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1 Introduction

When modelling multivariate data, we often have some feeling about how outlier prone the

underlying distribution should be. That is, there are phenomena where some outliers in the

data will be a rule and are to be expected, rather than they are considered as very rare

exceptions. In such situations we would not want of course to choose e.g. a multivariate

normal distribution with very light tails as a model of the data-generating mechanism.

There are other multivariate distributions, di�erent from the normal where even such

a vague knowledge about their tendency to produce outliers is not known. Therefore, a

classi�cation of multivariate distributions w.r.t. their outlier-resistance and proneness as

available in the univariate case ([Green 76], [Gather, Rauhut 90], [Schuster 84]) would be

useful.

This paper gives a formal framework and de�nitions of the terms outlier-proneness and

outlier-resistance of multivariate distributions based on an isobar - surfaces approach to

multivariate extremes [Delcroix, Jacob 91].

More exactly, the limit behaviour of the di�erence of the two largest multivariate \ex-

tremes" Xn;n � Xn;n�1 is used -in the sense of [Green 76]- to de�ne the outlier-proneness

of the underlying distribution. Having to decide then, if some class of multivariate dis-

tribution functions is outlier-prone, we need a characterization, directly in terms of the

distribution function, too. This paper gives such equivalence theorems which allow to check

for outlier-proneness or outlier-resistance of a distribution in many di�erent ways.

As mentioned, we choose a concept of ordering multivariate data based on the isobar-

surfaces of the underlying distribution. Though this is a natural way of ordering multivariate

data, in contexts with just a given data set, it cannot be applied, when the data generating

distribution is not completely known. This is usually a de�ciency but in our situation, where

we want to check if a given distribution at hand is suitable for modelling a data structure,

we are able to use this natural notion of ordering in terms of isobar-extremes, since the

distribution is known then.
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Also, as in the univariate case, this new notion of outlier-proneness via isobar-extremes

is strongly related to weak stability of the extremes. Our approach di�ers from the one

by [Mathar 85] who de�nes outlier-resistance via the limit behaviour of the distance of

the upper extremes of the real valued norms of the sample points as ordering principle.

His approach therefore yields a characterization of multivariate outlier-proneness via the

minimum of the distribution function of the marginals, whereas our de�nition leads to

characterizations depending on the behaviour of the conditional distribution functions given

the angles. Hence, we take into account the complete shape of the multivariate distribution.

This paper is organized as follows. In section 2 we start with de�ning weak stability

of multivariate extremes by the isobar surface ordering. In Section 3 we de�ne outlier-

resistance and outlier-proneness of multivariate distributions, we relate these properties to

weak stability of the extremes and characterize outlier-resistance by the tail behaviour of

the conditional radial distributions. Section 4 gives a generalization and examples.

2 Weak stability of multivariate extremes

We �rst recall the de�nition of the largest value of a multivariate sample, as given in

[Delcroix, Jacob 91]. The motivation was to describe the asymptotic position of a multi-

variate sample, [Barme-Delcroix 93], without using classical convexity notions, [Ge�roy 61].

We consider random variables with values in the Euclidean space Rk.

For every x in Rk n f 0gwe de�ne a pair (kxk; x
kxk) = ( r; �) in R+� � Sk�1, where k � k

is the Euclidean norm and R+� is the set of the strictly positive real numbers. The unit

sphere Sk�1 in Rk is endowed with the induced topology of Rk.

For each random variable (r.v. for short) X = ( R;�) in Rk with radius R and angle �,

we assume that the distribution of �, and for all � in Sk�1, the distribution of R given � = �

respectively, has a continuous density. F� denotes the continuous and one-to-one conditional

distribution function of R given � = �. This means in particular that we suppose F�(r) < 1

for all r > 0 and for all �.
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For each 0 < u < 1, we call the mapping � ; F�1
� (u) a u-level isobar of the distribution

of R given � = � . We suppose that this mapping is continuous and strictly positive. The

surface given by �u(�) = F�1
� (u), considered as a function of �, is also called a u-isobar for

all 0 < u < 1.

