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Abstract

This paper illustrates the Support Vector Method for the classification problem with two and
more classes. In particular, the multi-class classification Support Vector Method of Weston
and Watkins (1998) is correctly formulated as a quadratic optimization problem.

Then, the method is applied to the problem of predicting business phases of the German
economy. The generated support vectors are interpreted, in particular with respect to whether
they are able to characterize business phase switches. Finally, the classification power of the
Support Vector Method and of Line&Briscriminant Analysis are compared.

The results are two-fold. On the one hand, after the analysis of the results of this study it
appears gquestionable that the Support Vector Method delivers an interpretable (dimension
independent) data reduction by identifying the support vectors. Indeed, the support vectors did
not appear to be sufficient to characterize the switches between the business phases.

On the other hand, the classification power of the Support Vector Method was distinctly
better than with LineabDiscriminant Analysis. Note however that the Support Vector Method
needs very much more computation time than Lid@&criminant Analysis.

KEYWORDS: support vector method, multi-class classification lindiacriminant analysis,
business cycle analysis
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1. Introduction

On the one hand, lately Support Vector Methods got more and more popular, especially in
computer scienceas an implementation &apnik’s (1979, 1995, 1998garning theory for

binary classification. On the other hand, statistics other classification techniques stay the
most popular, namely discrimination methods and decision tree methods. In a way, computer
science took the lead in a field occupied in history by statistics, because statistics did not
prove to be flexible enough to realize the power of Support Vector Methods. In particular,
Support Vector Methods deliver so-callstipport vectors which characterize the border
between the classes to be separated. In this respect, the Support Vector Method promises to
deliver (dimension independent) data reduction.

This paper illustrates th&upport Vector Method for the classification problem with 2
and more classesIn particular, the underlyingoptimization problem and its practical
solution are discussed.

Then, the method is applied tobaisiness cycle data sefThe generated support vectors are
interpreted, in particular with respect to whether they are able to characterize business phase
switches. Finally, the classification power of the Support Vector Method and of Linear
Discriminant Analysis are compared.

2. Binary classification

The Support Vector Method is well developed for the solutionbafary classification
problems (cp. Vapnik (1979, 1995, 1998)Cortes,Vapnik (1995)). In this case thdata set
has the form

(xi,y) O IR" x{-1,1}

wherex; is a vector of length n andy; 00 {-1,1} represents the class of the observatign
i=1,..,N.

The mainidea of the Support Vector Method is to constructhgperplane w'x+b to
separate the two classeso that the distance between thgperplane and the nearest
observation (the margin) is maximized. Note thatis the normal vector of thyperplane. If

the classes are not linearly separable, one simultaneously has to try to minimize the
classification error.

This leads to the following (mixedjonstrained optimization problent
1y 2 N
min (S |w]" +C3.8) (L)
1=

with respect tov and¢; constrained by



yiwx +b)=21-¢;,i=1,..,N,and &=0,i=1,...,N (2)

whereg; are so-called slack variables and C is a given parameter that controls the influence of
possiblymisclassified observations in the training set (Cprtes,Vapnik (1995)).

Indeed,é; > 0, if and only if observationi lies at the ‘wrong side’ of théyperplane parallel
to the hyperplanew’x + b which goes through the closest observasioof the class of
observation in that half space of thbyperplanen'x + b containing the most observations of
this clasqcp. Figure 1). All these ‘closest’ observations on the ‘right side’ ofliliperplane
plus those observations wigh> 0 together are callesupport vectors

Figure 1. 2-class separation
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This optimization problem is usually solved by using the methodagfrange multipliers and
the Kuhn-Tucker theorem. One can show that the correspomtliajquadratic problem is
of the form:

N 1NN
max [Z a; - -2 X aayy; ij with respect tax = (ay ,..., oy ) restricted by
i=1 i=1j=1
N
y,0; =0 and Osoi<C,i=1,..,N. ()
i=1

Then, one can show that tbptimal Lagrange multipliers a;* of the N first inequalities in
(2) determine the solutiow* of (1), (2) as follows:

W = %ai *yx, (cp.Vapnik(1979, 1995, 1998)).
i=1

For any vectox the decision functionof the classification problem is



f(x) = sign (%ai *y. X,'x +b *j where b* = —%W*'(x+ +x_), and
i=1
X+ andx- are anysupport vectorsof the classes +1 anell, respectively, with 0 <* < C.

