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1 Abstract

Operational protocols are a valuable means for quality control. However, developing

operational protocols is a highly complex and costly task. We present an integrated

approach involving both intelligent data analysis and knowledge acquisition from experts

that supports the development of operational protocols. The aim is to ensure high quality

standards for the protocol through empirical validation during the development, as well

as lower development cost through the use of machine learning and statistical tech-

niques. We demonstrate our approach of integrating expert knowledge with data driven

techniques based on our effort to develop an operational protocol for the hemodynamic

system.

1. (To appear in "Artificial Intelligence in Medicine", thematic issue on Knowledge-Based Information

Management in Intensive Care and Anaesthesia)
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3 Introduction

An abundance of information is generated during the process of critical care. Much of

this information can now be captured and stored using clinical information systems

(CIS) that have become commercially available for use in intensive care over the last

years. These systems provide for a complete medical documentation at the bedside and

their clinical usefulness and efficiency has been shown repeatedly [8, 9, 13]. While data-

bases with more than 2,000 separate patient-related variables are now available for furt-

her analysis [10], the multitude of variables presented at the bedside even without a CIS

precludes medical judgement by humans. A physician may be confronted with more than

200 variables in the critically ill during a typical morning round [25]. We know, however,

that even an experienced physician is often not able to develop a systematic response to

any problem involving more than seven variables [22]. Moreover, humans are limited in

their ability to estimate the degree of relatedness between only two variables [15]. This

problem is most pronounced in the evaluation of the measurable effect of a therapeutic

intervention. Personal bias, experience, and a certain expectation toward the respective

intervention may distort an objective judgement [6]. These arguments motivate the use of

decision support systems.

Clinical decision support aims at providing health care professionals with therapy guide-

lines directly at the bed-side. This should enhance the quality of clinical care, since the

guidelines sort out high value practices from those that have little or no value. The goal

of decision support is to supply the best recommendation under all circumstances [26].

The computerized protocol of care can take into account more aspects of the patient than

a physician can accommodate. It is not disturbed by circumstances or hospital cons-

traints. It bridges the gap between low-level numerical measurements (the level of the

equipment) and high-level qualitative principles (the level of medical reasoning). While

knowledge-based systems have mostly been applied for diagnosis and therapy  planning

(e.g., [28], [19]), some systems also aim at on-line patient monitoring [7, 21, 26].
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Methods that have proved their value in handling low-frequency patient data are not

applicable for on-line monitoring [21]. Quantitative measurements and qualitative rea-

soning have to be integrated  in a system that recommends interventions in real-time.

The numerical measurements of the patients‘ vital  signs have to be abstracted into quali-

tative terms of high abstraction. The aspect of time has to be handled both at the level of

measurements and the level of  expert knowledge [4, 17, 21, 28]. In the expert’s reason-

ing, time becomes the relation between time intervals, abstracting from the exact dura-

tion of, e.g., an increasing heart rate, and focusing on tendencies of other parameters

(e.g., cardiac output) within overlapping time intervals.

One of the big obstacles to the more frequent implementation of decision support

systems is the tedious and time-consuming task of developing the knowledge base. The

decision support system for respiratory care at the LDS Hospital,  Salt Lake City, USA

[26], for instance, has been developed in about 25 person years.  The method of guideline

development itself is not supported by a computer system. Mechanisms of temporal

abstraction and reasoning presuppose manually designed models or ontologies [4, 21,

28]. Why not use techniques of knowledge discovery and statistical time series analysis

in order to ease the process of guideline generation? Machine learning and statistical

analysis have been applied in building-up diagnostical systems successfully (e.g., [18]).

We now want to exploit the huge amount of data for the development of guidelines for

on-line monitoring. Our task is to build  a decision support system for on-line hemodyna-

mic monitoring in the critically ill. We do not aim at modeling the actual physician’s

behavior. Imitating the actual interventions made by physicians is not the goal. Actual

behavior is influenced by the overall hospital situation, e.g., how long is the physician on

duty, how many patients require attention at the same time. Machine learning from pati-

ents‘ data could lead to a knowledge base that mirrors such disturbing effects. Therefore,

the learned decision rules have to be checked by additional rules about effects of drug

and fluid administration. Our approach is to combine statistics, knowledge acquisition,

and machine learning.  Our aim is to develop a method for guideline generation that is

faster and more reliable than current methods.

Data for statistical evaluation and learning can be provided by the CIS. However, the

nature of the data is different from that gathered in controlled experiments. While a CIS

in modern intensive care can take numerous measurements every minute, the values of
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some vital signs are sometimes recorded only once every hour. Other vital signs are

recorded only for a subset of the patients. Hence, the overall high dimensional data space

is sparsely populated. Moreover, the average time difference between intervention as

charted and estimated hemodynamic effect can show a wide variation [12]. Even the

automatic measurements can be noisy due to manipulation of measurement equipment,

flushing of pressure transducers, or technical artifacts. In some cases, relevant demogra-

phic and diagnostic parameters may even not be recorded at all. In summary, we have a

large amount of high dimensional, numerical time series data that contains missing

values and noise. Using this data already at the stage of development of the decision sup-

port system stave off surprises at the stage of clinical experience as have been reported in

[21, p. 572]: "The huge number of measurements classified as invalid is quite astonishing

although it reflects the real clinical environments."

In addition to problems of knowledge acquisition, we see a particular need for know-

ledge validation. It should be noted that many medical guidelines published today are

neither evidence-based nor sufficiently validated against real patient data.  The current

procedure is to first develop the guideline, then represent it in a knowledge-based system,

and finally to test it in clinical studies. In this ‘waterfall´ process, unrealistic assumpti-

ons, mistakes, and flaws are recognized at a late stage. In contrast, our approach includes

validation from the very beginning.  Using a knowledge-based system early on supports

the validation of the knowledge base at earlier stages. Inconsistencies within the know-

ledge base as well as a mismatch of  rules and  patient data are detected while developing

the knowledge base. This facilitates and focuses the knowledge-acquisition process.