Let x1 = ( r1; �1); : : : ; xn = ( rn; �n) be observations of an i.i.d. sample X1; : : : ; Xn from

the distribution of X = ( R;�).

Let uj = F�j (rj) for 1 � j � n, u�n = max
1�j�n

uj, and de�ne x�n = ( r�n; �
�
n) by

F��n
(r�n) = u�n:

Since F� is continuous and strictly increasing for all �, like this we have de�ned almost surely

unique r.v.'s U1; : : : ; Un as well as an almost surely unique r.v. X�
n = ( R�n;�

�
n) which is an

element of fX1; : : : ; Xng for which

F��n(R
�
n) = max

1�j�n
Uj:

We call X�
n the isobar-maximum of X1; : : : ; Xn.

Obviously, to �nd this isobar-maximum of a multivariate sample, the underlying dis-

tribution has to be known. However, this kind of extreme value, and more generally, the

ordering of the sample according to the isobars, does not give up any information the sample

carries, like the ordering by norms, e.g. It is possible to give an estimation of the isobars

by regression methods for particular cases , [Jacob, Suquet 97] . One can also estimate the

origin by using the barycentre of the sample points. However for many situations this origin

is given in a natural way.

It has been shown in [Delcroix, Jacob 91] that the conditional distribution of R�
n given

��
n is F

n
� , hence the distributions of (R�

n;�
�
n) and ( R;�) have the same set of isobars which

led to the following de�nition.

De�nition 1 For a sequence (En)n of multivariate r.v.'s, the sequence (X�
n)n = (( R�n;�

�
n))n

of the isobar-maxima is called stable in probability if and only if there is a sequence (gn)n of
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isobars satisfying

(1) R�
n � gn(�

�
n)

P
���! 0 :

Following [Ge�roy 58] it is possible to choose gn(�) = F�1
� (1� 1

n
).

It is convenient to �x a point x1 = (1 ; �1), �1 in S
k�1. For every point x = ( r; �1) , there

is a unique surface g(�; r), � in Sk�1, containing x, which has a level denoted by u(r) and

which is given by

(2) g(�; r) = �u(r)(�) = F�
�1(F�1(r)):

Note that g(�1; r) = r. Moreover the mapping r; u(r) from R�
+ into R�

+ is increasing and

one-to-one.

The following conditions (H) and (K) will be needed.

(H) There exist 0 < � � � <1 such that for all � in Sk�1 and for all r > 0 :

� �
@g

@r
(�; r) � �:

(K) For all " > 0, there exists � > 0 such that for all r > 0 :

sup
�

fg(�; r + �)� g(�; r � �)g < " :

Clearly, (H) implies (K).

Remark 1 Condition (H) entails a regularity property of the isobars following from the

mean value theorem :

For all �0 > 0 there exists � > 0 and for all r > 0, there exist two isobars h�0(�; r) and

~h�0(�; r) such that for all �,

g(�; r)� �0 < ~h�0(�; r) < g(�; r)� � < g(�; r) + � < h�0(�; r) < g(�; r) + �0:

Note that � does not depend on r.
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Remark 2 For a bivariate Gaussian sample with covariance matrix

0
B@ �2 0

0 � 2

1
CA, we have

g(�; r) = r�(�) with �(�) = 1p
2�
( cos

2�
2�2

+ sin2�
2�2

)
�1

2 and the isobars are the density contours.

Note that condition (H) is satis�ed. For � = � = 1 the distribution is spherically symmetric

and the isobars are circles. Hence in this particular case the ordering of the sample is the

ordering of the norms of the sample points.

The next theorem gives conditions for stability similar to those of [Ge�roy 58] in the

univariate case (see [Delcroix, Jacob 91] for a proof). For this purpose we de�ne W �
n by

F�1(W
�
n) = F��n(R

�
n) for X

�
n = ( R�n;�

�
n), i.e. W

�
n = F�1

�1
(F��n(R

�
n)) is the intersection of the

half axis containing x1 = (1 ; �1) and the isobar containing X�
n.