The characterization of support vector is a;* > 0. Note that vectors; with a;* = 0 lie on
the ‘save’ side of the separatifyperplane but not closest to thgperplane. Vectors; with
C > aj*> 0 correspond to the closest observations on the ‘save’ side, and vectaith
ai* = C have the property; > 0, i.e. lie on the ‘wrong’ side of thRyperplane. Thus, only the
support vectors determine the decision function.

3. Multi-class classification

To solve multi-class classification problems typically methods based on combination of many
binary classification functions are used (i.e. the one-against-all methodSamlkopf,
Burges,Vapnik (1995)).

Weston and Watkingl998) propose an extension to the SVM method to solveldds
problems in one step. In this case the classes of the sample are representeédhy..., M}.

This approach is to construct a decision function that considers all classes at once.

The generalization of theninimization problem (1) is

1 M 2 N M
min 5 2 [Wal"+ 3. 2. & @)

mzy;
with respect tav and¢; and with constraints

Wy X tby 22-& L +wWp'X + by, &m20,i=1,...,N,mO{1,... MRy (cp. Figure 2).

The correspondingagrange function is

N M
L(w,bE.a.B) = 5 lewmll +C§n§1€.m—§n;1a.m(w X, =W, 'X; +b, =b, =2+,
mzy;

N M
ZZBl,mEi,m : (5)
1 m=1

Here,a,, =B, =0 & . =2arepseudo variablesand theconstraints
Ly Ly ’ Ly

Aim=20,Bim=20,&m=0,i=1,...,N,mO{1, ..., M\y; have to hold.



Figure 2: Multi-class separation

" Hs

/

]

Notethatthe planes K ;and H,correspond to the normakctorw,, m 0 {1,2,3}

Considering the derivatives of W(b.£,a,B) w.r.t. w,, b, andg&;,, nO{1, ..., M}, and using
the equations

M N M N M N
Zzai,m Ebyi :mezci,mAi = bmzai,mzzzai,mmgm’
m=1i=1 m=1 i=1 m=1 i=1 m=1=1
M M M
Zci.mcj,m =Gy, = Gy, 200 =0, Zci,maim = Uiy,
m=1 m=1 m=1
the Lagrange function (5) leads to tleial quadratic problem
M N 1NN M ,
max(ZmZZEGi,m + 5.21121(_ Ciy AA T A+a, A~ mizlai,maj,m)xi X;) (6)
with respect toa and with constraints
N N
dYa, = ciA <alm<C,on, 50,i=1,. .., N{lm M\y. (7)
i=1 i=1
A andc;, are definedas A, = %a- and C, = Lyi=
i A i =~ im i\ 0’ Y, £\



Note that Weston and Watkins (1998) mistakenly did not arrive at the dual quadratic problem
(6).

Solving the quadratic maximization problem (6) with respeciot@ for any vectorx the
decision functionis

N
fx) = arg max(z (Ci,mAi =, *)Xilx +b, *j : (8)
m i=1
| a;m* O (0; C]f the vectorx; is called asupport vector with regard to class m.

The matrix form of (6) is

M '
LIN-2 3 (a, —e,.) Xs(a, —e,,) )
m=1
M *
o, %y, =m _
with (ay), = m i Y and (e,); = 0 "
0 ,otherwise
The matrixXs =(x;'%;)i,ji ,j=1,N,.contains the scalar products of the observation

vectors. The term LIN denotes the linear term of (6).

