The self{designing rule R is characterized now by the sept{tuple

R = R(�G; �G; n1; w1; �g; � ;�L);

that consists of the global Typ I and II error rates �G and �G , e.g. �G = 0 :05,

�G = 0 :1, the starting con�gurationn1 = n̂f0g, w1 = ŵf0g � 1 for stp(1), the Type

II error rate �g � �G for generating the sequential sample sizes nk = n̂fk � 1g,
e.g. �g = 0 :2 or larger, where�g can also be de�ned in dependence of k, �g = �g(k),

further � > 0 is a lower bound for the weights wk, � < w1, e.g. � = 0 :1 or
p
0:1,

and �L de�nes by ��1(�L) a lower bound for
Pk

j=1 zj=
p
k, i.e. if that statistic falls

below the bound, H0 is early accepted, e.g. �L = 0 :6, or�L = �L(k), increasing

with k starting e.g. even in zero, but cf. [2] for a detailed discussion of that point.

Extending and modifying the basic idea of Shen and L. Fisher [2], given for the

one{sided normal case with known variances and the whole sequence of sample sizes

�xed prior to the beginning of the trial, the rule R procedure is derived as follows:

Let wj, pj, zj be given for j = 1 ; : : : ; k� 1, with Zk�1 =
Pk�1

j=1 wj � zj, then if for
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stp(k) in the equation

P(Zk�1 +

r
1�

Xk�1

j=1
w2
j � bzk > ��1(1� �G)

����# = #̂fk � 1g;

 =  ̂fk � 1g; � = �̂fk � 1g 6 = 0) = 1 � �

we would claim � = �G, so by putting wk = wk;G =
q
1�Pk�1

j=1 w
2
j we would

have
Pk�1

j=1 w
2
j + w2

k;G = 1 with Zk;G = Zk�1 + wk;G � zk(�G) our �nal statistic, that
would hold level �G and power 1 � �G, conditionally under #̂fk � 1g,  ̂fk � 1g,
�̂fk� 1g > 0; note that zk(�G) is obtained upon nk(�G) observations in stp(k), see

below. In this way by letting �g(k) go to �G if k goes to some K, the termination

of the study can be accelerated.

Now usually we choose �g > �G in order to give the parameter estimates more

chances to stabilize. Putting

1� bpk = �(bzk) = �

"�
��1(1� �G)� Zk�1

��r
1�

Xk�1

j=1
w2
j

#

and

Sk(�; �) = S(�; � j #̂fk � 1g;  ̂fk � 1g; �̂fk � 1g 6 = 0) ;

we de�ne potential sample size numbers mk and Mk for stp(k) by:

mk = Sk( bpk; �g); and Mk = Sk( bpk; �G):
At the power 1 � �G these sample sizes would in stp(k) lead to the levels c�k(mk)

and c�k(Mk) , respectively, given by the following implicit equations:

mk = S(c�k(mk); �G); and Mk = S(c�k(Mk); �G); mk;Mk given:

Introducing now recursively the weight function

W (k) =

r
1�

Xk�1

j=1
W (j)2 �

��1
�
1� c�k(mk)

2

�
��1

�
1� c�k(Mk)

2

� ; W (1) = w1 � 1 given;
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we set the control parameters weight wk and sample size nk for stp(k) as follows:

wk =

8<: W (k) ; if W (k) � �;q
1�Pk�1

j=1 w
2
j ; if W (k) < �;

and

nk =

(
mk ; if W (k) � �;

Mk ; if W (k) < �:

If W (k) < � , then putk = K and the trial stops after stp(K), i.e. wK+j = 0, for

j = 1 ;2; : : : .

Then we get with the nk patients in stp(k) by the test statistic Tk the p{value pk,

yielding the intermediate result Zk = Zk�1 + wk � ��1(1 � pk), or for k = K the

�nal result ZK.

A generally longer running sequence of study parts we obtain if in the formula for

W (k) we replace the second factor by
p
mk=Mk, or by the ratio

��1(Fk;0(E Tk(mk)))=�
�1(Fk;0(E Tk(Mk))), where E Tk(n) denotes the expecta-

tion of Tk with n patients in stp(k) under # = #̂fk � 1g and  =  ̂fk � 1g.