Theorem 1 a) Under condition (K) the sequence (X�
n)n is stable in probability if (W �

n)n is

stable in probability .

b) Under condition (H) the sequence (W �
n)n is stable in probability if and only if (X�

n)n is

stable in probability .

c) Consider for some �xed integer � the sequence (Xn;n��+1)n, this being de�ned by ordering

the sample according to increasing levels by

Xn;1; � � � ; Xn;n��+1; � � � ; Xn;n = X�
n:

Let (H) be satis�ed. Then (X�
n)n is stable in probability if and only if (Xn;n��+1)n is stable

in probability.

For the proof of a) and b) see [Delcroix, Jacob 91], c) follows immediately from a) and

b) and the univariate result of [Ge�roy 58].

Possibilities to check for the weak stability of (X�
n)n on the basis of the distribution

function F�(r), r > 0, � in Sk�1, will be provided by the characterization results in Theorem

2 below.
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3 Multidimensional outlier-prone and outlier-resistant

distributions

We give an application of stability in probability of multivariate samples as de�ned in

the previous section to the notion of outlier-resistant and outlier-prone distributions. In

[Neyman, Scott 71] we �nd a de�nition which has been improved by Green, [Green 76].

The goal is to distinguish between two classes of distributions : distributions for which as

a rule there exist observations far apart from the main group of the data, and distributions

for which this phenomenon occurs with very small probability. So, Green called a univariate

distribution F absolutely outlier-resistant if for all " > 0 :

(3) lim
n!+1P (Xn;n �Xn;n�1 > " ) = 0

where Xn;1 � Xn;2 � � � � � Xn;n are the usual univariate order statistics of X1; � � � ; Xn,

distributed identically according to F .

On the other hand, a distribution F is called absolutely outlier-prone if there exist " > 0,

� > 0 and an integer n0 such that for n � n0 :

(4) P (Xn;n �Xn;n�1 > " )� �:

Remark 3 The AOR-and AOP-property depend only on the tail-behaviour of F , e.g. AOR

is equivalent to lim
x!+1

1�F (x)
1�F (x�h) = 0 for all h > 0 . Moreover, the behaviour of many types of

univariate distributions is investigated in [Gather 79] yielding the following special results:

the Gumbel distribution with F (x) = exp(�e�x) for x 2 R is not AOR but is AOP.

Also the Frechet distribution with F (x) = exp(�x��)1fx>0g is not AOR but is AOP for all

� > 0.

Distribution functions of the type F (x) = (1� cexp(�bx�))1fx>0gwith constants c, b, � > 0,

are AOR as long as � > 1.

Other de�nitions of outlier proneness of univariate distributions have been given for

example by [O'Hagan 79], and [Goldstein 82] in a Bayesian framework. [Gather, Rauhut 90]
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discuss these di�erent notions for univariate data. Here, we will extend the notion of outlier-

proneness given by Green to multidimensional samples by using isobars.

Recall that for all �, F� denotes the distribution function of R given � = � and that

G� = 1 � F�. Note also that for each sample point Xi = ( Ri;�i), i = 1 ;� � � ; n , there

exists almost surely a unique isobar containing Xi. Let gn;n denote the isobar containing

X�
n = Xn;n and gn;n�1 the isobar containing Xn;n�1. Thus for all � in Sk�1, gn;n and gn;n�1

are real valued r.v's. Since W �
n was de�ned as the intersection of the half axis containing

(1; �1) and the isobar containing X�
n, we now have W �

n = gn;n(�1). If we de�ne analogously

for all 1 � i � n, Wi = F�1
�1(F�i

(Ri)), we get Wn;1; � � � ;Wn;n = W �
n as the usual order

statistics of the real valued sample W1; � � � ;Wn distributed identically according to F�1 .

