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Abstract

The aim of detecting outliers in a multivariate sample can be pursued in di�erent ways. We investigate

here the performance of several simultaneous multivariate outlier identi�cation rules based on robust

estimators of location and scale. It has been shown that the use of estimators with high �nite-sample

breakdown point in such procedures yields a good behaviour with respect to the prevention of breakdown

by the masking e�ect (Becker, Gather, 1999, J. Amer. Statist. Assoc. 94, 947-955). In this article, we

investigate by simulation, at which distance from the center of an underlying model distribution outliers

can be placed until certain simultaneous identi�cation rules will detect them as outliers. We consider

identi�cation procedures based on the minimum volume ellipsoid, the minimum covariance determinant,

and S-estimators.

Keywords: Outliers; high breakdown point procedures; MVE; MCD; robustness; S-estimators

1 Introduction

The use of robust estimators for detecting outliers in multivariate data simultaneously has

been proposed by several authors (e.g. Simono�, 1987). Becker and Gather (1999) give a
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formal justi�cation for this, showing that using robust estimators with high �nite-sample

breakdown point leads to better prevention from the masking e�ect than using classical

estimators in such simultaneous outlier identi�cation rules. Several multivariate location

and scale estimators can therefore be taken into account, for example the MVE- and MCD-

estimators and reweighted versions of them (Rousseeuw, 1985, Lopuha�a, Rousseeuw, 1991,

Croux, Haesbroeck, 2000), constrained M-estimators (Kent, Tyler, 1996), various types

of S-estimators (Davies, 1987, Maronna, Yohai, 1995, Rocke, 1996), or the Stahel-Donoho

estimators (Stahel, 1981, Donoho, 1982, Tyler, 1994, Maronna, Yohai, 1995, Gather,

Hilker, 1997).

We restrict ourselves to the case of the p-variate normal N(�;�), � 2 IRp, S 2 IRp�p

positive de�nite (p.d.), as model distribution. Following the idea of Davies and Gather

(1993), we then consider the aim of detecting all �N outliers in a sample of size N , i.e.

all observations lying in the �N outlier region out(�N ; �;�) of N(�;�):

out(�N ; �;�) = fx 2 IRp : ( x� �)T��1(x� �) > �2
p;1��N

g;

where �N = 1� (1� �)1=N for some given value of � 2 (0; 1), such that

PN(�;�)(no observation in a sample of size N lies in out(�N ; �;�)) = 1� �:

Taking usual choices for � (� = 0 :05;0:1), this means that under the model distribution

there is only a small probability for any observation of a sample of size N to lie in the

outlier region, re
ecting the intuitive idea that an outlier is an \unexpected" and far out

observation.

Let now (m;S) be a pair of a�ne equivariant estimators for (�;�). To �nd all �N outliers
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in a given sample
�
xN = ( x1; : : : ; xN ) of size N , xi 2 IRp, we can use (m;S) to estimate

out(�N ; �;�) by a corresponding region OR(
�
xN ; �N), called outlier identi�er,

OR(
�
xN ; �N) = fx 2 IRp : ( x�m)TS�1(x�m) � c(p;N; �N)g;

where c(p;N; �N) is a suitably chosen constant, calculated according to some normalizing

condition, for example

PN(�;�)(no �N outliers identi�ed in a sample of size N) = 1� � (1.1)

with �N = 1� (1��)1=N as before. This is equivalent to keeping a level � when applying

consecutive testing methods to identify outliers (Davies, Gather, 1993). An observation

xi lying in OR(
�
xN ; �N) is then detected as an outlier. The use of a�ne equivariant

estimators guarantees that the identi�cation rule is a�ne equivariant, too. For more

details on the concept of �N outliers see Davies, Gather (1993), Gather, Becker (1997),

or Becker, Gather (1999).

The simultaneous outlier identi�cation procedure described above corresponds to calcu-

lating the Mahalanobis-type distances d2i = ( xi � m)TS�1(xi � m), i = 1 ; : : : ; N, with

respect to (m;S) and identifying an observation with large d2i (� c(p;N; �N)) as an outlier

(see e.g. Barnett, Lewis, 1994, pp. 306�., Rousseeuw, van Zomeren, 1990, for procedures

of this kind).