4. Quadratic optimization

Expression (9) is not quite in thetandard matrix form of a quadratic optimization
problem

g@) =p’a+aXa=max! w.r.t.

o0=(011,...,0N1, o0y A1 M, -ory Anm)” With MM entries, (10

wherep is a coefficient vector an¥ is a coefficient matrix.
In the literature many solution methods for these problems are suggested (e.g. cp. Fletcher
(1981)).

One can show that one céith X according to the following rules:
1) The coefficients of the parametefs,, can be set to 0,=1,..,N. This means that the

corresponding rows and columnsXfare 0.

2) The coefficients of parameter produds,d;m (m#Yy;) on the main diagonal oX are
-x'x,i=1,.,N.

3) The coefficients of the mixed terne mldiq (M#q) are —0.5x,'x; for i=1,..,N and
m,qO{1, .., M}{ yi}.



4) The coefficients of the product:x;i’yj Loy, (i#))arex;'x; forij=1,.,N.
5) The coefficients of the products,, o, ~(i#]) are 0.5x'x; for ij=1,.,N and

mO{1, ..., M) v, vV}

6) The coefficients of the productsimldjm (i#])) are —0.5x;'x; for ij=1,..,N and
mO{1, .., M) v, vi}-

7) The coefficients of the productsimdjq (i#Z), m#q) are 0 forij=1,..,N and
m,qU {1, .., M} vi, vi}.

Example: 4-class problemwith N = 4 observéions. For simplicity let y=1, y» =2, y3=3,
and y=4. Thus @i1=Cp=C33=Css=1, otherwise ¢;=0 (j=1,..,4), and
011=022=033=044=0. Then, the quadratic term of equation (6) is given by the following
expression:

%[ﬂ(‘A1A1—0(1,%—0(1,%—0(1,%)DX1'X1 (i)
+((021A1 + a12A2 — 01 @23~ 01 @2,4)0X; X, (i)
+(a31A1+ d19A3 — 01 @32~ 01, @34)00X; " X3 (i)
+ (041A1+01,4A2 — 01 @la2— 01 @la3)0X, "X, (i)
+(a1A2 + 021A;1 — 02 613~ 02 @14)X," X, (i)

+ (AP — 0z 102 5- 02, 5)0X,'X, (i)
+(a32A2 + 02A3 — 02 @31~ 02 @34)[1X, X5 (i)
+ (04202 +02,4A2 — 02 Qa1 — Oz @la3)IX,'X, (i)

+.....]

where A =di2+ 013+ 014 A2 =021+ 023+ 024, Az=031+ 032+ A34,
As=041+ 042+ 043,

Rule 1 follows from constrains (7). The lines marked wijhafe related to the rules 2 and 3.
They contain the quadratic and the accompanying mixed coefficients. The rules 4 to 7 are
associated to the lines denoted by (ii).

The result of the seven rules for the given 4-class problem is the followymgmetric
coefficient matrix X corresponding to the coefficients vector

a= (Gll aZl a3l a4l alZ a22 G32 G42 al3 a23 G33 G43 al4 G24 G34 G44)'
Note that the abbreviatiom; := x;’x; is used.
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5. Example Data and Models

The data set consists of I8tylized facts" (cp. Lucas (1983)Jor the German business

cycle and 157 quarterly observations from 1955/4 to 1994/4 (price index base is 1991). The
stylized facts are real GNR)K), real private consumptiorgf), government deficit, wage and
salary earnergyf), net exports, money supply Mgr), real investment in equipmergrj, real
investment in constructiorg(), unit labor costdr), GNP price deflatordr), consumer price
index (@r), nominal short term interest rate and real long term interest rate. The abbreviation
‘gr’ stands for growth rates corresponding the last years corresponding quarter.

For the investigation of the data with respect to business cycle phases we use thé same
phase schemeasHeilemann andMinch(1996) where phases are called "upswing”, "upper
turning points", "downswing”, and "lower turning pointstn¢dell). Tablel shows the

number of observations of each phase.