In order to test our approach to using real clinical data for building and validating a

knowledge base for on-line monitoring, we have constructed a system. Its overall archi-

tecture is shown in Figure 1. The patients' measurements are used to recommend an

intervention and are abstracted with respect to their course over time. The recommenda-

tion of interventions constitutes a model of physician behavior. This asks for further vali-

dation. Therefore, a recommended intervention is checked by calculating its expected

effects on the basis of medical knowledge. In this way, a qualitative assessment of a stati-

stical prediction enhances the model of physician behavior in order to obtain a model of

best practice. The medical knowledge constitutes a model of the patients' hemodynamic

system. This model is validated with respect to past patients' data. In detail, the processes
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we have designed are:

Figure 1. Overall architecture.

data abstraction: Given series of measurements of one vital sign of the patient, detect

and possibly eliminate outliers and find level changes by good statistical practice. This

abstracts the measurements to qualitative propositions with respect to a time interval,

e.g., within time point 12 and time point 63, the heart rate remained about equal, from

time point 63 to time point 69 it was increasing. Our approach is based on statistical time

series analysis. Classical ARMA (autoregressive moving average) modelling [3] is app-

lied with corresponding outlier- and level shift detection procedures using the new tool

of a phase space embedding.

data-driven acquisition of state-action rules: Given the numerical data describing vital

signs of the patient and his or her current medication, find the appropriate intervention.

An intervention is formalized as increasing, decreasing or not changing the dose of a

drug. The decision is made every minute. These rules were learned by the Support Vector

Machine [38].
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acquisition of medical knowledge: Given text book knowledge and explanations by an

expert, represent the effects of substances in different dosages, relations between vital

signs, and interrelations between different substances, and validate the knowledge on the

basis of past patients’ data. The knowledge acquisition and validation was supported by

the MOBAL system [24].

validation of recommended interventions:  Given

• the state of a patient described in qualitative terms,

• medical knowledge

• a sequence of interventions, and

• a current intervention,

find the effects of the current intervention on the patient. The derivation of effects is

made for each intervention as forward inference within MOBAL. The effect should

result in a stable state of the patient.

The outline of this paper is as follows. Throughout the paper we report on the continuous

development of a decision support system for intensive care as performed at the city hos-

pital and the university of Dortmund. We start with a description of the data acquisition

process at the hospital and the resulting data set [13]. A statistical method for data

abstraction is described in section 5. The next section (6) shows, how we applied the sup-

port vector machine (SVM) to learn state-action rules. A short introduction to the

MOBAL system [24] and its representation of medical knowledge leads to the issue of

validation which is presented in section 8.

4 Data acquisition and data set

4.1 Data acquisition

Most variables are entered by hand at the bedside. For entities such as clinical observati-

ons, nursing procedures, therapeutic measures, medications, or orders it appears very

unlikely that entry of these variables can be automated in the foreseeable future. Only 5-
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10% of all variables in a CIS are acquired automatically. This includes the majority of

bedside devices, e.g. physiologic monitors, ventilators, infusion devices. Additional data

is interfaced from the hospital information system (HIS), the laboratory (LIS) or the

microbiology information systems, where the LIS represents the clinically most relevant

set of data among these centralized information systems. Although device data account

for a comparatively small number of variables, they can, depending on the sampling rate,

generate large amounts of data.

The data structure of a CIS shows a wide variety of different data types on different sca-

les (nominal scales, e.g. sex, breathing sounds; ordinal scales, e.g. neurological scoring;

absolute scales, e.g. vital signs), which are stored at different time intervals (ranging

from seconds for vital signs to once during the length of stay for demographic data).

Time intervals may also be regular or irregular.

For further analysis data must be structured, so that it can be subjected to statistical algo-

rithms. Numeric data, e.g. vital signs, intake/output, is typically directly accessible for

most applications. Free-text data, which traditionally makes up a large portion of medical

documentation, cannot be statistically analyzed in any structured way. Therefore, free-

text entries into a CIS should be avoided wherever possible. Qualitative information,

such as clinical observations or interventions, should be documented in a strictly structu-

red fashion with selection lists and menu items. This approach provides a consistent ter-

minology throughout the entire medical institution. It is highly efficient and fast,

especially for users not well trained in the use of computers and keyboards in particular.

In clinical practice, with the stringent implementation of structured tabular documenta-

tion, it was possible to reduce the use of free-text notes by more than 90%. Structured

qualitative data can, in contrast to free-text information, be directly exported for statisti-

cal analysis.

These general propositions also hold for the city hospital of Dortmund, a 1,900-bed ter-

tiary referral center. There, all medication data of the 16-bed surgical intensive care unit

was charted with a CIS, allowing the user one minute time resolution for all data. Moreo-

ver, data from bedside devices, e.g. patient monitors, is gathered automatically every

minute.
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4.2 Data set

The entire database of intensive care patient records at the city hospital of Dortmund

comprises about 2,000 different variables (attributes). Data from the CIS is selected

through customizable data filters and copied into a standard relational database where it

is accessible for further data analysis.

For this investigation, data was acquired from 148 consecutive critically ill patients (53

female, 95 male, mean age 64.1 years), who had pulmonary artery catheters for extended

hemodynamic monitoring. Recording in one minute intervals, this amounts to 679,817

sets of observations.

From the original database 118 attributes in 9 groups were taken for learning state-action

rules (table 1).