In this paper, we compare outlier identi�ers OR based on some of the above mentioned

robust estimators with respect to a certain performance criterion, namely the size of the

largest nonidenti�able outlier. The question is how \far away" an observation can be

while still not being detected as an outlier.
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Our paper is organized as follows. In Section 2, we present the robust estimators m and

S used in the identi�cation rules. In Section 3, we discuss which positions of outliers

represent a worst case situation for these procedures and introduce the notion of the

\largest nonidenti�able outlier". We then give the results of a simulation study, comparing

the behaviour of the identi�ers with respect to this criterion.

2 Outlier Identi�ers Based on Robust Estimators

We will discuss the behaviour of three multivariate outlier identi�ers based on the following

robust estimators of location and scatter: the MVE- and MCD-estimators of Rousseeuw

(1985), and a pair (m;S) of S-estimators using Tukey's biweight function according to

Rocke (1996). These estimators are of similar type: they minimize the volume of some

ellipsoid. We focus on this class of estimators to investigate whether there is a \best"

choice among them. Moreover, there exist feasible algorithms to calculate them in mod-

erate computation time (Rocke, 1996, Rousseeuw and van Driessen, 1999, Rousseeuw and

van Zomeren, 1990). In further investigations, it will be interesting to compare the best

identi�er found here with an identi�er based on robust projection pursuit estimators like

the Stahel-Donoho estimators (Donoho, 1981, Maronna and Yohai, 1995, Stahel, 1982,

Tyler, 1994).

All estimators considered are chosen such that they have the maximum possible �nite-

sample breakdown point in the sense of Donoho and Huber (1983). We use the de�nition

of the �nite-sample breakdown point of an estimator as the smallest proportion of the

data that needs to be replaced by arbitrary points to cause the breakdown of the estimate.
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For a location estimator, breakdown occurs if the estimate becomes arbitrarily large in

the sense of an in�nite euclidean distance. In the case of a multivariate scatter estimate,

we speak of breakdown if either the smallest eigenvalue of the estimated matrix becomes

arbitrarily close to zero or if its largest eigenvalue grows beyond all bounds. See Donoho,

Huber (1983) and Lopuha�a, Rousseeuw (1991) for formal de�nitions. The maximum

possible �nite-sample breakdown point for pairs (m;S) of a�ne equivariant estimators of

location and covariance is [(N � p+ 1) =2]=N (Davies, 1987), [x] denoting the integer part

of x 2 IR. Using such estimators for outlier detection also means that the resulting outlier

identi�ers give the best possible protection against the masking e�ect (Becker, Gather,

1999). Roughly spoken, masking occurs if the detection of outlying observations is made

impossible by the presence of some extreme outliers in the data. In this sense, each of the

estimators considered here can be seen as an optimal choice to be used in a simultaneous

outlier identi�cation procedure.

The Identi�ers ORMVE and ORMCD

The multivariate outlier identi�er based on the MVE-estimators is de�ned as

ORMVE := fx 2 IRp : ( x�mMVE)
TS�1MVE(x�mMVE) � cMVE(p;N; �N)g;

where mMVE is the center of the minimum volume ellipsoid (MVE) covering at least

h = [( N+ p+ 1) =2] of the data
�
xN , and SMVE is the sample covariance matrix of the

data points lying within this MVE, multiplied by a constant factor to obtain Fisher

consistency for the multivariate normal distribution. For the identi�er ORMCD, we use

mMCD and SMCD, the mean and (normalized) sample covariance of a certain subset of
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the data. This subset consists of those h points of
�
xN yielding the smallest determinant

of the covariance matrix (minimum covariance determinant, MCD). As for SMVE, we

have to multiply the covariance matrix with a constant to obtain the consistent estimator

SMCD (Rousseeuw, van Driessen, 1999). The choice of h guarantees that both pairs of

estimators have maximum breakdown points (Davies, 1987, Lopuha�a, Rousseeuw, 1991).

Table 1. Normalizing constants for � = 0 :1 compared to the respective�2 quantiles

N p �2
p;1��N

cMVE cMCD cBW

20 2 10.49746 19.14222 85.58786 21.35944

20 3 12.73173 23.47072 167.61310 26.87044

20 4 14.74769 33.72110 388.84680 33.17018

50 2 12.32689 17.54896 28.51695 16.93195

50 3 14.68664 20.61580 41.83594 19.78682

50 4 16.80930 24.65417 64.18462 23.14061

The constants cMVE and cMCD are calculated according to the normalizing condition (1.1)

by simulation using the algorithms of Rousseeuw and van Driessen (1999) and Rousseeuw

and van Zomeren (1990), as implemented in the statistical package S-Plus (version 4.5).