3.1 Multivariate AOR distributions

De�nition 2 The distribution of the multivariate r.v. (R;�) is absolutely outlier-resistant

(AOR), if and only if for all � :

(5) gn;n(�)� gn;n�1(�)
P

���! 0:

For a real sample it has been shown in [Ge�roy 58] and [Gnedenko 43], that (Xn;n)n is

stable in probability if and only if Xn;n � Xn;n�1
P

���! 0. The following theorem gives an

analogous result and as mentioned in Remark 3 a characterization of weak stability by the

tail behaviour of the underlying distribution.

Let condition (H) always be satis�ed in the following.

Theorem 2 All the following statements are equivalent :

(i) The distribution of (R;�) is AOR.

(ii) (X�
n)n is stable in probability.

(iii) For all 1 � � � n, (Xn;n��+1)n is stable in probability.

(iv) There exists �1 such that lim
x!+1

G�1
(x)

G�1
(x�h) = 0 , for allh > 0.

(v) For all �, lim
x!+1

G�(x)
G�(x�h) = 0 , for allh > 0.
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(vi) W �
n �Wn;n�1

P
���! 0.

(vii) (W �
n)n is stable in probability.

(viii) For all �, the distribution F� is AOR.

(ix) There exists �1 such that the distribution F�1 is AOR..

Proof : Theorem 1c) shows that (ii) and (iii) are equivalent. Gnedenko's Theorem and

Theorem 1b) show that (ii), (iv), (v) and (vii) are equivalent. Moreover, from [Ge�roy 58],

(vii) and (vi) are equivalent. Now, (i) involves (ii) : if for all �, gn;n(�) � gn;n�1(�)
P

���! 0

we get gn;n(�1) � gn;n�1(�1)
P

���! 0, that is W �
n � Wn;n�1

P
���! 0 ; and since (vi) and

(vii) are equivalent, (W �
n)n is stable in probability and from Theorem 1b) (X�

n)n is stable in

probability.

Conversely, if (X�
n)n is stable in probability, (W �

n)n is also stable and

W �
n �Wn;n�1

P
���! 0. Then gn;n(�1)� gn;n�1(�1)

P
���! 0 ; but �1 being arbitrary, we obtain

(i).

Clearly, these properties are equivalent to (viii) and (ix).

For univariate samples, it is possible, following [Gather, Rauhut 90], to give other char-

acterisations of AOR distributions based on the mean residual life function (mrlf), which is

de�ned for a real r.v. X by

e(x) = E(X � x j X > x ):

For i = 1 ;� � � ; n� 1, and for x > 0, y > 0 and n > 2, let

(6) Mi;n(x; y; �) = Pfgn;i+1(�)� gn;i(�) > y j gn;i(�) = x)g

For �xed, � = �1, Mi;n(x; y; �) can be written as

(7) Mi;n(x; y; �1) = PfWn;i+1 �Wn;i > y jWn;i = xg:

From [Gather, Rauhut 90] and Theorem 2 we obtain the following result.

Theorem 3 The distribution of (R;�) is AOR if and only if there exists �1 such that for
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all y > 0 :

(8) lim
x!+1Mi;n(x; y; �1) = 0 ;

for some 1 � i � n .

Proof : From Theorem 2, the distribution of (R;�) is AOR if and only if there exists

�1 such that F�1 is AOR. But, from [Gather, Rauhut 90], F�1 is AOR if and only if (8) is

valid. To show this we observe that the order statisticsWn;1; � � � ;Wn;n form a Markov chain,

[Arnold, Becker, Gather, Zahedi 84], [David 81] and that

Mi;n(x; y; �1) = PfWn;i+1 > x+ y jWn;i = xg =

 
1� F�1(x+ y)

1� F�1(x)

!n�i
:

Assertion (iv) of the previous theorem completes the proof.

In De�nition 2, the sample size increases ; but in Theorem 3, the sample size is �xed which

makes it intuitively easier to relate the de�nition of outlier resistance of the distribution to

the non-occurence of outliers in the sample : the larger Xn;i gets, the smaller the probability

for the di�erence Xn;i+1 � Xn;i to be larger than an arbitrary positive number. The next

theorem describes this fact in average.