Categorical attributes are broken down into a number of binary attributes, each taking the

values {0,1}. Real valued parameters are either scaled so that all measurements lie in the

interval [0,1], or they are normalized by empirical mean and variance:

We systematically evaluated a large number of plausible attribute sets using a train/test

scheme on the learning task described in section 6.2. The set with the best performance is

given in table 2. These attributes are actually the most important parameters of the pati-

ent according to expert judgement. Only the relevant attributes "Cardiac Output" and

"Net Intake/Output" are missing, but they cannot be used as they are not continuously

available.

We also experimented with different ways of incorporating the history of the patient. We

tried:

• using only the last minute before the intervention

Table 1. Overall attribute set for learning state-effect rules.

16 demographic attributes 5 intensive care diagnoses 6 continuously infused
drugs

11 vital signs 9 derived parameters 14 respiratory variables

37 intake/output variables 10 bolus drugs 10 laboratory tests

norm X( ) X means X( )–( ) var X( )⁄=
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• using the last up to 10 minutes before the intervention

• using the averages of up to 60 minutes before the intervention

• combinations of these

• the state of the patient at the previous intervention

None of the more complex approaches gave significantly better results on the learning

task in section 6.2 than just using the measurements from one minute before the inter-

vention. All the feature selection experiments were done on the training set, leaving a

separate test set to measure the results presented in this paper.

Since each patient record covers several interventions, data from 148 patients gives us

sufficiently large sets of examples. For learning state-action rules, we used a total of

1319 training and 473 test examples. For the rule validation we analyzed 8200 interventi-

ons corresponding to 27400 intervention-effect pairs.

5 Statistical analysis of time series

Time series analysis was employed for data abstraction of the time oriented variables

Table 2. Best feature set for learning state-action rules using SVM.

Vital Signs
(measured every minute)

 Continuously Given Drugs
(changes charted at
1-min-resolution)

 Demographic Attributes
(charted once at admission)

Diastolic Arterial Pressure Dobutamine Broca-Index

Systolic Arterial Pressure Adrenaline Age

Mean Arterial Pressure Glycerol trinitrate Body Surface Area

Heart Rate Noradrenaline Emergency Surgery (y/n)

Central Venous Pressure Dopamine

Diastolic Pulmonary Pres-
sure

Nifedipine

Systolic Pulmonary Pres-
sure

Mean Pulmonary Pressure
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with the goal of detecting outliers and level changes. The classical and widely used stati-

stical approach to modelling time series is so called ARMA modelling [3] which assu-

mes that a time series  can be written as

(1)

where  is an unobservable shock at time t. This assumption means that each observa-

tion is a linear combination of past observations and past shocks with (unknown) coef-

ficients  and   respectively. The integers   and  are the orders of the

model, while the model itself is denoted ARMA  model. In case of , i.e.,

when only the current shock and past observations have influence, the model is called

AR  model.

In order to better understand the dynamics of time dependent phenomena, another repre-

sentation of a time series can also be applied, the so called phase space embedding  [27,

32]. This tool, though originally designed to analyse nonlinear, chaotic systems, has pro-

ven useful for the purpose of detecting outliers and level changes also in an ARMA fra-

mework [2, 11]. Here it does not even need any strict model assumptions to be applied.

The phase space approach is based on a simple transformation of the time series into

some Euclidean space - the phase space embedding. Instead of the time series

itself, one considers the sequence of all, say , consecutive values of the series as -

dimensional vectors

. (2)

Here, , is called embedding dimension. Numerous rules exist for choosing

 in nonlinear models. There, in most cases the components of the phase space vectors

are not neighboring observations, but  they are separated by a time delay [14, 34]. Focu-

sing on stochastic processes it is better to take into account the dependencies of neighbo-

ring observations. Therefore, we choose the components of  as chronological

observations always with a time delay (lag) of one. To improve pattern identification,

should be chosen such that exactly those preceding observations are considered, which

have a direct influence on the present observation [1, 2]. Of course, to detect outliers,

level changes etc., the classical statistical methodology may also be applied [5, 29, 31,

xt( )t 1 2 …, ,=

xt φ1xt 1– … φpxt p– θ1εt 1– … θ+ qεt q– εt+ + + + +=

εt

φ1 …, φp, θ1 … θq,, p q

p q ),( q 0=

p )(

x1 … xN, ,

m m

xt xt xt 1+ … xt m 1–+, , ,( ) t, 1 … N m– 1+, ,= =

m 1 2 …,{ , }∈

m

xt

m



Morik et al: Knowledge Discovery and Knowledge Validation in Intensive Care

11 of 32

35]. We suggest to work with the more recent phase space method here mainly because it

is able to detect even patchy outliers, because it works almost graphically without strict

model assumptions, and because it may reveal deviations from the dynamics of the series

which are difficult to detect otherwise [2].

Figure 2 visualizes a two-dimensional phase space embedding. We connect all consecut-

ive phase space vectors, i.e., all points , , , and so on, in the two-

dimensional Euclidean space. Typically, in the steady state this yields an elliptical cloud

and outliers show up as abberations from this cloud.

The identification procedure, that we developed, uses the differenced time series , defi-

ned by . In a differenced series, an abrupt level change

shows the same abberation as an outlier in the original series. The procedure focuses on

the identification of such abberations from that elliptical cloud which describes the

steady state.

The phase space vectors of the differenced time series are analyzed in consecutive order

and it is checked whether they are located in a "critical region" . If a vector lies in such a

critical region, i.e., intuitively speaking, if it extrudes "too far" from the elliptical cloud

describing the steady state, it can then be discriminated between different patterns after

observing further values. The "critical region" is formally defined as the region outside

some ellipse, which in the steady state for a given level  must not contain any phase

space vector out of  such vectors with probability larger than . The level  is

chosen by the investigator and, if possible, depending on the observed length  of the

time series. In any case, as the true data generating mechanism of the time series is

unknown, the critical region has to be estimated from some starting sequence of the time

series. Then the outlying phase space vectors located in this critical region can be detec-

ted and, finally, on the basis of the movement of the phase space vectors, a discrimination

between different patterns can be done for those observations which have constituted an

outlying phase space vector.

x1 x2( , ) x2 x3( , ) x3 x4( , )

dt

dt xt xt 1– t,– 2 … N, ,= =

α

N 1 α– α

N
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Figure 2. Phase Space Embedding of a simulated time series:

Top: Simulated AR(1)-process with outlier and level change

Middle: Differenced AR(1)-process with outlier and level change.