In work on the identi�cation of outliers, these normalizing constants are often chosen to be

quantiles of the �2
p-distribution, using the asymptotics of the Mahalanobis-type distances

(x �m)TS�1(x�m). We do not follow this approach, because the approximation turns

out to be rather bad for the cases considered here. In our simulation study, we will look
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at samples of size N = 20 ;50 in dimension p = 2 ;3; 4. Using the �2 approximation would

mean to take c(p;N; �N) = �2
p;1��N

with �N = 1� (1� �)1=N as before. In Table 1, we

give the values of �2
p;1��N

compared to the values of c(p;N; �N) for ORMVE and ORMCD

calculated from 10000 observations. It is obvious that the �2 approximation is not appro-

priate here.

The Identi�er ORBW

We discuss a further outlier identi�er, ORBW, which is based on S-estimators that

are constructed using Tukey's biweight function (BW; Beaton, Tukey, 1974). The pair

(mBW; SBW) of estimators is found by solving the following general minimization problem

(Lopuha�a, 1989):

minS 2PDS(p) det(S);

under the restriction

1=N
PN

i=1 �
�q

(X i �m)TS�1(X i �m)
�
= b0;

where we choose � to be the special function �BW : IR+ 7! IR with

�BW(d) =

8>>>>><
>>>>>:

d2=2� d4=(2c20) + d6=(6c40) ; 0 � d � c0;

c20=6 ; d > c0:

The derivative of �BW is known as Tukey's biweight function; PDS(p) denotes the set

of positive de�nite symmetric p � p matrices. The constants b0 and c0 are determined

such that mBW and SBW possess maximum breakdown points. That means, c0 solves

E(�BW(D)) = ([(N � p+ 1) =2]=N)�BW(c0), where D is a random variable with D2 � �2
p.

The constant b0 is calculated from E(�BW(D)) = b0, where the expectation is taken with
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respect to the multivariate normal. In Rocke (1996), an iteration scheme is given to obtain

mBW and SBW. As before, the normalizing constant cBW is calculated by simulation

according to (1.1). The results can also be found in Table 1. For all simulations we

choose a value of � = 0 :1.

Rocke (1996) discusses the behaviour of the biweight S-estimators. He �nds that especially

in higher dimensions the in
uence of large outliers on such estimators can be rather strong.

For this reason he develops a modi�cation �TW of �BW called translated biweight. We

will concentrate on samples in moderate dimension here, thus we will not investigate the

estimators resulting from �TW in the following. Trials with some selected simulation

constellations show that the respective identi�er ORTW indeed cannot compete with the

other three identi�cation procedures in our case. The case of higher dimensions is still

under research and will be treated elsewhere.

3 The Largest Nonidenti�able Outlier

To investigate the performance of the identi�cation procedures de�ned above, without

loss of generality we set � = 0 and � = I because of the a�ne equivariance of all

estimators considered here. Thus, we can look at the size of an observation (with respect

to N(0; I)) as its euclidean distance from the origin, and we can ask which size an outlier

may have, while still not being detected by the above outlier identi�ers. We assume that

the proportion of outliers in the data does not exceed the �nite-sample breakdown point

of the estimators used in the identi�ers. This means that the number k of outliers in the

data is smaller than [(N � p+ 1) =2].
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For the estimators considered here, the worst-case situation is naturally given when con-

centrating all outliers at one point and placing them in a certain distance from the origin.

