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A New Class of Self-Designing Clinical Trials

Abstract. A class of self-designing clinical trials is considered which

according to an effective but simple, finite learning algorithm consists

of automatically adaptively planned weighted group sequential trials

with a decision about rejection of the null-hypothesis at each step, but

the full level-α-test at the end of the study preserved.

1. Introduction

In a recent paper [1] self-designing clinical trials are introduced in a general setting for

normal variables with known variances, for which in [2] a concrete proposal for building

the test statistic is given. There the sequence of sample sizes is fixed prior to the beginning

of the study. In [3] based on a general learning scheme completety self-designing trials are

considered, using the inverse normal method, cf. [4], for transforming the p-values

associated with the respective test statistics in the sequential groups.

Here now in defining our easily to handle learning rule for a finite self-designing we

employ the whole prominent family of χ2-distributions to derive our transformations of the

p-values, having desirable properties in our context, cf. [5]. Thus we get a new class of

weighted self-designing trials allowing for sequential decisions about the null-hypothesis,

contrarily to the class discussed above, but also with the full level-α-test at the end of the

trial preserved.

With respect to an early use of p-values and adaptive sample size planning in this

framework let us refer to [6], [7], [8], [9].
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2. Basic statistics

For some real valued parameter ϑ we consider the problem of testing at prescribed size α

the hypothesis H vs. H10 0 0: :ϑ ϑ= > , where for example ϑ θ θ= −1 2  if θ1 , θ2 denote the

expectations of the outcome variables of e.g. ’verum’ and ’placebo’, respectively, in a

controlled clinical study.

The study is devided into several, disjoint study parts: stp k( ) , k K= 1, ,K . Upon the

decision rule not all study parts are necessarily carried out.

In stp k( ) let Tk be a one-sided test statistic for testing H0 vs. H1, where large values of Tk

lead to a rejection of H0. Under H0 may Tk have a continuous distribution function Fk ,0 .

Then under H0 the p-value p F T k Kk k k= − =1 10, ( ), , ,K , is uniformly distributed on the

interval (0, 1), and q v F p k Kk k v k
k

( ) ( ), , ,
( )

= − =−
χ 2

1 1 1K , belongs to a (central) χ2-distri-

bution with vk degrees of freedom, where F
vkχ 2

1

( )

− denotes the inverse of the χ 2 ( )vk -distri-

bution function, i.e. q vk k( )  is the ( )1− pk -quantile χ 2
1( )vk pk− of the χ 2 ( )vk -distribution,

cf. [4], [5].

For the combined statistic up to stp k( ) thus we get under H0

S q v v k v k v k Kk
j

k

j j
j

k

j= = =
= =1

2

1

1Σ ΣΣ Σ( ) ( ( )), ( ) , , , .~
H0

χ K

Hence in particular, if

S v K k Kk ≥ ∈−χ α
2

1 1( ( )) , { , , }Σ for some K ,

so Ho is rejected at size α, since S SK k≥ , because of q vj j( ) ≥ 0 .

If Tk has under H0 an exact distribution that is only ’nearly continuous’ or if its distribution

is approximated by a continuous distribution function, then the above results hold in a

corresponding good approximation.

Note that for v j = 2 we get by Sk R.A. Fisher’s combining method, cf. [4], [5], [6], [7].
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3. Self-designing

At the beginning of the study we decide for a (fictitious) maximum number K of study

parts, stp(k), respectively number K-1 of interim analyses, a minimum number vmin  of

degrees of freedom to be used in a realized stp(k), say vmin = 1 here, and we put v K KΣ ( ) = ,

implying the global critical value: cvα αχ= −
2

1( )K .

For a chosen type II error rate β there may exist a sample size spending function

f f T= ( ) such that for the use of the test statistic T by: n f k= −1( , )α β , the minimum

realistic sample size n for a trial is delivered holding the type I and II error rates α and β

conditionally under the knowledge available up to stp k( )− 1 , where stp( )0 stands for the

apriori information.

Further we have to choose a starting configuration of sample size and degrees of

freedom, n v stp1 1 1, ( )in , and a real valued relaxation parameter κ, influencing the

number of study parts to be carried out really.

Let now up to stp(k-1) the test values Tj , respectively pj and qj(vj) , be given, and if

Sk − ≥1 cvα , then H0 is rejected at level α, and the trial stops.

Otherwise the sample size nk and the associated degrees of freedom vk for stp(k) are

determined as follows. Let be

M f F Sk k K v k k= − −− − − −1 1 11 2( ), )
( ( ))χ α β

Σ
(cv ,

i.e. Mk would be that sample size needed for holding α and β in just one further stp by

associating the full remaining degrees of freedom, conditionally under the results obtained

till that time.

But since the parameter estimates involved in the planning function fk-1 may not yet have

stabilized, only a part of Mk should be in general the size of the next stp. We give now a

learning rule that represents an effective but simple way of self-designing.
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Define

v
v k

K
K v kk

* ( )
{ ( )}= − +

+
⋅ − −Σ

Σ
1

1
κ

κ
,

then the degrees of freedom to be associated with stp(k) let be given by

v
v v v k

K v k
k

k k=
+ − − ≥

− −




[ ], ( )

( ),

* *1 1 1

1

if K -

otherwise
Σ

Σ

,

where [ vk
* +1] denotes here the largest natural number less than vk

* +1. Hence the sample size

of stp(k) may be determined as

n
v

K v k
Mk

k
k=

− −
⋅

Σ ( )1
,

respectively as the smallest realistic size greater than this value.

The trial stops after stp(k* ) if:

S q v n M
k

j

k

j j k k*

*

* *( ) ,= ≥ =
=1
Σ cv or if: α ; (putting ni = vi = 0 if  k* < i ≤ K).