Bottom: Phase space embedding of the differenced series (O = outlier, LC =

level change).

Plot of d_n versus d_(n-1). After a change occurred the phase space vectors

fall back into the ellipse describing the steady state.
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A detailed description of this methodology and a comparison with other established time

series procedures is given in [1, 2]. A graphical example may visualize this approach. In

Figure 2 a simulated time series following an AR(1) process, the differenced series and

the two-dimensional embedding of the differenced series with the corresponding estima-

ted ellipse are shown. This example discriminates only between the patterns of outliers

and abrupt level changes. If at the time point  the vector  extrudes from the cloud, the

decision between outlier and abrupt level change takes place at the time point . If

the distance between  and the detected point LC in Figure 2 is smaller than the

distance between  and the detected point O, then a level change can be diagnosed,

otherwise, an outlier is present. If more patterns are considered, more fixed points have

to be determined and the time point at which the decision takes place is delayed.

The whole process of pattern recognition can be described as follows: The first 60 obser-

vations are taken and retrospectively analyzed (i.e., outlying regions are estimated and

patterns in this time interval identified). After this, a time window of length 60 is moved

through the data. That means, that at time point 61 we determine if the phase space vec-

tor  is in the critical region. If not, then no pattern is detected, and the estimated criti-

cal region is replaced by a new one, that is estimated from the last 60 observations

. This is repeated for every new observation as long as for the time point  the

phase space vector  once falls into a critical region. Then the system is said to be no

longer in a steady state, and after analyzing the consecutive observations ,

it is decided if a pattern is present similar to the retrospective analysis.

In a previous study [11] this approach showed excellent results when compared to pat-

tern recognition by highly trained experts. From this investigation it can be assumed that

clinically significant patterns will be reliably detected by this method. An initial weak-

ness in the detection of trends or "slow" level changes was overcome by the implementa-

tion of a delayed moving window.

The data abstraction process using phase space methods handed the recognized patterns

over to the other components of the hybrid system. This information contained type, time

of onset, direction, and duration of the pattern.

t dt

t 1+

dt 1+

dt 1+

d61

d2 … d61, , t

dt

dt 1+ dt 2+ …, ,
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6 Data-driven acquisition of state-action rules

6.1 Support vector machine

Support vector machines (SVMs) [38] represent a method to learn binary classifiers from

examples. For a set of training examples  they find the classification

rule  for which they can guarantee the lowest error rate on new observations. Each

example consists of a vector  (describing e.g. the state of a patient represented by the

current measurements of blood pressures, heart rate, etc.) and its classification

. In their basic form, SVMs learn linear decision rules

. The weight vector  and the threshold  are the result of

learning and describe a hyperplane. Observations are classified according to which side

of the hyperplane they are located. A typical decision rule is given in Figure 3. During

training, the SVM calculates the hyperplane so that it classifies most training examples

correctly while keeping a large "margin" around the hyperplane. If the training data can

be separated without error, the margin is the distance from the hyperplane to the closest

training examples.

Since we will be dealing with very unbalanced numbers of positive and negative

examples in the following, we introduce cost factors  and  to be able to adjust the

cost of false positives vs. false negatives. Training an SVM can now be translated into the

following optimization problem:

Minimize: (3)

subject to: (4)

Training error is represented by the variables , while the margin is measured by . We

solve this optimization problem in its dual formulation using SVMlight 1 [16], extended to

handle unsymmetric cost-factors.

1. Available at http://www-ai.cs.uni-dortmund.de/svm_light
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6.2 Learning the directions of interventions

The first question we asked ourselves was: Given that we know the physician changed

the dosage of some drug, can we learn when he increased the dosage and when he

decreased the dosage based on the state of the patient? For each drug, examples are taken

from the points in time where, in fact, the dosage changed. For all drugs, linear SVMs

are trained on the problem "increase of dosage" ( ) vs. "decrease of dosage"

( ) using the attributes in table 2 for describing the state of the patient. The per-

formance of the respective SVM on a previously untouched test set is given in table 3.

To get an impression about how good these prediction accuracies are, we conducted an

experiment with a physician. On a subset of 41 test examples we asked an expert to do

the same task as the SVM for Dobutamine, given the same information about the state of

the patient. In a blind test the physician predicted the same direction of dosage change as

actually performed in 32 out of the 41 cases. On the same examples the SVM predicted

the same direction of dosage change as actually performed in 34 cases, resulting in an

essentially equivalent accuracy.

6.3 Learning when to intervene

The previous experiment shows that SVMs can learn in how far drugs should be changed

given the state the patient is in. In reality, the physician also has to decide when to inter-

vene or just keep a dosage constant. This leads to the following three class learning pro-

blem. Given the state of the patient, should the dosage of a drug be increased, decreased

or kept constant? Generating examples for this task from the data is difficult. The parti-

cular minute a dosage is changed depends to a large extend on external conditions (e.g.

an emergency involving a different patient). So interventions can be delayed and the opti-

yt 1=

yt 1–=

Table 3. Accuracy in predicting the right direction of an intervention.