This 4phasemodel can be considered as an extension @fplnase-modelcontaining only
the phases upswing and downswing. The turning points will be handled in two different ways:

» Formodel 2 the phases "lower turning points" and "upswing" are joined as well as "upper
turning points" and "downswing" since each turning point phase can be understood as the
beginning of an upswing or a downswing, respectively.

* For model 3 the separation of phases takes place in the middle of the upper and lower
turning phases. This leads to two classes called "long upswing" and "long downswing".
The term "long" is added to indicate that these phases are longer than the same classes in
the 4phase-model. Figure3 illustrates the phases.



Table 1. Number of observations in phasegincluding phase code)

modell model2 model3
4-phase 2-phase 2-phase
(joined phases) (separated
turning phases)
lower turning points 27 (4) 84 (+1)
upswing 59 (1) 86 (+1)
upper turning points 24 (2) 71 (-1)
downswing 47 (3) 73 (-1)
Figure 3: Phases
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model3 (top): phase codes: long downswing (7), long upswing (8)
model2 (middle): upper turning point + downswing (5), lower turning point + upswing (6)
modell (below): upswing (1), upper turning point (2pwinswing (3), lower turning point (4)

The idea is that the classification of phases depends on the stylized facts. Unclear is the
influence of time on the classification. Adding a variable TIME does not promise a gain of
information because time increases monotonously. Therefore time is modeled by using the
lag 1 phase Thus for each model we consider twobmodels without (a) and with (b) the lag

1 phase as an additional explanatory variable.

6. Results for the 2phase-models
The SVM includes a parameter C to be optimiz€de goal is to minimize the error rate.

Table 2 shows the error rates for both kinds of the modeland 3. The columnstr.set"
contain the error rates for the training set, the columa ¢tontain the rates computed with
crossvalidation (leave-one-out). Tlselection criterion for C is the crossvalidated error

rate because it is an unbiased estimator for the real misclassification rate (cp. Weiss and
Kulikowski (1991)). In Table2 the values for each model printed in bold have kinest
crossvalidated error rate Ca=5, Gp =100, Ga= 10, and G,=5. For some values of C

the SVM computes the same support vectors. In these cases, shapeg, ithe parameter C

has no influence on the classification.



Table 2: Error rates for models 2 and 3

model 2a model 2b model 3a model 3b
phase lag 1 phase lag 1
tr.set cVv tr.set cVv tr.set cVv tr.set cVv

1 0.128 | 0.172 | 0.064 | 0.134 | 0.108 | 0.185 | 0.057 | 0.089

5 0.108 | 0.159 | 0.051 | 0.102 | 0.115 | 0.178 | 0.038 | 0.089

10 0.102 | 0.166 | 0.032 | 0.102 | 0.115 | 0.1272 | 0.038 | 0.096

50 0.108 | 0.172 | 0.032 | 0.102 | 0.115 | 0.185 | 0.045 | 0.089

100 0.102 | 0.178 | 0.026 | 0.064 | 0.115 | 0.185 | 0.045 | 0.089

500 0.102 | 0.178 | 0.032 | 0.083 | 0.115 | 0.185 | 0.045 | 0.089

1000 | 0.102 | 0.178 | 0.032 | 0.089 | 0.115 | 0.185 | 0.045 | 0.089

Furthermore the error rates of theodels with the lag 1 phaseas an additional variable are
lower than those of the models without this information. It is remarkable as well that the error
rates of theanodels 2are lower than those of thmodels 3

The number obBupport vectors for the computed models is different. The models 2a and 3a
contain more support vectors than the models 2b and 3b. Depending of the choice of C model
2a contains between 48 and 61 support vectors, and 3a 51 up to 54. Model 2b has between 21
and 30, and in one case 42 support vectors (3. The number of support vectors for model

3b is between 28 and 38. It is remarkable that for each model the chaicki€coupled with

the highest number of support vectors.