For all � in Sk�1 and for all i = 1 ;� � � ; n , consider

(9) ~Mi;n(x; �) = E(gn;i+1(�)� gn;i(�) j gn;i(�) = x):

For �xed � = �1, ~Mi;n(x; �) can be written as

~Mi;n(x; �1) = E(Wn;i+1 �Wn;i jWn;i = x)

Theorem 4 Suppose that for all �,
R
x dF� exists. Then, the distribution of (R;�) is AOR

if and only if there exists �1 such that for all n � 3 :

lim
x!+1

~Mn�1;n(x; �1) = 0 :

The proof is again only an application of Theorem 1b) and of [Gather, Rauhut 90].
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3.2 AOP distributions

De�nition 3 The distribution of (R;�) is called absolutely outlier-prone, (AOP), if and

only if for all � there exist " > 0, � > 0 and an integer n�, such that for all � and for all

n � n�:

(10) P (gn;n(�)� gn;n�1(�) > " )> �:

That is, for all �, the distribution F� is AOP.

Theorem 5 All the following statements are equivalent :

(i) The distribution of (R;�) is AOP.

(ii)For all �, there exist � > 0, � > 0 such that for all x

(11)
1� F�(x + �)

1� F�(x)
� �:

(iii) There exist �0, �0 > 0 and �0 > 0 such that for all x

(12)
1� F�0(x + �0)

1� F�0(x)
� �0:

(iv) There exists �0 such that F�0 is AOP.

Proof : From [Green 76] Theorem 3.3, we have that for �xed �, the univariate distribution

F� is AOP if and only if (11) is ful�lled. This proves that (i) and (ii) are equivalent.

Clearly, (ii) implies (iii).

To show that (iii) implies (ii) we consider �1 6= �0 ; for all r > 0. There exists an isobar

g(�; r), � in Sk�1, containing the point (r; �1) . Let u(r) denote the level of this isobar. Since

(H) is satis�ed (see Remark 1) there exist � > 0 and an isobar h�0(�; r) such that for all r

and for all �

g(�; r) + � < h�0(�; r) < g(�; r) + �0:
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Let u�0(r) denote the level of h�0(�; r). Since G�1 = 1� F�1 is decreasing,

G�1(r) = G�1(g(�1; r)) = 1� u(r) = G�0(g(�0; r)) ;

and

G�1(r + �) = G�1(g(�1; r) + �) > G�1(h�0(�1; r)) = 1� u�0(r):

Moreover,

1� u�0(r) = G�0(h�0(�0; r)) > G�0(g(�0; r) + �0);

and

G�0(g(�0; r) + �0)

G�0(g(�0; r))
<
G�1(r + �)

G�1(r)
:

Thus, if
G�0

(r+�0)

G�0
(r)

� �0 for all real x, then for all �1 6= �0, there exist

�1 = � > 0 and �1 = �0 > 0 such that for all r

G�1(r + �1)

G�1(r)
� �1 ;

and we obtain (ii) .

Clearly, (iv) is equivalent to the other statements.

Examples :

a) For a bivariate Gaussian sample such as in Remark 2, we have

F�(r) = 1 � exp(�r2�(�)) and following Theorem 2iv) we can conclude that this distri-

bution is AOR.

b) Suppose that F�(r) = 1 � cexp(�br�(�))1fr>0g with � a strictly positive continuous

function and b, c > 0 (Gumbel type distribution). It has been shown in [Delcroix, Jacob 91]

that neither (H) nor the regularity property of isobars from Remark 1 is satis�ed for this

distribution. But if inf
�
(�(�)) > 1, condition (K) is ful�lled for r large. Moreover, as in the

univariate case, from Theorem 1 a), (X�
n)n is stable and the distribution of (R;�) is AOR.