Drug  Accuracy  StdErr

Dobutamine    83.6%  2.5%

Adrenaline    81.3%  3.7%

Glyceroltrinitrate    85.5%  3.0%

Noradrenaline    86.0%  5.2%

Dopamine    84.0%  7.3%

Nifedipine    86.9%  7.0%
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mal minute an intervention should be performed is unknown. To make sure that we gene-

rate examples only when a physician was closely monitoring the patient, we consider

only those minutes where some drug was changed. This leads to 1319 training and 473

test examples.

For each drug we trained two binary SVMs. One is trained on the problem "increase

dosage" vs. “do not increase dosage (i.e. lower or keep dosage equal)", the other one is

trained on the problem "lower dosage" vs. "do not lower dosage (i.e. increase or keep

dosage equal)". An intervention is predicted if exactly one such decision rule recom-

mends a change. As an example, Figure 3 shows the decision rule that the SVM learned

for increasing the dosage of Glyceroltrinitrate. Since the class distribution is very skewed

towards the "do not ... dosage" class, we use a cost model. The cost-factors are chosen so

that the potential total cost of the false positives equals the potential total cost of the false

negatives. This means that the parameters  and  of the SVM are chosen to conform

to the ratio

(5)

Table 4 shows the test results for Dobutamine and Adrenaline. The confusion matrices

give insight into the class distributions and the type of errors that occur. The diagonal

contains the test cases, where the prediction of the SVM was the same as the actual inter-

vention of the physician. This accounts for 63% of the test cases for Dobutamine and for

C+ C-

C+

C-
------ number of negative training examples

number of positive training examples
-------------------------------------------------------------------------------------------=

Table 4. Confusion matrix for predicting time and direction of Dobutamine and Adrena-

line interventions.

Dobutamine
actual intervention

 up  equal  down

predicted up 46 32 3

predicted equal 50 197 54

predicted down 5 30 56

Adrenaline
actual intervention

 up  equal  down

predicted up 23 22 3

predicted equal 21 310 15
predicted down 4 34 41
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79% of the test cases for Adrenaline. The SVM suggests the opposite intervention in

about 1.5% for both drugs.

Again, we would like to put these numbers into relation to the performance of an expert

when given the same information. For a subsample of 95 examples from the test set, we

asked a physician to perform the same task as the SVM. The results for Dobutamine and

Adrenaline are given in table 5. The results of the SVM on this subsample are followed

by the performance of the human expert in brackets. Both are aligned remarkably well.

Again, the learned functions of the SVM are comparable in terms of accuracy with a

human expert. This also holds for the other drugs.

7 Medical knowledge base

Decision rules learned by the SVM reflect the average behavior of a physician, not the

“gold standard”. As argued above, they have to be checked against medical knowledge

about the effects of drugs. This section presents an approach to building a knowledge

base that helps accomplish this task automatically and that makes decision support trans-

parent.

Knowledge acquisition from experts is performed according to the current state of the

art: first, knowledge is elicited from the expert, second, a knowledge base is modeled,

third, the model is inspected, validated, and enhanced in collaboration with the expert.

Table 5. Confusion matrix for predicting time and direction of Dobutamine/Adrenaline

interventions in comparison to human performance (results from an experienced

intensivist in brackets).

Dobutamine
actual intervention

 up  equal  down

predicted up 10 (9) 12 (8) 0 (1)

predicted equal 7 (9) 35 (31) 9 (9)

predicted down 2 (1) 7 (15) 13 (12)

Adrenaline
actual intervention

 up  equal  down

predicted up 4 (2) 3 (1) 0 (0)

predicted equal 4 (6) 65 (66) 2 (2)
predicted down 1 (1) 8 (9) 8 (8)
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These steps form a cycle, i.e. the third step actually leads to obtain more expert know-

ledge, which is then modeled, etc.[23]. This expert knowledge augments and validates

the data-driven knowledge acquisition using machine learning.

7.1 Knowledge acquisition and representation

The knowledge base of action-effect rules serves three purposes. First, it is used in order

to model a protocol of care. Second, it is used to base learned decision functions on

explicit and qualitative knowledge. Third, it is used for the validation of predictions. Let

us describe the knowledge acquisition from experts before we show how this knowledge

is integrated with the learned decision functions (section 7.3) and how it is used for vali-

dating predictions (section 8).

A medical expert defined the necessary knowledge. This knowledge is medical textbook

knowledge for the cardiovascular system. It reflects direct pharmacological effects of a

selected list of medical interventions on the basic hemodynamic variables. Any interac-

tion of these interventions with other organ systems or of other organ systems with the

Table 6. Medical knowledge base for hemodynamic effects:

+ = increase of the respective variable or intervention’; - = decrease of the

respective variable or intervention; 0 = no change

Intervention

Effect on hemodynamic variables

Heart Rate
Mean

Arterial
Pressure

Mean
Pulmonary

 Artery
Pressure

Central
Venous
Pressure

Cardiac
Output

Dobutamine + + + + 0 +

- - - - 0 -

Adrenaline + + + + 0 +

- - - - 0 -

Noradrenaline + - + + 0 -

- + - - 0 +

Nitroglycerine + + - - - +

- - + + + -

Fluid intake/
out-
put

+ - + + + +

- + - - - -
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cardiovascular system were ignored. An excerpt of intervention-effect relations is shown

in table 6. The dosage intervals indicated for each drug are not shown in the table, but

modeled in the knowledge base. Also parameter dependencies have been modeled. It

should be noted that the knowledge is qualitative with intervals of dosages, trends of

changes, and implicit time intervals.