If S
k* ≥ cvα , we reject H0 at level α, otherwise we stay with H0.

If the sequence of the Mk is not markedly decreasing after some steps the trial may be

stopped. We can also introduce a lower bound for an early acceptance of H0, i.e. if for

example S v kk L
≤ χ α

2 ( ( ))Σ , where αL should not be chosen too conservative in order not to

cut paths early that would lead to a rejection of H0, cf. also [2]. Furthermore, the updating

parameter κ can be chosen in dependence on ’k-1’.

The adaptive planning of stp(k) by using information from the previous study parts does

not affect the independence of qk(νk ) and Sk-1 under H0, qk(νk) is in any case χ2(νk)-distributed

under H0; cf. the quite analogous argumentations in [1], [6], [7], [8], [9].
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4. Example

Let us consider two medications with binary outcomes, and θ θ1 2, be for instance the

expected cure rates. We are interested in the one-sided test problem: H0: θ θ1 2= vs.

H1: θ θ1 2> .

For the test statistic T in the (2×2)-table analyses of the various study parts we take the

(one-sided) χ2-test, with the p-value p F T= −( ( )) /
( )

1 22 1χ , as long as for the usual

estimates $ $θ θ1 2> holds, otherwise the one-sided underlying normal test or, of course, in

any case the Fisher-Irwin test can be taken, and sample size calculations for determining Mk

can be done by use of tables or approximate formulas, e.g. [10], [11, p. 418-421], which are

also to find in software packages.

To get a short sequence of study parts the parameters in our example are chosen as

follows: α = 0.025 , β = 0.10 , K = 10 , κ = (k-1) ⋅ 4 , and having no real prior information,

but only a guess that the total number of patients to be involved in the study will lie

between 150 and 250, we take as starting configuration:  n1 = 40 and v1 = 2 in stp(1).

So the weights of the following study parts in form of degrees of freedom are: v2 = 4 ,

v3 = 4 ; i.e. the trial consists really of at most three parts. The global critical value is given

by: cv0.025 = χ2(10)0.975 = 20.5.

Now the trial starts, and we observe in stp(1) the test value of T as: T1 = 1.67, being the

0.8- = (1-2⋅p1)-quantile χ2(1)0.8 of χ2(1), thus: p1 = 0.1 , and q1(2) = χ2(2)0.9 = 4.6 = S1.

Further we extract from stp(1): $ .θ 1 0 7= and $ .θ 2 05= , such that by: cvα - S1 = 15.9

≈ χ2(8)0.95 = Fχ 2 8

1 095
( )

( . )− , a sample size planning for a one-sided (2×2)-table analysis with a

type I error rate 0.05 and β = 0.1 under assuming the above cure rate estimates yields:

M2 = 222 , or n2 = 112 , (111).

If these estimates for θ θ1 2, stay constant in stp(2), we observe T2 = 4.7 implying:

p2 = 0.015 , q2(4) = χ2(4)0.985 = 12.5 , S2 = 17.1 , and cvα - S2 = 3.4 = χ2(4)0.50 = Fχ 2 4

1 050
( )

( . )− .

Hence sample size planning as above, however with a type I error rate of 0.50 now, yields:

n3 = M3 = 46.

With the same treatment effects we observe T3 = 1.9 yielding: p3 = 0.08 ,

q3(4) = χ2(4)0.92 = 8.5 , and so: S3 = 25.6 > cv0.025 , i.e. H0 is rejected at level α = 0.025.
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Note that if with a larger treatment difference we had got S2 > 20.5, then the trial had

stopped already after stp(2) with a rejection of H0 at the same level.

We needed about 200 patients to be enclosed in the whole study, assuming an ideal

situation here for demonstrational purpose. In a fixed sample size plan we would have

calculated about 270 necessary patients, if the estimates for the cure rates would have been

known in advance.

Hence, if treatment effects remain nearly stable during the sequence of trials, - otherwise

all designing procedures can come into troubles -, so we can say that our learning method

in designing the trial adaptively uses patients sparingly.

5. Multi-centre trials

Since after stp(k-1) the remaining total number of degrees of freedom is fixed we may also

choose { }v K v kk ∈ − −12 1, , , ( )K Σ under using information from the previous (,- which has

to be assured, of course, e.g. by a fixed rule or by an independent data-monitoring

committee -,) study parts without affecting under H0 the independence of qk and Sk - 1  , or the

distribution of qk , cf. also e.g. [1]. Now in multi-centre trials, for instance, such a case may

occur as follows.

Because of possible centre effects, concomitant variables and organization effort with an

interim analysis, a minimum number nmin , possibly in dependence on k, for the sample size of

stp(k) seems to be useful. So with nk and vk from sec. 3 we may define the modified quantities

by

n
n n n

nk
k k

,

,

,mod
min

min

if

otherwise
=

≥



, and v K v k
n

Mk
k

k
,

,( ( ))mod
mod= − − ⋅Σ 1 ,

respectively the next natural number not greater than K v k− −Σ ( )1 .

Similarly to [2] and [3] also more complicated self-designing rules can be formulated.

With a suitable reformulation, cf. [3], two-sided hypotheses regarding several treatment

arms can be included, too, taking the correct interpretation of the underlying composite

hypothesis into consideration.
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6. Concluding remark

We propose a flexible and effective learning method that allows for a completely self-

designing of a group sequential trial, with a decision about rejection of H0 at each step. Due

to its ease of construction it is simple to apply.

The termination of the study is steered by weighting the sequence of sub-trials in form of

choosing different χ2-distributions for transforming the p-values.

Since at the end of the trial a full level-α-test is preserved, the proposed method is

appealing for investigators, who usually are difficult to convince to pay a price for an

interim look, cf. also [6], [7].
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