Theoptimal models i.e. the models with the optimal choice of parameter C, i.e. withm®,
Cop =100, G5=10, and G, =5 will now be analyzed.
In particular, the position of support vectors andr$classified vectors will be discussed.

The Support Vector Method estimateshygperplane which marks the boundary between the
two classes dependent on the variables. The normal vector ohyperplane has one
component for each economic variable. But the number of variables is too big to discuss each
component. Therefore we only analyze tugport vectors in relation to the variable GNP

being the most important economic indicator.

Figures 4 and 5 show the varial8BNP together with the course of phasefor the model
and 3. The squares mark the support vectors which arecnastvalidated errors, and the
crosses mark therossvalidated errors. Note thatl crossvalidated errors have to be
support vectors

10



Figure 4: Support vectors andcrossvalidated errors (GNP, model®a and 2b)
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Figure 5: Support vectorsand crossvalidatederrors (GNP, models3a and 3b)
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The number of support vectorsis 53 in the optimal model 2a, and 22 in the optimal model
2b. Thenumber of crossvalidated errorsis 25 in model 2a, and 10 in model 2b. In the
optimal model 3a the number of support vectors is 52, and 33 in model 3b. The number of
crossvalidated errors is 27 in model 3a, and 14 in model 3b.

The support vectors mainly appear in the first half of the observed time period, and the
majority of the vectors are located near to a phase switch. This means that the boundary of
classes in IR is marked by observations which are close to phase switches in the data set.
One reason why this might have been expected is that observations near to phase switches
will have related values independent of their phases.

Somewhat more surprising is that teapport vectors appear in the whole region of the
(growth rates of) GNP. In some cases the support vectors are located at striking positions of
the time plot of GNP (e.g. the observations 18 and 108 with m2alelBut apparentiyio

rule exists concerning the relationship of the value of GNP and the location of a support
vector. In particular, support vectors cannot be found near all phase switches. Thus, the idea
of data reduction to support vectors appearsquestionable if one is interestedto
characterize phase switches

Also most of thecrossvalidated errorsappear in the first half of the time period. Maybe one
reason for this that economic growth rates changed more erratically during the period of the
so-called ‘economic miracle’ Wirtschaftswunder”). This might lead to the observed
misclassification errors.

Model2a has 25rossvalidated errors model2b only 10. Most of these errors are located
near to switch phases. Also many errors lie in the periods from observation 23 (1962/2) to 33
(1963/4) and from number 63 (1971/2) up to 66 (1972/1). The last periods coincide with the
first oil crisis and are oftemisclassified also by clusteringchiques (cpTheis and Weihs
(1999)). ModeBa has 27misclassified observationsand modeBb only 14. The main
periods with errors are located from 26 (1962/1) to 39 (1965/2) and from 65 (1971/4) to
observation 69 (1972/4), similar as in models 2a, 2b.

Thus, it is remarkable that for all 4 modetssclassified observationsearly lie in the same
area, although the corresponding decision functions are very different. Obviously it is difficult
to classify these time periods.

7. Results for the 4phase-model

For model 1 the model optimization with respect to the constant C is repeated (cp. Table 3).

First, it appears remarkable that tbptimal error rates are higher than with the 2-phase
models. This might indicate that there is not enough evidence in the data to separate 4 phases.
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Note in particular that the turning point phases are supported by only a small number of
observations.

Table 3: Error rates for model 1

modella model 1b
phase before
tr.set cv tr.set cv

1 0.172 | 0.267 | 0.070 | 0.204

5 0.166 | 0.229 | 0.076 | 0.17/8

10 0.166 | 0.261 | 0.064 | 0.204

50 0.159 | 0.255 | 0.038 | 0.217

100 0.140 | 0.274 | 0.025 | 0.222

500 0.127 | 0.280 0 0.236

1000 | 0.134 | 0.274 0 0.242

The optimal error rate 0.229 found by the Support Vector Method for model 1a might be
compared with the error rate 0.285 found by Weihs et al. (1999) by mearsneér
Discriminant Analysis (LDA) in the whole 13 dimensional space usiBgyes decision rules
based on estimated normal densities with identical covariance matrices for all 4 classes to
construct separatingyperplanes for all pairs of classes. Thus, $hgport Vector Method

has a distinctiybetter error rate than LDA. This result might have been expected since the
Support Vector Method was constructed to find optimal separatypgrplanes.