For the representation of qualitative medical knowledge we chose the MOBAL system

[24]. MOBAL is a knowledge acquisition and maintenance system. Several tools faci-

litate the construction and inspection of a knowledge base. Its representation formalism

is a restricted many-sorted first-order logic with explicit negation. A four-valued logic is

used in order to allow for unknown and contradictory facts in addition to true and false

facts. The inference engine derives new facts on the basis of rules and given facts. Due to

the expressive power of first-order logic, compact models can be built. What would be a

rule in propositional logic, can be expressed by a mere fact in first-order logic. For

instance, using a propositional logic, explicitly stating that up is the opposite of down

requires the rule

heart_rate_trend=up --> not (heart_rate_trend=down)

and its dual form for all parameters. Using first-order logic, the fact

opposite(up, down)

is stated and can be used for any parameter.1 The pharmacological knowledge from table

6 is expressed by facts of the form

effect(adrenaline, 0.01, 0.03, art, up)

stating that Adrenaline in a dosage between 0.01 and 0.03 µg/kg/min has the effect up on

mean arterial pressure. Effects are modeled for substances. Additional facts indicate the

particular drugs in which the substance is contained.

Patient records are also expressed by facts. The time is indicated by minutes, starting

with the first measurement of a patient and ending with his or her discharge from inten-

sive care.

intervention(pat4711, 10, 62, supra,0.02)

means that the patient 4711 from the tenth minute to minute 62 received Suprarenin (a

drug containing Adrenaline) in a dosage of 0.02 µg/kg/min.

1. We follow the standard notation of logic programming, where argument variables begin with capital let-

ters and predicate symbols as well as constants start with small letters.



Morik et al: Knowledge Discovery and Knowledge Validation in Intensive Care

20 of 32

Given the abstractions described in section 5, the values of hemodynamic parameters are

stated in terms of level changes.

level(pat4711, 11, 62, hr, up)

states that the heart rate of patient 4711 had an upward level change at minute 11 and

then remained almost stable until minute 62. In addition to this abstract description of a

vital sign in a time interval, its deviation from the stable state is calculated. For each vital

sign, the desired range of values is given, e.g. [60, 100] for the heart rate. For a patient‘s

parameter values within a time interval, the standard deviation is calculated and added to

(subtracted from) the upper (lower) value of the desired range. If the patient‘s actual

value does not lie within this enlarged interval, a fact stating a deviation is entered. For

instance, the following fact states that arterial mean pressure of patient 4999 is beyond

the desired range:

deviation(pat4999, 0, 31, art, up)

We now want to use the pharmacological knowledge for deriving expected effects of an

intervention on a particular patient. This is done by rules. The advantage of first-order

logic is particularly important for modeling relations between intervals. For instance, sta-

ting that two time intervals are immediately succeeding, can be expressed by simply

unifying the end point of one time interval with the start point of the other time interval.

The following statement states, for instance, that two interventions were directly succee-

ding each other:

intervention(Patient, T1, T2, M, D1)

intervention(Patient, T2, T3, M, D2)

This statement can be instantiated by all patients, points in time, parameters and dosages

as long as the same argument variable (e.g. Patient) is instantiated by the same value

(e.g., pat4711) and different argument variables (e.g. D1, D2) are instantiated by diffe-

rent values.

intervention(pat4711, 73, 83, supra,0.05)

intervention(pat4711, 83, 177, supra, 0.02)

Intervals of dosages are handled in a similar manner. We can distinguish between major

and minor changes of a dosage. A minor change is one within the same interval for

which an effect has been stated by pharmacological facts.  The rule and an actual instan-

tiation is the following:
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intervention(Patient, T1, T2, M,D1),

intervention(Patient, T2, T3, M,D2),

contains(M, S),

effect(S, FromD1, ToD1, Param, Trend),

FromD1=< D1 <ToD1, FromD1=< D2 <ToD1

-->

interv_effect(Patient,T2,T3,M,Param,Trend,minor)

intervention(pat4711,441,968,nitro,1.9),

intervention(pat4711,968,1081,nitro,2.38),

contains(nitro, glyceroltrinitrat),

effect(glyceroltrinitrat, 1, 10, hr, up),

1 =< 1.9 < 10, 1 =< 2.38 < 10

-->

interv_effect(pat4711,968,1081,nitro,hr,up,minor)

Changing into another such interval is a major change. The actual dosage of a drug given

to a patient is compared with the dosage interval of effect facts. The following rule

expresses the enforcement of an effect because of a major change of dosage.

intervention(Patient, T1, T2, M,D1),

intervention(Patient, T2, T3, M,D2),

contains(M, S),

effect(S, FromD1, ToD1, Param, Trend),

effect(S, FromD2, ToD2, Param, Trend),

FromD1 =< D1 < ToD1, FromD2 =< D2 < ToD2, D1 < D2

-->

interv_effect(Patient, T2,T3, M, Param, Trend, major)

Note, that if the substance S of drug M has a decreasing effect on a parameter of the pati-

ent, the rule predicts a further decrease of that vital sign. The variable Trend is then

instantiated by down. Another rule states that decreasing a substance with an increasing

effect on a parameter will decrease the parameter‘s value. We use such rules in order to

predict effects of interventions. The prediction of intervention effects is used to check
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interventions that are proposed by the learned decision rules. Not counting the patient

records, the knowledge base consists of 39 rules and 88 facts.

7.2 Validating action-effect rules

In order to validate the knowledge base we applied it to the data of 148 patients. The data

contain 8,200 interventions. The validation is easy, since rules can directly be applied to

patient data. MOBAL’s inference engine derived 27,400 effects of the interventions using

forward chaining. For 22,599 effects the atual effects in terms of level changes could be

computed by the time series analysis (see section 5). When matching the derived effects

with the actual ones, the system detected:

• 13,364 effects (i.e. 59.14%) took place in the restricted sense, that the patient's state

remained stable. E.g., a drug with an increasing effect on a patient's vital sign does

not lead to a significant level change of this parameter. This is not in conflict with

medical knowledge, but shows best therapeutical practice. Smooth medication keeps

the patient's state stable and does not lead to oscillating reactions of the patient.