If � is constant and equal to 1, the distribution is AOP. And if there exists �0 such that

�(�0) < 1 then the distribution is neither AOP nor AOR.
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c) For the bivariate Morgenstern distribution with density

f(x; y) = e�(x+y)(1 + �(2e�x � 1)(2e�y � 1)) with �1 � � � 1 it is possible to write

down the distribution function F� explicitely:

F�(r) =
1

d(�)

(
(1 + �)

"
(1� e�(cos �+sin �)r)

(cos � + sin �)2
�
re�(cos �+sin �)r)

(cos � + sin �)

#

+ 4 �

"
1� e�2(cos �+sin �)r

4(cos � + sin �)2
�

re�2(cos �+sin �)r

2(cos � + sin �)

#

+ 2 �

"
1� e�(2 cos �+sin �)r

(2 cos � + sin �)2
�

re�(2 cos �+sin �)r

(2 cos � + sin �)

#

+ 2 �

"
1� e�(cos �+2 sin �)r

(cos � + 2 sin �)2
�

re�(cos �+2 sin �)r

(cos � + 2 sin �)

#)

where d(�) is a function of �. Hence F�(r) is of the type

1� Aexp(�ar)�Bexp(�br) � Cexp(�cr)�Dexp(�dr)

�A0rexp(�ar)� B0rexp(�br)� C 0rexp(�cr)�D0rexp(�dr)

with a = cos(�) + sin(�), b = 2 a,c = cos(�) + 2 sin(�), d = 2 cos(�) + sin(�) and A, B, C,

D, A', B', C', D' all depending only on � and �. We can then apply Theorem 5 iii) which

yields after some manipulations that the bivariate Morgenstern distribution is AOP.

The following corollary is also obvious from Theorem 5 as well as from using (6) (7) and

(9).

Corollary 1 a) The distribution of (R;�) is AOP if and only if there exists �0 such that

for all y > 0, there exist �0 and x0 such that

Mi;n(x; y; �0) � �0 ;

for all x � x0, for some 1 � i � n� 1.

b) Suppose that
R
xdF� exists for all � and that the distribution of (R;�) is AOP, then

there exist �0, �0 and x0, such that for x � x0 and for all n � 3

~Mn�1;n(x; �0) � �0:
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4 Generalization and examples

Of course, a lot of multidimensional distributions do not have stability properties. However

we can generalize the notion of weak stability, to '-stability, see e.g. [Delcroix, Jacob 91],

[Gather, Rauhut 90], [Ge�roy 58], [Gnedenko 43], [Green 76], [Resnick 87],

[Tomkins, Wang 92]. For a positive, increasing, concave, one-to-one C1-function de�ned

on R+, we consider the set of points (('(R1);�1) � � � ('(Rn);�n)) instead of the initial

sample. Then, for a suitable function ',we obtain stability properties for many usual mul-

tivariate distributions (exponential distributions, Cauchy distributions..). Having de�ned

'-stability [Delcroix, Jacob 91], we can also de�ne multidimensional '-outlier-resistant or

'-outlier-prone distributions. It su�ces to consider the distribution of ('(R);�) instead of

the distribution of (R;�). For example, if the distribution of (R;�) is AOR and if ' is a

positive, increasing, concave, one-to-one C1-function de�ned over R+, then the distribution

of ('(R);�) is also AOR. When '(x) = max(0; Log x), we come to the notions of relatively

outlier-resistant or relatively outlier-prone distributions. In this case, '-outlier-resistant and

'-outlier-prone are denoted by ROR and ROP as they are given in [Green 76] for univariate

distributions.

Examples :

a) Exponentional-type distributions with

F�(r) = (1� cexp(�b(�)r))1fr>0g ;

c > 0 and b being a strictly positive and continuous function, are ROR and AOP (see

example 1b in section 3).

b) Cauchy distributions with conditional density

f�(r) =
2

�

�(�)

r2 + �(�)2
1fr>0g ;

� being a strictly positive, and continuous function, are ROP, but are '-OR for '(x) =

LogLog x.

14



c) If 0 < m � 1 and

F�(r) = (1� exp(��(�)rm))1fr>0g ;

the distribution of (R;�) is '-OR, with '(x) = x
1

2m .

(For each example the general form of ' is given in [Delcroix, Jacob 91].)
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