Figures 6 and 7, analogous to figures 4 and 5 in the analysis of models 1 and 2, show the GNP
curve and the course of the business phases together wittsubgort vectors and
classification errorsfor models 1a, 1b.

In the optimal model 1a (C = 5), overall 76 of the 157 observationssamport vectors
Thereof, 36 observations amisclassified In the optimal model 1b (C = 5, again), 57
observations are support vectors, and 28 of them are not correctly classified. Note that the
classification errors mainly lie near to phase switches, whereas the other support vectors more
often appear inside of phases.

The majority of thecrossvalidated errorsagain appear in the first halve of the observed time
period. Moreover, those observations wrongly allocated by models 2 and 3 are again falsely
classified by model 1. The errors particularly appear in the time periods 8-15, 28-33, and 68-
75.

The number of support vectors, number abssvalidated errors, and the corresponding
crossvalidated error rate of the optimal models 1a (C = 5), 2a (C =5), 3a (C = 10), 1b (C =5),
2b (C = 100), and 3b (C =5) are contrasted in Table 4. Again, the best entries are marked for
both ‘static’ and ‘dynamic’ model versions. Note the superiority of models 2.
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Figure 6: Support vectorsand crossvalidatederrors (GNP, model1a)
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Figure 7: Support vectorsand crossvalidatederrors (GNP, model 1b)
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Table 4: Number of support vectors andcrossvalidated errors, as well as error rates

for optimal models

model la 2a 3a 1b 2b 3b

no. of support vectors 76 53 52 57 22 33

no. of errors 36 25 27 28 10 14
error rate 0.229 | 0.159 | 0.172 | 0.178 | 0.064 | 0.089
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8. Computational Aspects

The computation of the support vectors takes very nmaarhputer time in the case of more
than M > 2 classes, especially since an optimization problem M dimensions has to be
solved, N = number of observations.

We utilized an active sets algorithm (cp. Fletcher, 1981) in SAS/IML to solve the quadratic
optimization problem. The program needs around 2.5 minutes on a 300 MHz PC for one
optimization. Cross validation with 157 observations thus needed around 7 hours which is by
any means unacceptable. One should check alternatives, at least concerning the programming
language and theesampling algorithm.

9. Conclusion

In this paper thanulti-class classificationSupport Vector Method of Weston and Watkins
(1998) is correctly formulated as a quadratic optimization problem. The standard binary
classification Support Vector Method and this multi-class classification method were applied
to the problem opredicting business phasesf the German economy.

The results are two-fold. On the one hand, after the analysis of the results of this study it
appears questionable that the Support Vector Method delivers a meaningful (dimension
independentdata reduction by means of identifying the support vectors only. Indeed, the
support vectors did not appear to be sufficient to characterize the switches between the
business phases. Note however that there might be arguments not to expect that all phase
switches are ‘covered’ by support vectors since in such a case the reasons for a phase switch
would never be similar!

On the other hand, thelassification powerof the Support Vector Method was somewhat
better than with Lineabiscriminant Analysis. Note however that the Support Vector Method
needs very much more computation time than Liri@iacriminant Analysis.

Overall, theproperties of the Support Vector Method have to be analyzed in greater detail

in order to decide in which situations the bigger effort to construct a classification rule can be
justified. Especially the notion of a support vector might have to revised. For this the
interpretation of support vectors should be analyzed more thoroughly, e.g. by means of
simulation studies.
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