• 5,165 effects (i.e. 22.85%) took place in the sense, that increasing or decreasing

effects of drugs on vital signs match corresponding level changes.

• 4,070 contradictions (i.e. 18.01%) were detected. The observed level change of a

vital sign went into the opposite direction of the knowledge-based prediction.

The ratio of 83.56 percent correct predictions of effects is quite positive. Some decisive

features are not present in the data. Particularly the lack of data about cardiac arrhyth-

mias and cardiac output could possibly explain many deviations of observed from pre-

dicted effects.

7.3 Integrating learned decision functions with the knowledge base

Since the goal of our work is an integrated system for intensive care monitoring, the

numerical approach using the SVM has to be incorporated into the logic of MOBAL.

While training SVM classifiers can take place offline in a separate program, MOBAL

needs to be able to evaluate SVM decision rules and access the results online. We



Morik et al: Knowledge Discovery and Knowledge Validation in Intensive Care

23 of 32

achieve this by introducing the special predicate svm_calc/6 with the following semantic.

The first two arguments indicate the patient and the drug. The third argument is either

“up” or “down” depending on whether the svm_calc fact belongs to the SVM predicting

dosis increase or decrease (compare section 6.3). The fourth argument is the time and the

fifth is the current dosage of the drug. The last argument finally contains the value

 of that particular SVM rule for the measurements  at that time. Calculating

 can be done very efficiently, since it mainly consists of computing a dot pro-

duct between the SVM weight vector  and the measurement vector . From each pair

of decision rules (i. e. up and down) an intervention for the respective drug is recommen-

ded, if exactly one decision rule has a value  larger than a confidence thres-

hold of 0.8.

Figure 3. Decision rules for predicting an intervention that increases the dosage of

Glyceroltrinitrat.

The decision rule for an increase of Glyceroltrinitrat (nitro) together with the actual para-
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meter values  of patient  4999 at time 32 is shown in Figure 3. The dot product plus -

4.368 (the value of b) is 1.85598. The fact entered into the fact base for patient 4999 is

svm_calc(pat4999, nitro, up, 32, 0.0, 1.85598). An intervention to increase nitro is

derived. The dose is calculated on the basis of the former dose. The SVM actually only

decides whether to increase, to decrease, or not to change the dose. For each drug, a level

of granularity is defined. For instance, the granularity of Glyceroltrinitrat is 1, whereas

that of Suprarenin (containing adrenaline) is 0.01. The dose is changed by just one step.

In our example, the proposed intervention is:

pred_intervention(pat4999, 32, nitro, 1.0)

8 Using the knowledge base of effects to validate interventions

Medical knowledge is used for validation in two different ways. On the one hand, lear-

ned decision rules are validated on patient data by comparing the effects of their recom-

mended interventions with the effects of actual physicians‘ interventions. This validation

means to incorporate an evaluation step already into the knowledge acquisition phase.

On the other hand, we believe that even an evaluated decision support system should

check its decisions by considering their effects.

8.1 Validating learned decision rules

There are usually several different combinations of drugs that achieve the same goal of

keeping the patient in a stable state. And indeed, different physicians, depending on their

experience in the ICU, do use different mixtures and follow different strategies to reach

this goal. For comparing treatment strategies, the real criterion is whether the recommen-

o

Table 7. Equivalence of decisions regarding effects.

Interventions
mean arterial

pressure
heart rate

same effect
all parameters

same behavior

Dobutamine 403 395 383 299

Adrenaline 407 406 393 374

Glyceroltrinitrate 437 388 380 342

Noradrenaline 436 428 424 420

Nifedipine 457 457 455 438
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dations have the same effect as the actual interventions. Therefore, we apply the action--

effect rules from the knowledge base to both the proposed intervention of the SVM clas-

sifiers and to the intervention actually performed by the physician. If the derived effects

are equal, then the proposed decision of the SVM classifiers can be considered as "equi-

valent" to the intervention executed by the physician. The results of this comparison for

473 interventions are shown in Table 7. The right-most column indicates the accuracy,

i.e. in how many cases the classification of SVM and physician were identical (same

behavior of SVM and physician). The other columns state how often the SVM's interven-

tion leads to the same effects as the intervention of the physician. The first two columns

show, how many of interventions had the same effect on arterial blood pressure or heart

rate, respectively. The third column gives a more concise evaluation. Here it is stated,

how many interventions recommended by the SVM had the same effects on all vital

signs as the actual intervention. For instance, the SVM correctly classifies 299 test cases

for Dobutamine (63%). If we compare the resulting effects of the predicted interventions

concerning Dobutamine with the effects of the actual physician's interventions, we find

that in 383 cases (81%) the deduced effects will be equal. Thus, in 84 cases the recom-

mendation of the SVM does not match the physician's behavior, but the derived effects

are the same, since the physician has chosen an "equivalent" drug or combination of

drugs. An inspection of these cases helps to clarify issues of best practice and thus sup-

ports knowledge acquisition.

8.2 Validating proposed interventions

As depicted in the overall architecture (cf. Figure 1), we have chosen a design which

allows us to use the action--effect rules in the knowledge base for validating predicted

interventions. The underlying argument is that accuracy measures only reflect how well

SVM's learning results fit actual behavior of the physician. However, we aim at best

practice. Hence, we validate a proposed intervention with respect to its effects on the

patient. If the effects push vital signs in the direction of the desired value range, the

recommendation is considered sound, otherwise it is rejected. An example may clarify

this. Patient 4999 is older than 75 years and stays at the ICU after a surgical operation.