This leads to the idea of taking the size of the largest nonidenti�able outlier as an inter-

esting worst case performance criterion of an outlier identi�er. Let
�
xN = ( x1; : : : ; xN ) be a

sample of size N from N(0; I),
�
x0k = ( y

1
; : : : ; y

k
) with y

i
2 out(�N ; 0; I) for some suitable

�N . Replace k of the observations of
�
xN by

�
x0k, yielding �

xN;k = ( xi1 ; : : : ; xin; y1; : : : ; yk),

where n = N � k. De�ne the size of the largest nonidenti�able outlier as

sup
�
x0

k
2out(�N ;0;I)

fkyk : y 2
�
x0k and (y �m(

�
xN;k))

TS(
�
xN;k)

�1(y �m(
�
xN;k)) < c (p;N; �N)g:

From the above considerations, for the identi�ers investigated here, it su�ces to choose

�
x0k = ( y; : : : ; y), thus the size of the largest nonidenti�able outlier is de�ned as

sup
y2out(�N ;0;I)

fkyk : ( y�m(
�
xN;k))

TS(
�
xN;k)

�1(y �m(
�
xN;k)) < c (p;N; �N)g: (3.1)

Theoretical results for the �nite-sample performance of the estimators used in the iden-

ti�cation rules investigated here are barely known. Available results mainly concern the

�nite-sample breakdown points of the estimators (e.g. Rousseeuw, 1985) and the masking

breakdown points of the outlier identi�ers (Becker and Gather, 1999). Simulations are

needed to supplement these �ndings, to get an impression of the behavior of the rules in

�nite samples. Thus, we calculated the largest nonidenti�able outliers for the three outlier

identi�cation rules introduced above for samples of size N = 20 ;50 and several values of

k in a simulation study. For N = 20, we considered the cases k = 1 ; : : : ;7, for N = 50, we

took k = 1(2)21. In each case, we generated samples
�
xN;k according to the scheme given

above and without loss of generality took y = (y1; 0; : : : ; 0)
T . We calculated the size of the
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largest nonidenti�able outlier according to (3.1) for an amount � = k=N of outliers and

took the mean size from 1000 simulation runs each. The simulated sizes turn out to be

relatively stable, without \outliers" occurring in the simulated values themselves. Means

and medians of the simulated sizes of the largest nonidenti�able outliers are close together

in almost all of the considered constellations. Thus, using the median instead of the mean

size leads to the same conclusions. The only case where there is a remarkable di�erence

between mean and median size is for ORMCD when N = 50, p = 4, k = 21. There, the

mean of the simulated values equals 3185:10, whereas the median value is 2741:17. But

this does not change the overall result of ORMCD being the worst of the three identi�ers

in this case, it only shows that this situation is practically equivalent to a breakdown as

is also discussed below. The results for the three identi�ers are shown in an overview in

Figure 1 and in a magni�ed version showing more details in Figure 2.

Two main conclusions can be drawn from these results. First, we see that none of the

investigated rules allows arbitrarily large outliers to remain undetected, but it still can

happen that very large observations are not identi�ed as outliers. To get an impression,

take the case ofN = 50, p = 2, k = 5 for the identi�er ORMVE which yields the best result

for that constellation (see Figure 2). The mean size of the largest nonindenti�able outlier

in this case is 4:17. This corresponds to the �ve points being �N outliers for a value

of � � 0:0083. Of course, the situation becomes worse with an increasing proportion

� of outliers in the sample, the results being worst if � is close to the �nite-sample

breakdown point of the estimators and, therefore, to the masking breakdown point of the

identi�cation procedure (see Becker, Gather, 1999). Even if � remains smaller than the
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�nite-sample breakdown point, we see e.g. that the case of 7 outliers within 20 observations

in a four-dimensional space is practically equivalent to a breakdown of the identi�cation

procedure. It is also worth noting that with increasing dimension the mean size of the

largest nonidenti�able outlier increases drastically.

The second conclusion refers to the behaviour of the di�erent outlier identi�cation rules.

From Figure 1, we can see that although none of the rules investigated here performs

uniformly optimal, the identi�er based on the biweight S-estimators performs quite well

in most of the cases. For a small amount of outliers, ORBW generally behaves best

(see Figure 2); for medium numbers of outliers, ORMCD should be slightly preferred. In

smaller samples, ORMVE yields results similar to ORBW, but for larger samples, again

ORBW performs better. This is also the case, if the dimension of the data is relatively

large with respect to the sample size (N = 20 ; p= 4; N = 50 ; p= 4). Altogether, ORBW

leads to the best results in the majority of the cases. Thus, our conclusion is that, for

simultaneous identi�cation of outliers in multivariate samples of moderate dimension, the

procedure based on the biweight S-estimators should be favorized.
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Fig. 1. Mean sizes of the largest nonidenti�able outliers
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Fig. 2. Mean sizes of the largest nonidenti�able outliers: details
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