Note that the random �nal number K of study parts to be really performed is

bounded in any way by K < 2 + (1� w2
1)=�

2.

4 An illustrative example

Let us consider two medications with binary outcome variables, and #1, #2 be for

instance the expected cure rates. We are interested in the two{sided test problem:

H0;# : #1 = #2 vs. H1;# : #1 6= #2;

becoming one{sided by:

H0 : � = ( #1 � #2)
2 = 0 vs. H1 : � > 0:

Having at the beginning no real information, only a guess that not less than 200 pa-

tients would be involved, we choose the starting con�guration as n1 = n11 + n21 = 40
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patients, to be equally randomized, as in the following stages, too, across the two

treatment groups, and the weight w2
1 = 40 =200 = 0:2. The other chosen control

parameters can be seen in the rule

R = R(�G = 0 :05; �G = 0 :1; 40;
p
0:2; �g = 0 :25; �= 0 :1;�L = 0 :6):

To keep the representation here more self{contained, we use the well known Arcus{

Sinus Formula as approximate sample size n spending function S,

n = (��1(1� �=2) + ��1(1� �))2=�2; where � = sin�1(
p
#1)� sin�1(

p
#2);

yielding for given n, �, � the explicit representation for the solution b�(n) by
��1(1� b�(n)=2) = p

n � �2 � ��1(1� �):

Now instead of de�ning somehow the p{value of a two{sided test{statistic for testing

H0;#, we take the �
2
1{test statistic for (2�2){tables with nk subjects as test statistic

Tk in stp(k), being one{sided with respect to H0 vs. H1.

Hence we get in stp(k):

1� pk = �21(Tk) = 2 ��(
p
Tk)� 1; and zk = ��1(1� pk):

Denote c#ik = (number of cured patients in stp(k)=nik) the estimate of #i, i = 1 ;2,

in stp(k), for simplicity here assumed to be constantly across all stp's equal to:b#1 = 0 :7 and b#2 = 0 :5. So withn1 = 40, w2
1 = 0 :2 we get in stp(1): T1 = 1 :67,

1 � p1 = 0 :8,z1 = 0 :84; Z1 = 0 :376, and therefore for stp(2): 1� bp2 = �(1:43),

1 � bp2=2 = 0 :96,m2 = 164, M2 = 256, w2 = 0 :89� 1:28=1:92 = 0:59. Hence with

n2 = 164 patients in stp(2) we obtain: T2 = 6 :83, 1�p2 = 0 :99,z2 = 2 :33,Z2 = 1 :75,

and therefore for stp(3): 1 � bp3 = �( �0:15),m3 = (0 :6 + 0 :68)2=0:036 = 46,

M3 = (0 :6 + 1 :28)2=0:036 = 98, and W (3) = 0:67 � 0:035=0:598 = 0:039 < � , so

w3 = 0 :67,n3 =M3 = 98, giving in stp(3) the result: T3 = 4 :1 orz3 = 1 :75.

Thus the �nal test statistic takes on the form: Z3 = 0 :45�84+0 :59�2:33+0:67 �1:77
= 2 :94 = ��1(0:9984), achieved with 40+164+98 = 302 patients. At �rst we may

wonder about the weights in relation to the respective number of patients. But this

is a characteristic of the learning scheme: after stp(1) the algorithm is cautious in

giving a weight to the second stage, however after the big stp(2) it has learned that
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the parameter estimates remained as expected and so the next stage can get the

rest of possible weight.

Secondly we see that we have not much payed for the learning in form of the number

of patients to be enclosed: in a �xed sample size plan we would have calculated,

with the same approximate formula, 292 necessary patients, only 10 less than above,

if the parameter di�erence � would have been known in advance. So we can get

the impression that our learning algorithm is on the one hand cautious in spending

high weights too early, and on the other hand it uses patients sparingly.

5 Conclusion

We propose a group sequential method for a complete self{designing of clinical

trials as basically introduced by L. Fisher [1]. The termination of the whole trial

is steered by a sequentially built weighting function until the variance of the test

statistic is 'used up'. Based on the non{parametric character of the p-values our

method applies to a wide range of situations.
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