He suffers from high arterial mean pressure (around 124), where the heart rate is normal

(around 80). Using its decision rules, the SVM recommends to increase Glyceroltrinitrat

(see Figure 3). This proposed intervention is checked by the medical knowledge about
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effects. The derived effects are an increase of the heart rate and a decrease of arterial

mean pressure as well as left ventricular stroke work index (lvswi) and systemic vascular

resistance (svr): interv_effect(pat4999,32, T, art, down). The observed deviation is devia-

tion(pat4999, 0,31, art, up). Since down is the opposite of up, the proposed intervention

is considered sound. In this way, the prescriptive medical knowledge (action-effect rules)

is used to control the knowledge that is learned from actual therapies (state-action rules).

9 Comparison with related work

Using data from the most comprehensive singular clinical data repository at the LDS

Hospital, Salt Lake City, Utah, USA, the group of Morris [26] developed a rule-based

decision support system (DSS) for respiratory care in acute respiratory distress syn-

drome. Time is handled by introducing time points into the rules where a certain parame-

ter value needs to be obtained. The development of this highly specialized system

required more than 25 person years. It is a propositional rule base without a mechanism

for consistency checking or matching rules and data. All validation efforts started only

after the knowledge base had been completed.

Temporal reasoning is taken seriously in other developments [4, 7, 21, 28]. The Stanford

approach uses an explicit time ontology for low-frequency data [28]. This approach is

not feasable for our application. The VIE-VENT system is comparable with our

approach in that it combines numerical data and a knowledge base [21]. Qualitative

abstractions are derived for deviations of measurements from the target range. Time

intervals refer to the validity of a measurement. The detection of outliers (data valida-

tion) is handled by a trend-based component. The validated measurements are used by

the therapy planning component which aims at pushing vital signs into the value ranges

of a stable state. Similar to our approach, therapy planning is divided into state-action

rules (therapeutic actions based on status interpretation)  and verifying the effectiveness

of interventions. However, the system was developed without using actual patient data.

Hence, the observation that parameter values oscillate considerably was made as late as

the first clinical experience. In contrast, this observation has motivated our phase space

procedure for abstracting from numerical time series.

Temporal correlations can also be included in trend templates, which are used by Haimo-
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witz and Kohane [7]. Trend templates consist of sets of low order polynomial regression

models describing qualitative characteristics. Pattern abstraction is done based on the fit

of these templates to the observed data. The major drawbacks of this method are the

demand for predefined expected behavior and absolute value treshholds. However, time

series in intensive care often show irregular behavior like patchy outliers, or outliers and

level changes occuring in short time lags. Such behavior is difficult to specify in advance.

Moreover, treshholds should be dynamically depending on the patient’s status in the past.

This has already been included in our approach, which does not need prespecified pat-

terns either. Altogether, statistical time series analysis seems to be the most sophisticated

method to model and investigate dynamical data since other approaches capture only

parts of the time dependent structure of the data.

Our goals of easing the development of guidelines and validating the knowledge early on

is shared by the two-step approach by Mani and coworkers [19]. They use machine

learning in order to first  characterize scores of  dementia with respect to six categories

(e.g., memory, orientation). These learning results are then used to learn the global clini-

cal dementia rating. After a two years effort an efficient and effective system was accom-

plished. While the goals are the same, the application characteristics and, hence, the

methods are completely different. The clinical rating is a classification task and the pati-

ent data is of qualitative nature, whereas our task is on-line monitoring and the patient

data are time series of numerical measurements.

10 Conclusions

We presented an approach towards integrating statistical and knowledge-based methods

for the development of decision support algorithms in critical care. This application

involves high dimensional time series data, demanding high quality decision support

under real time constraints. These properties make this case study a representative for a

large number of applications in medicine and engineering.

This paper gives the necessary steps for solving this task as a whole. We identified how

the application can be split up into manageable parts. We proposed an overall architec-

ture that integrates a number of tasks, organized both sequentially and in parallel. All

tasks are embedded in a single system, while selecting the most appropriate technique
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and representation including the difficult effort of selecting and constructing appropriate

features for each task individually.

The time series approach to data abstraction using phase space models was also validated

in an independent clinical study. Here it showed a pattern recognition similar as that of

an experienced intensivist [11]. The technical implementation proved highly efficient in

data abstraction providing input for applications requiring qualitative information from

time series.

The present hybrid system of statistical and machine learning methodologies is a typical

example of how to integrate statistical analysis and knowledge discovery methods, i.e.,

time series analysis and machine learning, using their strengths and reaching better

results than with each method alone.

The SVM was chosen for learning state-action rules due to its ability to handle multiple

features. For modeling medical knowledge in terms of action-effect rules we chose a

first-order logic representation using MOBAL. This allowed a compact representation of

medical knowledge with a small number of rules, fulfilling the real-world demand for a

knowledge base to be understandable by humans and accessible for expert validation.

Current work deals with the interactions of diverse medications. The rules combining

opposite effects of different drugs are not sufficient yet.

The validation issue has been treated with special care. Each process has been validated

in the standard way, i.e. tested on data not used for training. In addition, the results of

state-action rules were compared with the results of a human expert who classified the

same data. Moreover, recommended interventions of state-action rules are validated by

formalized medical knowledge. On the one hand, the effect of a recommended interven-

tion is compared with the effect of an actual intervention. Of course, this comparison can

only be made for past cases. In case of conflict, the expert inspects the particular cases.

This may lead to the generation of explicit additional knowledge. On the other hand, the

formalized effects of  interventions are applied to current cases and evaluated with

respect to the target ranges of vital signs.

Our new approach combines modeling of expert knowledge with data-driven methods.

This eases the task of building operational protocols. Moreover, the data-driven method

allows for an ongoing enhancement of the knowledge base on the basis of current prac-
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tice. The knowledge base is validated against existing patient data. This approach is

meant to be significantly more effective than the tedious, time-consuming, and costly

process of traditional  development of on-line operational decision support systems.
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